JPS61212761A - Quick analysis of carbon in metal sample - Google Patents
Quick analysis of carbon in metal sampleInfo
- Publication number
- JPS61212761A JPS61212761A JP60052393A JP5239385A JPS61212761A JP S61212761 A JPS61212761 A JP S61212761A JP 60052393 A JP60052393 A JP 60052393A JP 5239385 A JP5239385 A JP 5239385A JP S61212761 A JPS61212761 A JP S61212761A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbon
- spark discharge
- discharge
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
- G01N33/202—Constituents thereof
- G01N33/2022—Non-metallic constituents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は金属試料中に含まれる炭素を簡単、迅速に分薪
する方法に関するものであり、製鉄業あるいは各種非鉄
金属製造業などにおける製造工程管理分析や品質管理分
析の分野で利用されるものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for simply and quickly separating carbon contained in metal samples, and is applicable to manufacturing processes in the steel industry or various non-ferrous metal manufacturing industries. It is used in the fields of management analysis and quality control analysis.
(従来の技術)
金属の精錬プロセスなどの操業管理は、可能な限り迅速
に分析して成分含有率を把握し、その結果によって対応
措置をとる必要がある。また、製品の検定にも高精度の
迅速分析が必要であり、特に炭素は製鉄プロセスにおい
て品質を決定する上で重要な成分である。(Prior Art) In operational management of metal refining processes, etc., it is necessary to analyze as quickly as possible to understand the component content, and take countermeasures based on the results. Highly accurate and rapid analysis is also required for product verification, and carbon in particular is an important component in determining quality in the steel manufacturing process.
金属試料中の炭素の分析方法は各種あるが、燃焼赤外吸
収法(JIS G 1211−1981鉄及び鋼中の炭
素定量方法)および発光分光分析方法(JISG125
3鉄及び鋼の光電測光法による発光分光分析方法)が代
表的な分析方法である。There are various methods for analyzing carbon in metal samples, including combustion infrared absorption method (JIS G 1211-1981 method for determining carbon in iron and steel) and emission spectrometry method (JIS G 125
3) is a typical analysis method for iron and steel.
前者は、切削した金属試料を酸素気流中で燃焼させ、試
料中に含まれる炭素を二酸化炭素に変え、その赤外領域
における吸収を測定し炭素の含有率を求める方法である
。後者は、ブロック状の金属試料表面とタングステン等
の対電極との間に高電圧をかけてスパーク放電を行わせ
1発生した励起光を分光器によって分光し、炭素の発光
スペクトル線強度から試料中の含有率を求める方法であ
る。The former is a method in which a cut metal sample is burned in an oxygen stream to convert carbon contained in the sample into carbon dioxide, and its absorption in the infrared region is measured to determine the carbon content. The latter method involves applying a high voltage between the surface of a block-shaped metal sample and a counter electrode such as tungsten to generate a spark discharge.The generated excitation light is separated using a spectrometer, and the intensity of the emission spectral lines of carbon is used to determine the content of the sample. This is a method to find the content rate.
前者は燃焼法であるために分析試料は切削片状でなけれ
ばならない、そのために金属の精錬工程における工程管
理分析などにおいては、溶融金属を採取して固化させた
ブロック試料から再度切削粉を採取しなければならず、
時間がかかり実用できない欠点をもつ、後者はブロック
試料を対象とし、短時間で炭素を含む複数元素を同時分
析できる実用的な方法である。しかし、同時に発光する
各元素のスペクトル線の干渉を防ぐために、1オングス
トローム以下の高分解能の発光スペクトルの分光が必要
になる。従って1分光器は大型となり、分析装置が占め
るスペースは大きく、また分光器は精密光学装置である
ために室温変化が少なくて振動が起らず、また塵埃の少
ない場所に設置しなければならない0分析装置の価格も
非常に高価になる。Since the former is a combustion method, the sample to be analyzed must be in the form of cutting chips. Therefore, in process control analysis in the metal refining process, cutting powder is collected again from a block sample after collecting molten metal and solidifying it. have to,
The latter method, which has the disadvantage of being time-consuming and impractical, is a practical method that targets block samples and can simultaneously analyze multiple elements including carbon in a short time. However, in order to prevent interference between the spectral lines of each element emitting light at the same time, it is necessary to analyze the emission spectrum with a high resolution of 1 angstrom or less. Therefore, the spectrometer is large and the analyzer occupies a large space, and since the spectrometer is a precision optical device, it must be installed in a place where room temperature changes are small, vibrations do not occur, and there is little dust. The price of analysis equipment also becomes very high.
そこで、従来の発光分光分析法のように複数の元素を同
時に分析できなくとも、金属の精錬に重要な炭素だけで
も簡単、迅速に分析でき、しかも設置上の制約条件が厳
しくなく、安価な分析装置が望まれる場合が多い。Therefore, even though it is not possible to analyze multiple elements at the same time as with conventional emission spectroscopy, it is possible to analyze just carbon, which is important for refining metals, easily and quickly.Moreover, there are no strict installation restrictions, and it is an inexpensive analysis method. equipment is often desired.
(発明が解決しようとする問題点)
本発明はこのような目的で提供されるもので、方法、原
理的にも全く新規のものである。すなわち、金属の機械
的強度などの品質評価に重要な影響を与える主要元素で
ある炭素を簡単、迅速に高感度、高性能で分析でき、し
かも、温度変化、振動、塵埃等設置環境上の制約がゆる
く、装置価格も安価である。また、特に近年重要な高純
度金属生産に必須である高感度分析の面では特に従来よ
りも優れた特徴をもつものである。(Problems to be Solved by the Invention) The present invention is provided for this purpose and is completely new in terms of method and principle. In other words, carbon, which is a major element that has an important effect on quality evaluation such as the mechanical strength of metals, can be analyzed easily, quickly, with high sensitivity, and with high performance, while also being able to analyze installation environment constraints such as temperature changes, vibrations, and dust. The cost of the equipment is low. In addition, it has features that are superior to conventional methods, especially in terms of high-sensitivity analysis, which is essential for the production of high-purity metals, which has become important in recent years.
(問題点を解決するための手段)
本発明は金属試料中に含まれる炭素を酸素ガスを含む不
活性ガス雰囲気中でスパーク放電によって励起させ、炭
素を一酸化炭素などのガス成分に変え、水素炎イオン化
検出器によってガス成分の濃度を測定し、金属試料中の
炭素の含有率を簡単、迅速に分析するものである。この
方法、原理については本発明者がすでに特願昭59−1
88583 。(Means for solving the problem) The present invention excites carbon contained in a metal sample by spark discharge in an inert gas atmosphere containing oxygen gas, converts carbon into gas components such as carbon monoxide, and generates hydrogen. This method uses a flame ionization detector to measure the concentration of gas components and easily and quickly analyze the carbon content in metal samples. Regarding this method and principle, the present inventor had already filed a patent application in 1983.
88583.
「金属試料中の炭素、硫黄成分の迅速分析方法および装
置」として出願した。The application was filed as "Method and apparatus for rapid analysis of carbon and sulfur components in metal samples."
本発明が先願の発明に比べて異なる点は、金属試料にス
パーク放電を飛ばす際に、雰囲気ガスを最初に酸素ガス
等の不純物を含まない高純度の不活性ガスとしてスパー
ク放電を予備的に飛ばしておき、次に雰囲気ガスを酸素
を含む不活性ガスに切替えてそのままスパーク放電を継
続して飛ばすことにより、−酸化炭素ガスの生成を安定
化させた点にある。酸素を含む不活性ガス雰囲気下では
スパーク放電は正常には飛びにくく、各元素の蒸発量が
非常に低い拡散放電となり一酸化炭素の生成量が少なく
なったり、不安定になったりして定量精度が悪くなる問
題があったが、上記雰囲気ガスの切替によってこの問題
を解決した。The difference between the present invention and the prior invention is that when a spark discharge is applied to a metal sample, the atmospheric gas is first changed to a high-purity inert gas that does not contain impurities such as oxygen gas to preliminarily generate the spark discharge. The point is that the production of -carbon oxide gas is stabilized by allowing the spark to flow, then switching the atmospheric gas to an inert gas containing oxygen and continuing to cause spark discharge. In an inert gas atmosphere containing oxygen, spark discharge does not normally fly, and the amount of evaporation of each element becomes a diffusion discharge, which reduces the amount of carbon monoxide produced or makes it unstable, resulting in poor quantitative accuracy. However, this problem was solved by switching the atmospheric gas mentioned above.
(発明の構成・作用・実施例)
第1図に示す本発明の実施装置例をもとに、本発明の構
成8作用について説明する0本発明装置は、−酸化炭素
ガス生成部1、スパーク放電用電源部2、アルゴンガス
などの不活性ガス制御部3、ガスサンプリング部4およ
び検出部5を主体に構成される。−酸化炭素ガス生成部
1は、分析試料6に対向してタングステン製などの対電
極7が設けられ、不活性ガス供給口と排出口を設けた小
容積の放電室8を形成している。対電極7は耐熱絶縁材
で保持されており1分析試料6とは絶縁されている0分
析試料6および対電極7には、スパーク放電用電源装置
2の陰極および陽極がそれぞれ接続されている。この両
極に高電圧をかけて分析試料6表面と対電極7先端部間
にスパーク放電を飛ばし、分析試料中の各元素を励起蒸
発させる。スパーク放電の条件は各元素の励起の再現性
が良い条件が適当である0例えば、スパーク放電回路定
数が自己誘導104H,静電容量3ルF、′抵抗0Ωで
電圧はtooov 、周波数は100〜400Hz
。(Structure, operation, and embodiments of the invention) Based on the example of the apparatus for implementing the present invention shown in FIG. 1, the structure 8 and operation of the present invention will be explained. It is mainly composed of a discharge power supply section 2, an inert gas control section 3 such as argon gas, a gas sampling section 4, and a detection section 5. - The carbon oxide gas generating section 1 is provided with a counter electrode 7 made of tungsten or the like facing the analysis sample 6, and forms a small volume discharge chamber 8 provided with an inert gas supply port and a discharge port. The counter electrode 7 is held by a heat-resistant insulating material and is insulated from the 1 analysis sample 6. The cathode and the anode of the spark discharge power supply device 2 are connected to the 0 analysis sample 6 and the counter electrode 7, respectively. A high voltage is applied to these two electrodes to generate a spark discharge between the surface of the analysis sample 6 and the tip of the counter electrode 7, thereby exciting and vaporizing each element in the analysis sample. Appropriate conditions for spark discharge are those that provide good reproducibility of the excitation of each element.For example, the spark discharge circuit constant is self-induction 104H, capacitance 3F, resistance 0Ω, voltage tooov, frequency 100~ 400Hz
.
電極間間隙は4〜6冒鵬程度の一般的な低圧スパーク放
電条件を採用した場合、定量結果の感度・精度が優れて
いた。When general low-pressure spark discharge conditions with an interelectrode gap of about 4 to 6 mm were used, the sensitivity and accuracy of the quantitative results were excellent.
ガス制御部3は高純度アルゴンガスポンベ9、酸素ガス
を0.001〜0.1z程度混合した高純度アルゴンガ
スポンベ10、ニードルバルブ付流量計11a。The gas control unit 3 includes a high-purity argon gas pump 9, a high-purity argon gas pump 10 mixed with oxygen gas of about 0.001 to 0.1z, and a flowmeter 11a with a needle valve.
ttb 、電磁弁12a、12bなどから構成され、ア
ルゴンガスおよび酸素混合アルゴンガスの流路の切替お
よび流量制御を行う、まず、−酸化炭素ガス生成部lに
分析試料6を設定したあと、第1図の矢印の経路、すな
わち、高純度アルゴンガスポンベ9、流量計11a、電
磁弁12a、ガス供給管13、放電室8、ガス搬送管1
4および電磁弁12c経路にアルゴンガスを10〜20
文/sinの流量で流して放電室8内に残留した大気を
排出除去するとともに予備的にスパーク放電を飛ばす、
この予備放電は、酸素混合アルゴンガスで最初から放電
させると拡散放電となり、正常なスパーク放電が得られ
なくなり炭素の分析精度が悪くなるのでこれを防止する
ために行う、すなわち、放電を飛び易くし、かつ放電状
態を安定化させるとともに、もし試料表面にわずかな炭
素成分の汚れ等がある場合にはそれを除去することが目
的である。ttb, electromagnetic valves 12a, 12b, etc., which switch the flow path and control the flow rate of argon gas and oxygen-mixed argon gas.First, after setting the analysis sample 6 in the -carbon oxide gas generation section l, the first The route indicated by the arrow in the figure, that is, the high-purity argon gas pump 9, the flow meter 11a, the solenoid valve 12a, the gas supply pipe 13, the discharge chamber 8, the gas conveyance pipe 1
4 and the solenoid valve 12c path for 10 to 20 minutes.
Flowing at a flow rate of 1/sin to discharge and remove the atmosphere remaining in the discharge chamber 8, and to preliminarily blow a spark discharge.
This preliminary discharge is performed in order to prevent this from occurring, since if the discharge is started from the beginning with oxygen-mixed argon gas, a normal spark discharge will not be obtained and the accuracy of carbon analysis will deteriorate. In addition to stabilizing the discharge state, the purpose is to remove any traces of carbon contamination on the surface of the sample.
次にこの予備放電を止めずに雰囲気ガスを酸素混合アル
ゴンガスに切替える。すなわち、酸素混合アルゴンガス
ポンベ10、流量計11b、電磁弁12b、供給管13
、放電室8.搬送管14、電磁弁12C,微粒子フィル
ター15およびガス計量管16の経路に酸素混合アルゴ
ンガスを0.5〜3M/m’inの流量で流してスパー
ク放電を飛ばす、このスパーク放電の雰囲気ガスの切替
が本発明の特徴であるが、ガス切替を行わない特願昭5
i3−188583と。Next, the atmospheric gas is switched to oxygen-mixed argon gas without stopping this preliminary discharge. That is, an oxygen mixed argon gas pump 10, a flow meter 11b, a solenoid valve 12b, a supply pipe 13
, discharge chamber8. Oxygen-mixed argon gas is flowed at a flow rate of 0.5 to 3 M/m'in through the paths of the conveying pipe 14, the solenoid valve 12C, the particulate filter 15, and the gas metering pipe 16 to cause the spark discharge to flow. Switching is a feature of the present invention, but a patent application filed in 1973 that does not involve gas switching
i3-188583.
0.2FHの炭素を含む鉄鋼試料の10回繰り返した時
の分析精度(変動係数)を比較した。その結果、本発明
の変動係数は0.85% テ、特願昭59−18858
3の3.7zに比べ大幅に分析精度の向上がはかられた
。The analytical precision (coefficient of variation) of steel samples containing 0.2FH carbon was compared 10 times. As a result, the coefficient of variation of the present invention is 0.85%.
Analysis accuracy was significantly improved compared to 3.7z.
サンプリング部4は、電磁弁12C1微粒子フィルター
15、ガス計量管18などから構成される。アルゴンガ
ス流通下でスパーク放電を行うと、鉄鋼試料中の鉄、炭
素、マンガン、けい素、硫黄、燐などの各元素は励起さ
れるが、ごく短時間の内にお互が粒子を形成する。この
粒子は、0.01pm程度の極めて微細な超微粒子で、
スパーク放電の回路定数などにも左右されるが、その成
分組成はもとの鉄鋼試料の成分組成に近い、しかし、高
純度アルゴンガスに酸素ガスを混合して上記と同様にス
パーク放電を行うと、鉄鋼試料中の鉄、マンガン、けい
素等は超微粒子を形成するが、炭素は励起された瞬間に
酸素と反応して一酸化炭素および二酸化炭素ガスの酸化
物ガスを生成することを見い出した。生成ガスの主成分
は一酸化炭素ガスであった。放電室8で生成した一酸化
炭素ガスは微粒子フィルター15で一緒に送られてきた
鉄などの微粒子2が除去され、1〜5cc程度で一定容
量とした切替弁つき細管からなるガス計量管1Bを満た
して系外に排出される。計量管1Bに満たされた一酸化
炭素ガスは、切替弁の操作によって別のポンベから供給
されるアルゴンガスをキャリアーガスとして検出部5へ
送られる。The sampling section 4 includes a solenoid valve 12C1, a particulate filter 15, a gas measuring tube 18, and the like. When spark discharge is performed under argon gas flow, each element such as iron, carbon, manganese, silicon, sulfur, and phosphorus in the steel sample is excited, but they mutually form particles within a very short time. . These particles are extremely fine ultrafine particles of about 0.01 pm.
Although it depends on the circuit constants of the spark discharge, its composition is close to that of the original steel sample. However, if high-purity argon gas is mixed with oxygen gas and spark discharge is performed in the same way as above, found that iron, manganese, silicon, etc. in steel samples form ultrafine particles, but the moment carbon is excited, it reacts with oxygen to produce oxide gases of carbon monoxide and carbon dioxide. . The main component of the produced gas was carbon monoxide gas. The carbon monoxide gas generated in the discharge chamber 8 is filtered through a particulate filter 15 to remove particulates 2 such as iron, which are sent along with the carbon monoxide gas, and then passed through a gas metering tube 1B consisting of a thin tube with a switching valve that has a constant capacity of about 1 to 5 cc. filled and discharged from the system. The carbon monoxide gas filled in the metering tube 1B is sent to the detection section 5 using argon gas supplied from another pump as a carrier gas by operating the switching valve.
検出部5は、ガス還元装置17.水素炎イオン化検出器
(FID) 1Bおよびデータ処理装置19などから構
成される。 FID検出器18はガスクロマトグラフに
一般的に用いられる検出器であるが、水素炎を励起源と
して分析成分をイオン化し、そのイオン電流を測定する
ものである。−酸化炭素および二酸化炭素ガスはFID
検出器で直接測定できないために、 FID検出器の前
にニッケル触媒を加熱したガス還元装置17を取り付け
る。−酸化炭素や二酸化炭素はメタンに還元されてFI
Dに導入され、高感度で検出される。検出信号はデータ
処理部19に送られ、検出ピーク高さあるいはピーク面
積が求められ、予め鉄鋼標準試料を用いて決定された検
量線をもとに、鉄鋼試料中の炭素含有率が算出される。The detection unit 5 includes a gas reduction device 17. It is composed of a hydrogen flame ionization detector (FID) 1B, a data processing device 19, and the like. The FID detector 18 is a detector commonly used in gas chromatographs, and uses a hydrogen flame as an excitation source to ionize an analytical component and measure the ion current. - Carbon oxide and carbon dioxide gases are FID
Since the detector cannot measure directly, a gas reduction device 17 heated with a nickel catalyst is installed in front of the FID detector. - Carbon oxide and carbon dioxide are reduced to methane and FI
D and detected with high sensitivity. The detection signal is sent to the data processing unit 19, the detected peak height or peak area is determined, and the carbon content in the steel sample is calculated based on a calibration curve determined in advance using a steel standard sample. .
ガス計量管1Bとガス還元装置17との間にガス成分分
離用カラムを取りつけて測定すると約3分程度で一酸化
炭素および二酸化炭素が分離検出されるが、これら以外
にFIDに対して測定を妨害するガス成分は検出されな
かったので、分離カラムの取り付けは必らずしも必要で
はない、従って、分離カラムを用いない場合は、−酸化
炭素および微量生成する二酸化炭素はいずれもガス還元
装置17によってメタンに還元されるので、FIDでは
両ガス成分の含量が40秒程度の短時間で測定される。If a gas component separation column is attached between the gas metering tube 1B and the gas reduction device 17, carbon monoxide and carbon dioxide will be separated and detected in about 3 minutes. Since no interfering gas components were detected, the installation of a separation column is not absolutely necessary; therefore, if a separation column is not used, - carbon oxides and trace amounts of carbon dioxide produced are both removed from the gas reduction device. Since the gas is reduced to methane by 17, the contents of both gas components can be measured in a short period of about 40 seconds using FID.
スパーク放電時の酸素(40ppm)混合アルゴンガス
の流量を21 /1n 、−酸化炭素生成ガスのサンプ
リング量をlsfとし、鉄鋼標準試料中の炭素を分析し
、作成した検量線例を第2図に示した。第2図かられか
るように1本発明によれば鉄鋼試料中の微量の炭素を1
分以内の短時間で簡単に精度よく定量できる。Fig. 2 shows an example of a calibration curve created by analyzing carbon in a steel standard sample, with the flow rate of oxygen (40 ppm) mixed argon gas during spark discharge being 21/1n, and the sampling amount of -carbon oxide generation gas being lsf. Indicated. As shown in Fig. 2, according to the present invention, trace amounts of carbon in steel samples are
It can be easily and accurately quantified within minutes.
(発明の効果)
本発明は以上説明したように、これまで採用されてきた
ブロー、り形状試料を対象に金属中の炭素を迅速分析す
る発光分光分析法による場合に比べ、分析対象元素が炭
素に限定されるものの、振動、温度変化、塵埃等の分析
装置に対する測定環境など制約条件がゆるく、また装置
価格も115程度の安価である0分析所用時間も短かく
、定量感度にも優れる非破壊迅速分析として有用で、鉄
鋼、チタン、アルミニウム、銅などの金属等の品質評価
に最も重要な元素である炭素を対象とすることから、金
属の精錬や製造プロセス等の操業管理に極めて効果が大
きい。(Effects of the Invention) As explained above, the present invention has the advantage that the target element to be analyzed is carbon, compared to the case of using optical emission spectrometry, which rapidly analyzes carbon in metals for blow-shaped samples, which has been adopted up to now. Although the measurement environment for the analyzer is limited to vibrations, temperature changes, dust, etc., there are loose constraints on the measurement environment for the analyzer, and the equipment price is low at about 115 0. It is a non-destructive method with short laboratory time and excellent quantitative sensitivity. It is useful as a rapid analysis and targets carbon, which is the most important element for quality evaluation of metals such as steel, titanium, aluminum, copper, etc., so it is extremely effective for operational management of metal refining and manufacturing processes. .
第1図は本発明を実施するための装置の構成を示す説明
図である。第2図は本発明の方法により鉄鋼標準試料中
の炭素を分析し、作成した検量線の例である。なお、第
1図中の番号は以下のことを示している。
1・・・−酸化炭素ガス生成部、2・・・スパーク放電
用電源部、3・・・雰囲気ガス制御部、4・・・ガスサ
ンプリング部、5・・・検出部、6・・・分析試料、7
・・・対電極、8・・・スパーク放電室、9・・・アル
ゴンガスボンベ、10・・・酸素混合アルゴンガスポン
ベ、15・・・微粒子フィルター、16・・・ガス計量
管、17・・・ガス還元装置、18・・・水素炎イオン
化検出器。FIG. 1 is an explanatory diagram showing the configuration of an apparatus for implementing the present invention. FIG. 2 is an example of a calibration curve created by analyzing carbon in a steel standard sample using the method of the present invention. Note that the numbers in FIG. 1 indicate the following. DESCRIPTION OF SYMBOLS 1...-carbon oxide gas generation part, 2... power supply part for spark discharge, 3... atmospheric gas control part, 4... gas sampling part, 5... detection part, 6... analysis Sample, 7
Counter electrode, 8 Spark discharge chamber, 9 Argon gas cylinder, 10 Oxygen mixed argon gas cylinder, 15 Particulate filter, 16 Gas measuring tube, 17... Gas reduction device, 18...Hydrogen flame ionization detector.
Claims (1)
成分を対象に試料中の炭素成分含有率を求める分析方法
において、 最初に不活性ガス雰囲気下で予備的にスパーク放電を行
って試料表面状態および放電状態を安定化させたのちに
、微量の酸素を含んだ不活性ガス雰囲気に切り替えてス
パーク放電を行い、発生した一酸化炭素等の炭素ガス成
分を還元してメタンに変えて水素炎中に導入し、炭素成
分のイオン電流を測定して炭素含有率を求めることを特
徴とする金属試料中の炭素の迅速分析方法。[Claims] In an analysis method for determining the carbon component content in a sample using gas components generated by spark discharge on the surface of a metal sample, the spark discharge is first performed preliminary in an inert gas atmosphere. After stabilizing the sample surface condition and discharge condition, spark discharge is performed in an inert gas atmosphere containing a trace amount of oxygen, and carbon gas components such as carbon monoxide generated are reduced to methane. A method for rapid analysis of carbon in a metal sample, characterized by introducing the carbon into a hydrogen flame and measuring the ionic current of the carbon component to determine the carbon content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052393A JPS61212761A (en) | 1985-03-18 | 1985-03-18 | Quick analysis of carbon in metal sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052393A JPS61212761A (en) | 1985-03-18 | 1985-03-18 | Quick analysis of carbon in metal sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61212761A true JPS61212761A (en) | 1986-09-20 |
JPH0450981B2 JPH0450981B2 (en) | 1992-08-17 |
Family
ID=12913556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60052393A Granted JPS61212761A (en) | 1985-03-18 | 1985-03-18 | Quick analysis of carbon in metal sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61212761A (en) |
-
1985
- 1985-03-18 JP JP60052393A patent/JPS61212761A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0450981B2 (en) | 1992-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5394092A (en) | System for identifying and quantifying selected constituents of gas samples using selective photoionization | |
US5541519A (en) | Photoionization detector incorporating a dopant and carrier gas flow | |
CN112816436B (en) | Spectrum-mass spectrum combined device and detection method | |
Li et al. | Hydride generation-point discharge microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn | |
Kawaguchi et al. | Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols | |
Burman et al. | Comparison of different plasma excitation and calibration methods in the analysis of geological materials by optical emission spectrometry | |
Gendt et al. | Quantitative analysis of iron-rich and other oxide-based samples by means of glow discharge mass spectrometry | |
US3713773A (en) | Method of determining trace amounts of gases | |
Lemarchand et al. | Analysis of ferrous alloys by spark ablation coupled to inductively coupled plasma atomic emission spectrometry | |
WO2024019093A1 (en) | Quantitative analysis method and quantitative analysis device | |
JPS61212761A (en) | Quick analysis of carbon in metal sample | |
JPH0634616A (en) | Analysis of a trace of impurities | |
JPS6165154A (en) | Method and instrument for quick analysis of carbon and sulfur components in metallic sample | |
Coedo et al. | Spark ablation as sampling device for inductively coupled plasma mass spectrometric analysis of low-alloyed steels | |
Bernhardt et al. | Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials | |
Peng et al. | Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders | |
JPS60233538A (en) | Method and instrument for quick analyzing carbon, phosphorous and sulfur components with formation of hydride | |
Scribner | Emission spectroscopy | |
JP3439974B2 (en) | Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample | |
JPH0211099B2 (en) | ||
Shekhar et al. | Analysis of high purity antimony by glow discharge quadrupole mass spectrometry | |
JP2898433B2 (en) | Analysis method for trace carbon in metal samples | |
JPH0238901B2 (en) | ||
Li et al. | Fast analysis of metal components in coal dust using spark emission spectroscopy | |
Ikezawa et al. | Development of Helium-microwave-induced plasma-atomic emission spectroscopy system with two-way spectroscopic analysis |