JPS61213408A - Burning method for solid material containing impurities at circular flow melting equipment - Google Patents

Burning method for solid material containing impurities at circular flow melting equipment

Info

Publication number
JPS61213408A
JPS61213408A JP5512685A JP5512685A JPS61213408A JP S61213408 A JPS61213408 A JP S61213408A JP 5512685 A JP5512685 A JP 5512685A JP 5512685 A JP5512685 A JP 5512685A JP S61213408 A JPS61213408 A JP S61213408A
Authority
JP
Japan
Prior art keywords
sludge
particles
furnace
combustion
crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5512685A
Other languages
Japanese (ja)
Other versions
JPH0650172B2 (en
Inventor
Takashi Ishida
敬 石田
Masuta Hasegawa
益男 長谷川
Yasushi Chida
地田 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP60055126A priority Critical patent/JPH0650172B2/en
Publication of JPS61213408A publication Critical patent/JPS61213408A/en
Publication of JPH0650172B2 publication Critical patent/JPH0650172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce the amount of generated NOX and dust by burning particles which are shifted within a certain limited size and supplied to a furnace after solid materials containing impurities are crushed by a crusher. CONSTITUTION:Dried sludge in a sewage disposal plant is sent to a crusher 30 through a dried sludge conveyor 3. The crusher 30 is so selected from among various kinds of machines that the machine is capable of crushing the sludge into particles having size under 3,000mum and the ratio of fine particles under 200mum size is made as small as possible. Then, crushed sludge is sent to a sifter 31. Sludge (200-300mum) which is adjusted in grain size to a circular fow melting furnace 9 is injected tangentially into the furnace with preheated air for burning at high velocity. Sludge particles being injected at high velocity are separated from air by centrifugal force and reach a inner wall of the furnace and are captured by melted sludge existing in the place and burnt. At that time, incombustibles contained in sludge particles are melted and flowed down together along the inner wall of the furnace and sent to a smelt desolver 15 with burnt waste gas via a outlet of smelt burning waste gas 14.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、旋回流溶融炉内で、下水汚泥、石炭等の不燃
物を含む固形物質を燃焼させ、不燃物を溶融処理する時
に発生するN0x(窒素酸化物)を著しく減少させ、同
時に飛散ダスト量を減少させる旋回流溶融設備における
不燃物を含む固形物質の燃焼方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is directed to the combustion of solid substances containing non-combustible materials such as sewage sludge and coal in a swirling flow melting furnace, and to melting of non-combustible materials. The present invention relates to a method for burning solid materials containing non-combustible materials in swirling flow melting equipment, which significantly reduces NOx (nitrogen oxides) and at the same time reduces the amount of scattered dust.

「従来の技術」 旋回流溶融炉は、サイクロンの遠心分離の原理を応用し
たものでありズ、燃焼忙必要な空気と微粉砕した固形燃
料を炉に対して同−接線方向忙高速で供給して、強い旋
回運動を行なわせるものである。この時生ずる遠心力の
作用により燃料粒子が炉の内壁面に到達して分離され付
着するのに対して、壁面に到達することができなかった
細い粒子は燃焼室中心部で空気と混合されて高温度の燃
焼が行なわれるが、滞留時間が短いために完全燃焼が行
なわれない状態で、燃焼室外へ飛散する。
``Prior art'' A swirling flow melting furnace applies the principle of centrifugal separation of a cyclone, and supplies the air necessary for combustion and pulverized solid fuel to the furnace at the same high speed in the tangential direction. This makes it possible to perform a strong turning motion. Due to the action of the centrifugal force generated at this time, fuel particles reach the inner wall of the furnace, are separated and adhere to it, while thin particles that cannot reach the wall are mixed with air in the center of the combustion chamber. High-temperature combustion occurs, but due to the short residence time, complete combustion is not achieved and the fuel is scattered outside the combustion chamber.

゛また、壁面に達しな粗粒子は、壁面をおおうスラグ膜
上に捕捉されて、スラグと共にゆるやかに流動しながら
燃焼し、かつ粗粒子中の不燃物は、燃焼熱によって溶融
してスラグと化し、燃焼室内の全面を覆う。従って、ス
ラグ膜上に捕捉される粗粒子の滞留時間は、約60秒と
長くなることから、極めて高負荷の下で完全燃焼が行な
われる。
゛In addition, coarse particles that do not reach the wall surface are captured on the slag film covering the wall surface and burn while flowing slowly with the slag, and non-combustible substances in the coarse particles are melted by the heat of combustion and turn into slag. , covering the entire surface inside the combustion chamber. Therefore, the residence time of the coarse particles trapped on the slag film is as long as about 60 seconds, and complete combustion takes place under an extremely high load.

一方、燃焼室内のを気は均一に分布しているが、壁面部
では、次々に供給される固形燃料が燃焼するため局部的
に空気過剰率が/θ以下となる。そこで、壁面に捕捉さ
れた燃料粒子1ll111分解されて可燃性ガスを発生
する反応と、燃焼室中心部にお゛いて熱分解ガスが、酸
素と化合して燃焼する反応とが二段階で進むため低NO
x燃焼が実現できるといわれ【いる。
On the other hand, although the air inside the combustion chamber is uniformly distributed, the solid fuel supplied one after another burns on the wall surface, so that the excess air ratio locally becomes less than /θ. Therefore, the reaction proceeds in two stages: one in which the fuel particles trapped on the wall are decomposed to generate flammable gas, and the other in the center of the combustion chamber, in which the pyrolysis gas combines with oxygen and burns. Low NO
It is said that x-combustion can be achieved.

しかしながら、実際には、供給する燃焼室中心部い粒子
が多いため、高温で急速な空間燃焼が行なわれて、多量
のN Oxが生成されている。このため、NOxの生成
を抑制しようと、種々の研究が行なわれておシ、その−
例として、旋回流溶融炉では、燃焼用空気比を0.g〜
θデで運転し、一部分を可燃ガス化して、その後段に設
けた二次燃焼炉で完全燃焼させてNOx生成を低下させ
る二段燃焼方式が知られている。
However, in reality, since there are many particles supplied to the center of the combustion chamber, rapid space combustion occurs at high temperatures, and a large amount of NOx is generated. For this reason, various studies have been conducted to suppress the generation of NOx.
For example, in a swirling flow melting furnace, the combustion air ratio is set to 0. g~
A two-stage combustion system is known in which the combustion engine is operated at θ de, partially converted into combustible gas, and then completely combusted in a secondary combustion furnace provided at the subsequent stage to reduce NOx production.

ところで、従来、下水処理場で生じる汚泥の処理は、汚
泥を脱水、コンポスト化、あるいは焼却等によって減量
化した後、投棄してきたが、その量が増大しておシ、焼
却灰の処分地確保は、灰の飛散、重金属の溶出等二次公
害の問題もあって、ますます困難になって来ている。こ
のような背景のもとに近年、新しい処理方法として、乾
燥汚泥を旋回流溶融炉内で自燃高負荷燃焼を行ない、生
じた灰分を水冷スラグ忙する方法が、汚泥の減量化、無
害化、安定化を図り、再資源化にもなる方法として注目
されてきておシ、盛んに研究されている。この乾燥下水
汚泥を旋回流溶融炉において焼却溶融処理する場合には
、汚泥中の不燃物を溶融させる必要から、炉内温度を/
 1I00℃〜/mO℃に保たなければならない。そこ
で、従来の方法では、供給する下水汚泥を炉内で燃焼用
空気に良く分散させ、燃焼を早める目的で、下水汚泥な
202m以下の微粒子に粉砕して供給していた。このた
め、供給された下水汚泥は、高温で急激な燃焼が行なわ
れ、多量のNOXの生成が避けられず、例えば、燃焼用
空気比をlコで燃焼させた場合、燃焼廃ガス中に/θ0
0〜ノ200P(02/ 2チ換算値)のN Oxが検
出されている。また、微粒汚泥を高速で炉内圧吹込むた
め、飛散ダスト量も多く、上記燃焼条件において、燃焼
廃ガス中に20 g/Nryl (02/ 2%換算値
)のダストが検出されている。このため、上記N Ox
の生成を低下させる目的で、旋回流溶融炉では空気比を
O1g〜0.9 K抑えて燃焼させ、二次燃焼炉を設け
て完全燃焼させる、上述の二段燃焼方式を採用している
のが実状である。この二段燃焼方式は、例えば、第を図
に示すようなものであシ、これを簡単に説明すると、ま
ず、脱水汚泥供給機1によって、汚泥乾燥機2に送られ
た脱水汚泥が、−この汚泥乾燥機2によ〕乾燥された後
、この乾燥された汚泥が乾燥汚泥コンベア3を介して破
砕機4に移送され、破砕機4において、粗粒汚泥もどし
コンベア5によって戻ってきた粗粒汚泥と共に破砕され
、さらに1破砕汚泥コンベア6を通って、篩分は装置7
に送られて篩分けられる。そして、微粒汚泥(27θμ
m以下)が、汚泥供給機8を介して旋回流溶融F9内に
送られて、−次窒気プロア10、−次窒気ダクト11、
突気予熱機12、予熱空気ダクト13を経て移送されて
きた予熱空気と共に、空気比θj〜0.9に抑制した状
態において、炉内で強い旋回流が起こるように接線方向
に高速で吹き込まれる。次いで炉内で生成されたスメル
ト及び可燃性ガスを一部含んだ燃焼廃ガスがスメルト燃
焼廃ガス出口14からスメルトデゾルパ15に送りこま
れて、スメルトが水冷スラグ化して系外に取出されると
共に、上記燃焼廃ガスは、燃焼廃ガスダクト16を介し
て二次燃焼炉17内に供給されて、この二次燃焼炉17
内圧おいて二次突気プロア18、二次空気ダクト19を
介して送られてきた二次空気と反応して、完全燃焼し、
さらに、燃焼廃ガスダクト20、空気予熱器12、燃焼
廃ガスダクト21を通過していくよう罠なっている。
By the way, in the past, sludge generated at sewage treatment plants was treated by reducing the volume of sludge through dehydration, composting, or incineration, and then dumping it, but as the amount increased, it became necessary to secure a disposal site for the incinerated ash. This is becoming increasingly difficult due to secondary pollution problems such as the scattering of ash and the elution of heavy metals. Against this background, in recent years, a new treatment method has been developed in which dry sludge is subjected to self-combustion high-load combustion in a swirling flow melting furnace, and the resulting ash is converted into water-cooled slag, which reduces the volume of sludge, makes it harmless, and It has been attracting attention as a method of stabilization and recycling, and is being actively researched. When this dried sewage sludge is incinerated and melted in a swirling flow melting furnace, it is necessary to melt the incombustibles in the sludge, so the temperature inside the furnace is
Must be maintained at 1I00°C ~/mO°C. Therefore, in the conventional method, the sewage sludge to be supplied is pulverized into fine particles of 202 m or less in size and supplied in order to disperse the sewage sludge well in the combustion air in the furnace and accelerate combustion. For this reason, the supplied sewage sludge undergoes rapid combustion at high temperatures, and the generation of a large amount of NOx is unavoidable. θ0
NOx of 0 to 200P (02/2 CH conversion value) has been detected. Furthermore, since fine sludge is injected into the furnace at high speed and under pressure, there is a large amount of scattered dust, and under the above combustion conditions, 20 g/Nryl (02/2% equivalent value) of dust was detected in the combustion waste gas. For this reason, the above NOx
In order to reduce the generation of is the actual situation. This two-stage combustion system is, for example, as shown in Figure 1. To briefly explain this, first, dehydrated sludge sent to the sludge dryer 2 by the dehydrated sludge feeder 1 is - After being dried by this sludge dryer 2, this dried sludge is transferred to a crusher 4 via a dry sludge conveyor 3, and in the crusher 4, coarse particles are returned by a coarse sludge returning conveyor 5. The sludge is crushed together with the sludge, further passed through one crushed sludge conveyor 6, and the sieved portion is transferred to a device 7.
It is sent to the sieve and sieved. Then, fine sludge (27θμ
m or less) is sent into the swirling flow melting F9 via the sludge feeder 8, and is fed into the -next nitrogen gas purifier 10, the -next nitrogen gas duct 11,
Together with the preheated air transferred via the rush preheater 12 and the preheated air duct 13, it is blown in at high speed in the tangential direction so that a strong swirling flow occurs in the furnace, while the air ratio is suppressed to θj ~ 0.9. . Next, the smelt generated in the furnace and combustion waste gas partially containing combustible gas are sent from the smelt combustion waste gas outlet 14 to the smelt desolpa 15, where the smelt is turned into water-cooled slag and taken out of the system. The combustion waste gas is supplied into the secondary combustion furnace 17 via the combustion waste gas duct 16.
It reacts with the secondary air sent through the secondary air blower 18 and the secondary air duct 19 at the internal pressure, resulting in complete combustion.
Further, it is configured to pass through a combustion waste gas duct 20, an air preheater 12, and a combustion waste gas duct 21.

「発明が解決しようとする問題点」 しかしながら、上記従来の方法においては、汚泥を20
0μm以下という微粉末にするために1上記汚泥破砕機
4としては、高速回転の粉砕機、または、ボールミル等
動力の大きい装置が必要となる上に、燃焼時の飛散ダス
トが多いため、燃焼廃ガスの処理費用が嵩むという問題
がある。また、NOxの生成を下げるために、二次燃焼
炉17が必要となるから、設備コストもかかる上に、系
が複雑化し【、運転方法が難しくなるという問題がある
"Problems to be solved by the invention" However, in the above conventional method, sludge is
In order to make a fine powder of 0 μm or less, 1 the sludge crusher 4 requires a high-power device such as a high-speed rotation crusher or a ball mill. There is a problem in that the cost of processing the gas increases. Furthermore, since the secondary combustion furnace 17 is required to reduce the generation of NOx, there are problems in that the equipment cost is high, the system becomes complicated, and the operation method becomes difficult.

本発明は、上記事情に鑑みて、本発明者等が、上記従来
方法の欠点を除くために鋭意研究を重ねた結果、供給す
る物質の粒径がN Oxの生成に大きな影響を与え【い
ることを見い出して、この知見に基づいてなされたもの
であシ、その目的とするところは、旋回流溶融炉内で発
生するN Oxな大幅に低減できる上に、燃焼廃ガス中
に飛散するダスト量な減少させることができる旋回流溶
融設備における不燃物を含む固形物質の燃焼方法を提供
することにある。
In view of the above circumstances, the inventors of the present invention have conducted extensive research to eliminate the drawbacks of the conventional methods described above, and as a result, it has been discovered that the particle size of the supplied substance has a large effect on the generation of NOx. This was done based on this knowledge, and its purpose is to significantly reduce the amount of NOx generated in the swirling flow melting furnace, as well as reduce the amount of dust scattered in the combustion waste gas. It is an object of the present invention to provide a method for combustion of solid materials including non-combustible materials in a swirl flow melting facility, which can reduce the amount of combustion of solid materials containing non-combustible materials.

「問題点を解決するための手段」 上記目的を達成するために本発明は、不燃物を含む固形
物質を破砕機にかけた後、篩分けした200μm以上で
かつサイクロン効果を得られる範囲内の大きさの粒子を
旋回流溶融炉に供給して燃焼するようにしたものである
。ここで、サイクロン効果が得られる粒度とは、旋回流
溶融炉の規模、取扱う粒子の比重等その物性によシ変化
するものであるが、例えば、乾燥下水汚泥においては3
000μm以下である。
"Means for Solving the Problems" In order to achieve the above object, the present invention provides a method for crushing solid materials containing non-combustible materials, and then sieving them to a size of 200 μm or more and within the range where a cyclone effect can be obtained. The particles are fed into a swirling flow melting furnace and burned. Here, the particle size at which the cyclone effect can be obtained varies depending on the size of the swirling flow melting furnace and the physical properties of the particles being handled, such as the specific gravity of the particles.
000 μm or less.

「作用」 本発明の燃焼方法にあっては、旋回流溶融炉内に送シと
まれる固形物質の粒度なコoopm以上でかつサイクロ
ン効果を得られる範囲内のものに限定することによつ【
、旋回流溶融炉内に送シ弘まれた上記固形物質が炉内壁
部九次々に捕捉されて燃焼するから、部分的に空気不足
の状態となシ、部分燃焼が起こることKよって、上記固
形物質の一部がガス化し、さらに該ガスが燃焼すること
Kよって旋回流溶融炉内で二段燃焼が行なわれ、NOx
の生成及び飛散ダスト量が抑えられる。
"Operation" In the combustion method of the present invention, by limiting the particle size of the solid material sent and held in the swirling flow melting furnace to coopm or more and within a range where a cyclone effect can be obtained.
Since the solid material sent into the swirling flow melting furnace is trapped and burned on the inner wall of the furnace nine times, there is a partial lack of air, and partial combustion occurs. A part of the substance is gasified and the gas is further combusted, resulting in two-stage combustion in the swirling flow melting furnace, and NOx
The generation of dust and the amount of scattered dust can be suppressed.

「実施例」 以下、第1図ないし第3図に基づいて本発明の一実施例
を説明する。なお、本実施例において、第9図に示す上
記従来例と同じ構成の部分については同符号を付けて、
説明を簡略化する。
"Embodiment" Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 3. In this embodiment, the same reference numerals are given to the parts having the same configuration as those of the conventional example shown in FIG.
Simplify the explanation.

第1弱圧おいて、まず、下水処理湯の脱水機で脱水され
た汚泥を脱水汚泥供給機IKよって、汚泥乾燥機2に供
給する。ここで、供給された汚泥は、含水率70%以下
、望ましくは絶乾状態まで乾燥された後、乾燥した汚泥
は、乾燥汚泥コンベア3を通って、破砕機30に送られ
る。この破砕機30は、上記乾燥汚泥を3oooμm以
下に破砕する一方、2oopm以下の微粉末になる割合
のできるだけ少ない機種を選ぶ必要がある。
At the first low pressure, first, the sludge dehydrated by the sewage treatment hot water dehydrator is supplied to the sludge dryer 2 by the dehydrated sludge feeder IK. Here, the supplied sludge is dried to a moisture content of 70% or less, preferably to an absolutely dry state, and then the dried sludge is sent to the crusher 30 through the dry sludge conveyor 3. This crusher 30 needs to be selected as a model that crushes the dried sludge to 300 μm or less, while reducing the proportion of fine powder of 200 μm or less as much as possible.

次いで、破砕機30によって破砕された汚泥は、破砕汚
泥コンベア6によって篩分は装置31に送られる。この
篩分は装置31は、篩目が2o o pmと3oooμ
mの二段の金網が取付けられており、3000μm以上
の粗い粒子は、粗粒汚泥もどしコンベア32によって破
砕機30に戻されて再破砕される。燃焼時KNOx生成
の原因となる200μm以下の微粒子は、微粒汚泥もど
しコンベア33によって戻され、脱水汚泥と混合されて
、汚泥乾燥機2に供給され再造粒される。
Next, the sludge crushed by the crusher 30 is sieved and sent to the device 31 by the crushed sludge conveyor 6. For this sieve, the device 31 has a sieve mesh of 2o o pm and 3oooμ
A two-stage wire mesh of 3,000 μm or more is attached, and coarse particles of 3000 μm or more are returned to the crusher 30 by a coarse sludge reconstitution conveyor 32 and crushed again. Fine particles of 200 μm or less that cause KNOx generation during combustion are returned by the fine sludge return conveyor 33, mixed with dewatered sludge, and supplied to the sludge dryer 2 where they are re-granulated.

次いで、上記篩分は装置31によって篩分けられ粒度調
節された汚泥C;100pW1〜3000pn@)は、
”汚泥供給機8によシ、旋回流溶融炉9に送られ、−次
空気プロア10、−次空気ダクト11、空気予熱器12
、予熱空気ダクト13を介して送られてきた燃焼用予熱
空気と共に、旋回流溶融炉9内で強い旋回流が起こるよ
うに1接線方向に高速で吹込まれるdこの際、旋回流溶
融炉9の内部は、供給された汚泥の燃焼圧よって7QO
O℃〜t!;00℃に保たれている。この状態において
、旋回流溶融炉9の内部に高速で吹込まれた汚泥粒子は
、その除虫じる遠心力によシ空気と分離され、炉内壁面
化到達し、そこに存在する溶融スラグに捕捉されて燃焼
する。この時、汚泥粒子に含まれる不燃物は、炉内壁面
において溶融しながら、壁面に沿って流下し、燃焼廃ガ
スと共にスメルト燃焼廃ガス出口14を通って、スメル
トデゾルバ15に入る。そして、スメルトは冷却水中化
落下して水冷スラグ化され系外に取出される一方、燃焼
廃ガスは、燃焼廃ガスダクト34を通って、空気予熱器
12において、−次空気ブロア10からの燃焼用空気と
熱交換した後燃焼廃ガスダクト35を通ってガス精製装
置へと送られる。
Next, the sludge C; 100 pW1 to 3000 pn@) was sieved by the device 31 and the particle size was adjusted.
The sludge is sent to the swirling flow melting furnace 9 by the sludge feeder 8, the secondary air blower 10, the secondary air duct 11, and the air preheater 12.
, together with preheated combustion air sent through the preheated air duct 13, is blown into the swirling flow melting furnace 9 at high speed in a tangential direction so as to generate a strong swirling flow in the swirling flow melting furnace 9. 7QO inside due to the combustion pressure of the supplied sludge.
O℃~t! ;Kept at 00℃. In this state, the sludge particles blown into the swirling flow melting furnace 9 at high speed are separated from the air by the centrifugal force that removes insects, reach the furnace wall, and become part of the molten slag present there. Captured and burned. At this time, the incombustibles contained in the sludge particles flow down along the wall surface while melting on the furnace inner wall surface, pass through the smelt combustion waste gas outlet 14 together with the combustion waste gas, and enter the smelt resolver 15. The smelt falls into the cooling water, becomes water-cooled slag, and is taken out of the system, while the combustion waste gas passes through the combustion waste gas duct 34 and is sent to the air preheater 12 for combustion from the secondary air blower 10. After exchanging heat with air, the combustion waste gas is sent to the gas purification device through the duct 35.

このようにしズ、旋回流溶融炉9内に供給する汚泥の粒
度を調整し、NOx生成の原因となる200μm以下の
微粒子を旋回溶融炉9内へ供給しないよう忙したから、
旋回流溶融炉9内忙送力込まれた汚泥粒子は、炉内壁部
忙次々忙捕捉されて燃mL1部分的に空気不足の状態と
なり、部分燃焼が起こるととKよって、上記汚泥粒子の
一部が可燃ガス化し、さらに該ガス分が燃焼するととに
よって、旋回流溶融炉9内で二段燃焼が行なわれ、NO
xの生成及び飛散ダスト量が大幅忙抑見られる。
In this way, I was busy adjusting the particle size of the sludge fed into the swirling flow melting furnace 9, and trying not to feed fine particles of 200 μm or less, which would cause NOx generation, into the swirling melting furnace 9.
The sludge particles that have been forced into the swirling flow melting furnace 9 are trapped one after another by the inner wall of the furnace, resulting in a partially air-deficient state, and when partial combustion occurs, some of the sludge particles are By converting the gas into combustible gas and further burning the gas, a two-stage combustion is performed in the swirling flow melting furnace 9, and NO.
The generation of x and the amount of scattered dust are significantly suppressed.

次に、上述した本発明の方法を具体的に実施した場合に
ついて説明する◇ ここで、使用した乾燥下水汚泥の物性は、以下の通シで
ある。
Next, a case in which the method of the present invention described above is specifically implemented will be described.◇ Here, the physical properties of the dried sewage sludge used are as follows.

水分   16% 灰分  5よ7% 可燃分 ダよ7% 総発熱量lざ30 kcdlk& 上記のような物性の乾燥下水汚泥を篩分は装置31にて
、粒径な第1表忙示すようKpl整して、旋回流溶融炉
9内に供給した。
Moisture 16% Ash 5-7% Combustible content 7% Total calorific value lza30 kcdlk& Dried sewage sludge with physical properties as described above is sieved using device 31, and KPL is adjusted so that the particle size is shown in Table 1. Then, it was supplied into the swirling flow melting furnace 9.

第1表に示したよう忙粒度を調整した乾燥下水汚泥を、
第2表に示す運転条件で運転し℃いる旋回流溶融炉9内
に供給して焼却溶融処理した。
Dried sewage sludge with adjusted particle size as shown in Table 1,
The material was fed into a swirling flow melting furnace 9 operated at 0.degree. C. under the operating conditions shown in Table 2, and incinerated and melted.

第2我 第1表に示したそれぞれの粒径の汚泥を、第2表に示し
た運転条件で運転して排出された燃焼廃ガス中に含まれ
るNOx濃度を測定した結果を第一図に示す。この図は
、横軸化供給汚泥の平均粒径、縦軸KNOx濃度(Ox
/2’A換算値)を取ったもので、図中符号S−1,S
−2,8−3,’S−4は、第1表に示す試料NOK対
応している。
Figure 1 shows the results of measuring the NOx concentration contained in the combustion exhaust gas discharged by operating sludge with each particle size shown in Table 1 under the operating conditions shown in Table 2. show. In this figure, the horizontal axis represents the average particle diameter of the supplied sludge, and the vertical axis represents the KNOx concentration (Ox
/2'A conversion value), and the symbols S-1 and S in the figure
-2, 8-3, 'S-4 correspond to the sample NOK shown in Table 1.

第2図を見れば明らかなように1本発明の運転方法によ
って、NOxの濃度が大幅忙低減されていることがわか
る。次に、同実験における燃焼廃ガス中のダスト濃度を
測定した結果を第3図に示す。
As is clear from FIG. 2, the NOx concentration is significantly reduced by the operating method of the present invention. Next, FIG. 3 shows the results of measuring the dust concentration in the combustion exhaust gas in the same experiment.

この図は、横軸に供給汚泥の平均粒径、縦軸にダスト濃
度(Ot/2%換算値)を取ったもので、図中符号S−
1,S−2,S−3,S−4は、第1表に示す試料階に
対応している。第3図から明らかなように1本発明の運
転方法によってダスト濃度が大幅に低減されていること
がわかる。
In this figure, the horizontal axis shows the average particle diameter of the supplied sludge, and the vertical axis shows the dust concentration (Ot/2% conversion value).
1, S-2, S-3, and S-4 correspond to the sample floors shown in Table 1. As is clear from FIG. 3, it can be seen that the dust concentration is significantly reduced by the operating method of the present invention.

゛ 「発明の効果」 以上説明したように、本発明は、不燃物を含む固形物質
を破砕機にかけた後、篩分けした200μm以上でかつ
サイクロン効果を得られる範囲内の大きさの粒子を旋回
流溶融炉に供給して燃焼するようにしたものであるから
、旋回流溶融炉内に送シ込まれる固形物質の粒度な2o
opm以上でかつサイクロン効果を得られる範囲内のも
のに限定するととによって、旋回流溶融炉内に送シこま
れた上記固形物質が炉内壁部忙次々に捕捉されて燃焼す
るから、部分的に空気不足の状態となシ、部分燃焼が起
こることKよって、上記固形物質の一部がガス化し、さ
らに該ガスが燃焼すること忙よって、旋回流溶融炉内で
二段燃焼が行なわれ、旋回流溶融炉内で発生するN O
xな大#!に低減できる上に、燃焼廃ガス中に飛散する
ダスト量を著しく減少させることができる。従って、従
来の方法のように、二次燃焼炉を設ける必要がなく、設
備コストが低減できる上に1燃焼系統が簡略化でき、運
転管理が行ない易く、しかも、燃焼時の飛散ダスト用の
処理費用を低く抑えることができる。
゛ "Effects of the Invention" As explained above, the present invention is capable of crushing solid materials containing non-combustible materials, and then rotating the sieved particles with a size of 200 μm or more and within the range where a cyclone effect can be obtained. Since it is supplied to a flow melting furnace and combusted, the particle size of the solid material fed into the swirl flow melting furnace is 2o.
OPM or more and within the range where a cyclone effect can be obtained, the solid materials introduced into the swirling flow melting furnace are captured one after another by the furnace inner wall and burnt. If there is no air shortage, partial combustion will occur, so that part of the solid substance will be gasified, and as this gas will be combusted, a two-stage combustion will occur in the swirling flow melting furnace. NO generated in flow melting furnace
x big #! In addition, it is possible to significantly reduce the amount of dust scattered in the combustion waste gas. Therefore, there is no need to install a secondary combustion furnace as in the conventional method, which reduces equipment costs, simplifies one combustion system, and facilitates operation management. Costs can be kept low.

また、本発明の燃焼方法を下水処理化適用した場合には
、200pW1以下の汚泥微粒子は、脱水した下水汚泥
に混合して汚泥乾燥機忙より再造粒し、かつ3000μ
m以上のサイクロン効果を得られる範囲以上の粗粒子は
、破砕機に戻して再破砕することによって、破砕機にお
い″Cコoopm以下の微粒子に破砕していた従来方法
に比べて破砕機の消費動力を低減できる等優れた効果を
有する。
In addition, when the combustion method of the present invention is applied to sewage treatment, sludge fine particles of 200pW1 or less are mixed with dewatered sewage sludge and re-granulated in a sludge dryer, and
Coarse particles exceeding the range where a cyclone effect of m or more can be obtained are returned to the crusher for re-shredding, which reduces the consumption of the crusher compared to the conventional method in which the crusher crushes them into fine particles of less than ``Coopm.'' It has excellent effects such as being able to reduce power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃焼方法を実施するため忙用いられる
設備の一例を示す概略構成図、第2図は燃焼廃ガス中の
NOx濃度(O1!/2ts換算値)の測定結果を示す
特性図、第3図は燃焼廃ガス中のダスト濃度の測定結果
を示す特性図、第4図は従来の燃焼方法を実施するため
に用いられる設備の一例を示す概略構成図である。 2・・・・・・汚泥乾燥機、9・・・・・・旋回流溶融
炉、30・・・・・・破砕機、31・・曲部分は装置、
32・曲・粗粒汚泥もどしコンベア、33・・・・・・
微粒汚泥もどしコンベア。 第1図 第2図   F3図
Fig. 1 is a schematic configuration diagram showing an example of equipment that is used to carry out the combustion method of the present invention, and Fig. 2 is a characteristic showing the measurement results of NOx concentration (O1!/2ts conversion value) in combustion waste gas. 3 are characteristic diagrams showing measurement results of dust concentration in combustion waste gas, and FIG. 4 is a schematic configuration diagram showing an example of equipment used to carry out a conventional combustion method. 2...Sludge dryer, 9...Swirling flow melting furnace, 30...Crushing machine, 31...The curved part is the device,
32・Song・Coarse sludge return conveyor, 33...
Fine sludge return conveyor. Figure 1 Figure 2 Figure F3

Claims (1)

【特許請求の範囲】 1)不燃物を含む固形物質を旋回流溶融炉により焼却し
、該不燃物を溶融処理する旋回流溶融設備における不燃
物を含む固形物質の燃焼方法において、上記不燃物を含
む固形物質を破砕機にかけた後、篩分けした200μm
以上でかつサイクロン効果を得られる範囲内の大きさの
粒子を上記旋回流溶融炉に供給して燃焼することを特徴
とする旋回流溶融設備における不燃物を含む固形物質の
燃焼方法。 2)上記不燃物を含む固形物質として下水汚泥を燃焼処
理する場合に、上記破砕機により破砕された乾燥下水汚
泥を篩分けした際、200μm以下の微粒子は、脱水し
た下水汚泥に混合させて汚泥乾燥機により再造粒し、ま
た上記サイクロン効果を得られる範囲より粗い粒子は、
上記破砕機に戻して再破砕することを特徴とする特許請
求の範囲第1項記載の旋回流溶融設備における不燃物を
含む固形物質の燃焼方法。
[Scope of Claims] 1) A method for burning a solid substance containing noncombustibles in a swirling flow melting facility in which a solid substance containing noncombustibles is incinerated in a swirling flow melting furnace, and the noncombustibles are melted. After passing the solid material containing it through a crusher, it was sieved to 200μm
A method for combustion of solid substances containing non-combustible materials in a swirling flow melting equipment, characterized in that the particles having the above size and within a range in which a cyclone effect can be obtained are fed to the swirling flow melting furnace and burned. 2) When sewage sludge is subjected to combustion treatment as a solid substance containing the above-mentioned incombustibles, when the dried sewage sludge crushed by the above-mentioned crusher is sieved, fine particles of 200 μm or less are mixed with the dehydrated sewage sludge and converted into sludge. Particles that are coarser than the range that can be re-granulated using a dryer and obtain the above-mentioned cyclone effect are
2. A method for burning solid materials containing incombustibles in a swirling flow melting facility according to claim 1, characterized in that the solid materials are returned to the crusher and crushed again.
JP60055126A 1985-03-19 1985-03-19 Combustion method for solid substances containing incombustibles in swirl flow melting equipment Expired - Lifetime JPH0650172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055126A JPH0650172B2 (en) 1985-03-19 1985-03-19 Combustion method for solid substances containing incombustibles in swirl flow melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055126A JPH0650172B2 (en) 1985-03-19 1985-03-19 Combustion method for solid substances containing incombustibles in swirl flow melting equipment

Publications (2)

Publication Number Publication Date
JPS61213408A true JPS61213408A (en) 1986-09-22
JPH0650172B2 JPH0650172B2 (en) 1994-06-29

Family

ID=12990065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055126A Expired - Lifetime JPH0650172B2 (en) 1985-03-19 1985-03-19 Combustion method for solid substances containing incombustibles in swirl flow melting equipment

Country Status (1)

Country Link
JP (1) JPH0650172B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020455A (en) * 1990-01-11 1991-06-04 Chiba City & Tsukishima Kikai Kubushiki Kaisha System for treating waste material in a molten state
JPH03282109A (en) * 1990-03-30 1991-12-12 Jgc Corp Method of incineration and melting in swirl flow furnace
JPH046309A (en) * 1990-04-23 1992-01-10 Jgc Corp Incineration and melting processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103215A (en) * 1983-11-10 1985-06-07 Daido Steel Co Ltd Disposal of waste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103215A (en) * 1983-11-10 1985-06-07 Daido Steel Co Ltd Disposal of waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020455A (en) * 1990-01-11 1991-06-04 Chiba City & Tsukishima Kikai Kubushiki Kaisha System for treating waste material in a molten state
US5081937A (en) * 1990-01-11 1992-01-21 Chiba City & Tsukishima Kikai Kabushiki Kaisha System for treating waste material in a molten state
JPH03282109A (en) * 1990-03-30 1991-12-12 Jgc Corp Method of incineration and melting in swirl flow furnace
JPH0585807B2 (en) * 1990-03-30 1993-12-08 Jgc Corp
JPH046309A (en) * 1990-04-23 1992-01-10 Jgc Corp Incineration and melting processing device

Also Published As

Publication number Publication date
JPH0650172B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
KR100474034B1 (en) Waste Incineration Method and Equipment
JP4076233B2 (en) Method and apparatus for gasification and melting treatment of solid waste
CA2266770A1 (en) Process and device for incineration of particulate solids
KR20030085599A (en) Waste treatment apparatus and method
JP7278385B2 (en) Combustibles treatment method and equipment
KR100211124B1 (en) Refuse incineration facility
JPS61213408A (en) Burning method for solid material containing impurities at circular flow melting equipment
JPH06506758A (en) Methods and devices for incinerating different types of solid and possibly liquid wastes
JP2895469B1 (en) Method and apparatus for reducing dioxins in a melting furnace
JPS61105018A (en) Waste incinerating method
JPH1114026A (en) Combustion method of waste in circulation type fluidization bed
JP4362428B2 (en) Treatment method of sludge and incineration ash
JPS6152883B2 (en)
JP2519523B2 (en) Method and apparatus for burning end-of-life dust of oil coke
JPH11173523A (en) Method and device for treating waste through combustion
JP2003042419A (en) Operation method of gasifying/melting furnace equipment, and the gasifying/melting furnace equipment
JP2602612B2 (en) Fluidized bed incineration of waste powder
JPH0675718B2 (en) Sludge pre-melting method and apparatus
JP2007010309A (en) Recovery method of inflammable gas from sludge
JPS59167629A (en) Incinerator
JP2000039122A (en) City garbage gasifying/melting system and method
JPH11159722A (en) Sludge incinerating method
JPH0692810B2 (en) Fluidized bed type sludge combustion furnace
JP3048298B2 (en) Incineration melting furnace
JP2001349526A (en) Coal fired boiler with rotary melting furnace for melting coal ashes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term