JPH0450981B2 - - Google Patents

Info

Publication number
JPH0450981B2
JPH0450981B2 JP60052393A JP5239385A JPH0450981B2 JP H0450981 B2 JPH0450981 B2 JP H0450981B2 JP 60052393 A JP60052393 A JP 60052393A JP 5239385 A JP5239385 A JP 5239385A JP H0450981 B2 JPH0450981 B2 JP H0450981B2
Authority
JP
Japan
Prior art keywords
carbon
gas
sample
spark discharge
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60052393A
Other languages
Japanese (ja)
Other versions
JPS61212761A (en
Inventor
Akihiro Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60052393A priority Critical patent/JPS61212761A/en
Publication of JPS61212761A publication Critical patent/JPS61212761A/en
Publication of JPH0450981B2 publication Critical patent/JPH0450981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属試料中に含まれる炭素を簡単、迅
速に分析する方法に関するものであり、製鉄業あ
るいは各種非鉄金属製造業などにおける製造工程
管理分析や品質管理分析の分野で利用されるもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for easily and quickly analyzing carbon contained in metal samples, and is useful for manufacturing process management in the steel industry or various non-ferrous metal manufacturing industries. It is used in the field of analysis and quality control analysis.

(従来の技術) 金属の精錬プロセスなどの操業管理は、可能な
限り迅速に分析して成分含有率を握把し、その結
果よつて対応措置をとる必要がある。また、製品
の検定にも高精度の迅速分析が必要であり、特に
炭素は製鉄プロセスにおいて品質を決定する上で
重要な成分である。
(Prior Art) In operational management of metal refining processes, etc., it is necessary to analyze as quickly as possible to understand the component content, and take appropriate measures based on the results. Highly accurate and rapid analysis is also required for product verification, and carbon in particular is an important component in determining quality in the steel manufacturing process.

金属試料中の炭素の分析方法は各種あるが、燃
焼赤外吸収法(JIS G1211−1981鉄及び鋼中の炭
素定量方法)および発光分光分析方法(JIS
G1253鉄及び鋼の光電測光による発光分光分析方
法)が代表的な分析方法である。
There are various methods for analyzing carbon in metal samples, including combustion infrared absorption method (JIS G1211-1981 Method for determining carbon in iron and steel) and emission spectrometry method (JIS
G1253 (Emission spectroscopy analysis method using photoelectric photometry for iron and steel) is a typical analysis method.

前者は、切削した金属試料を酸素気流中で燃焼
させ、試料中に含まれる炭素を二酸化炭素に変
え、その赤外領域における吸収を測定し炭素の含
有率を求める方法である。後者は、ブロツク状の
金属試料表面とタングステン等の対電極との間に
高電圧をかけてスパーク放電を行わせ、発生した
励起光を分光器によつて分光し、炭素の発光スペ
クトル線強度から試料中の含有率を求める方法で
ある。
The former is a method in which a cut metal sample is burned in an oxygen stream to convert carbon contained in the sample into carbon dioxide, and its absorption in the infrared region is measured to determine the carbon content. In the latter method, a high voltage is applied between the surface of a block-shaped metal sample and a counter electrode such as tungsten to cause a spark discharge, and the generated excitation light is separated using a spectrometer, and the intensity of the carbon emission spectrum line is determined. This is a method to determine the content in a sample.

前者は燃焼法であるために分析試料は切削片状
でなければならない。そのために金属の精錬工程
における工程管理分析などにおいては、溶融金属
を採取して固化させたブロツク試料から再度切削
粉を採取しなければならず、時間がかかり実用で
きない欠点をもつ。後者はブロツク試料を対象と
し、短時間で炭素を含む複数元素を同時分析でき
る実用的な方法である。しかし、同時に発光する
各元素のスペクトル線の干渉を防ぐために、1オ
ングストローム以下の高分解能の発光スペクトル
の分光が必要になる。従つて、分光器は大型とな
り、分析装置が占めるスペースは大きく、また分
光器は精密光学装置であるために室温変化が少な
くて振動が起らず、また塵埃の少ない場所に設置
しなければならない。分析装置の価格も非常に高
価になる。
Since the former is a combustion method, the sample to be analyzed must be in the form of cuttings. For this reason, in process control analysis in the metal refining process, cutting powder must be collected again from a block sample obtained by collecting molten metal and solidifying it, which is time consuming and has the disadvantage of being impractical. The latter is a practical method that targets block samples and allows simultaneous analysis of multiple elements including carbon in a short time. However, in order to prevent interference between the spectral lines of each element emitting light at the same time, it is necessary to analyze the emission spectrum with a high resolution of 1 angstrom or less. Therefore, spectrometers are large and the analysis equipment occupies a large amount of space, and since spectrometers are precision optical devices, they must be installed in a place where room temperature changes are small, vibrations do not occur, and there is little dust. . The price of analytical equipment also becomes very high.

そこで、従来の発光分光分析法のように複数の
元素を同時に分析できなくとも、金属の精錬に重
要な炭素だけでも簡単、迅速に分析でき、しかも
設置上の制約条件が厳しくなく、安価な分析装置
が望まれる場合が多い。
Therefore, even though it is not possible to analyze multiple elements at the same time as with conventional emission spectroscopy, it is possible to analyze just carbon, which is important for refining metals, easily and quickly.Moreover, there are no strict installation restrictions, and it is an inexpensive analysis method. equipment is often desired.

(発明が解決しようとする問題点) 本発明はこのような目的で提供されるもので、
方法、原理的に全く新規のものである。すなわ
ち、金属の機械的強度などの品質評価に重要な影
響を与える主要元素である炭素を簡単、迅速に高
感度、高性能で分析でき、しかも、温度変化、振
動、塵埃等設置環境上の制約がゆるく、装置価格
も安価である。また、特に近年重要な高純度金属
生産に必須である高感度分析の面では特に従来よ
りも優れた特徴をもつものである。
(Problems to be Solved by the Invention) The present invention is provided for such purposes,
The method is completely new in principle. In other words, carbon, which is a major element that has an important effect on quality evaluation such as the mechanical strength of metals, can be analyzed easily, quickly, with high sensitivity, and with high performance, while also being able to analyze installation environment constraints such as temperature changes, vibrations, and dust. The cost of the equipment is low. In addition, it has features that are superior to conventional methods, especially in terms of high-sensitivity analysis, which is essential for the production of high-purity metals, which has become important in recent years.

(問題点を解決するための手段) 本発明は金属試料中に含まれる炭素を酸素ガス
を含む不活性ガス雰囲気中でスパーク放電によて
励起させ、炭素を一酸化炭素などのガス成分に変
え、水素炎イオン化検出器によつてガス成分の濃
度を測定し、金属試料中の炭素の含有率を簡単、
迅速に分析するものである。この方法、原理につ
いては本発明者がすでに特願昭59−186563(特開
昭61−65154号公報)、「金属試料中の炭素、硫黄
成分の迅速分析方法および装置」として出願し
た。
(Means for solving the problem) The present invention excites carbon contained in a metal sample by spark discharge in an inert gas atmosphere containing oxygen gas, and converts carbon into gas components such as carbon monoxide. , the concentration of gas components is measured using a hydrogen flame ionization detector, and the carbon content in metal samples can be easily determined.
It is a quick analysis. This method and principle have already been filed by the present inventor in Japanese Patent Application No. 59-186563 (Japanese Unexamined Patent Publication No. 61-65154) titled ``Method and Apparatus for Rapid Analysis of Carbon and Sulfur Components in Metal Samples''.

本発明が先願の発明に比べて異なる点は、金属
試料にスパーク放電を飛ばす際に、雰囲気ガスを
最初に酸素ガス等の不純物を含まない高純度の不
活性ガスとしてスパーク放電を予備的に飛ばして
おき、次に雰囲気ガスを酸素を含む不活性ガスに
切替えてそのままスパーク放電を継続して飛ばす
ことにより、一酸化炭素ガスの生成を安定化させ
た点にある。酸素を含む不活性ガス雰囲気下では
スパーク放電は正常には飛びにくく、各元素の蒸
発量が非常に低い拡散放電となり一酸化炭素の生
成量が少なくなつたり、不安定になつたりして定
量精度が悪くなる問題があつたが、上記雰囲気ガ
スの切替によつてこの問題を解決した。
The difference between the present invention and the prior invention is that when a spark discharge is applied to a metal sample, the atmospheric gas is first changed to a high-purity inert gas that does not contain impurities such as oxygen gas to preliminarily generate the spark discharge. The point is that the generation of carbon monoxide gas is stabilized by letting it fly, then switching the atmospheric gas to an inert gas containing oxygen and continuing to cause spark discharge. In an inert gas atmosphere containing oxygen, spark discharge is difficult to fly normally, and the amount of evaporation of each element becomes a diffusion discharge, which reduces the amount of carbon monoxide produced or becomes unstable, resulting in poor quantitative accuracy. However, this problem was solved by switching the atmospheric gas mentioned above.

(発明の構成・作用・実施例) 第1図に示す本発明の実施装置例をもとに、本
発明の構成、作用について説明する。本発明装置
は、一酸化炭素ガス生成部1、スパーク放電用電
源部2、アルゴンガスなどの不活性ガス制御部
3、ガスサンプリング部4および検出部5を主体
に構成される。一酸化炭素ガス生成部1は、分析
試料6に対向してタングステン製などの対電極7
が設けられ、不活性ガス供給口と排出口を設けた
小容積の放電室8を形成している。対電極7は耐
熱絶縁材で保持されており、分析試料6とは絶縁
されている。分析試料6および対電極7には、ス
パーク放電用電源装置2の陰極および陽極がそれ
ぞれ接続されている。この両極に高電圧をかけて
分析試料6表面と対電極7先端部間にスパーク放
電を飛ばし、分析試料中の各元素を励起蒸発させ
る。スパーク放電の条件は各元素の励起の再現性
が良い条件が適当である。例えば、スパーク放電
回路定数が自己誘導10μH、静電容量3μF、抵抗
0Ωで電圧は1000V、周波数は100〜400Hz、電極
間間隙は4〜6mm程度の一般般的な低圧スパーク
放電条件を採用した場合、定量結果の感度・精度
が優れていた。
(Configuration, operation, and embodiments of the invention) The configuration and operation of the present invention will be explained based on an example of an apparatus for implementing the present invention shown in FIG. The apparatus of the present invention mainly includes a carbon monoxide gas generation section 1, a spark discharge power supply section 2, an inert gas control section 3 such as argon gas, a gas sampling section 4, and a detection section 5. The carbon monoxide gas generation section 1 has a counter electrode 7 made of tungsten or the like, facing the analysis sample 6.
is provided, forming a small volume discharge chamber 8 provided with an inert gas supply port and a discharge port. The counter electrode 7 is held by a heat-resistant insulating material and is insulated from the analysis sample 6. A cathode and an anode of the spark discharge power supply device 2 are connected to the analysis sample 6 and the counter electrode 7, respectively. A high voltage is applied to these two electrodes to generate a spark discharge between the surface of the analysis sample 6 and the tip of the counter electrode 7, thereby exciting and vaporizing each element in the analysis sample. Appropriate conditions for spark discharge are those that provide good reproducibility of excitation of each element. For example, the spark discharge circuit constant is self-induction 10μH, capacitance 3μF, resistance
When common low-pressure spark discharge conditions were used, such as 0Ω, voltage of 1000V, frequency of 100 to 400Hz, and electrode gap of approximately 4 to 6mm, the sensitivity and accuracy of the quantitative results were excellent.

ガス制御部3は高純度アルゴンガスボンベ9、
酸素ガス0.001〜0.1%程度混合した高純度アルゴ
ンガスボンベ10、ニードルバルブ付流量計11
a,11b、電磁弁12a,12bなどから構成
され、アルゴンガスおよび酸素混合アルゴンガス
の流路の切替および流量制御を行う。まず、一酸
化炭素ガス生成部1に分析試料6を設定したあ
と、第1図の矢印の経路、すなわち、高純度アル
ゴンガスボンベ9、流量計11a、電磁計12
a、ガス供給管13、放電室8、ガス搬送管15
および電磁弁12cに経路にアルゴンガスを10〜
20/minの流量で流して放電室8内に残留した
大気を排出除去するとともに予備的にスパーク放
電を飛ばす。この予備放電は、酸素混合アルゴン
ガスで最初から放電させると拡散放電となり、正
常なスパーク放電が得られなくなり炭素の分析精
度が悪くなるのでこれを防止するために行う。す
なわち、放電を飛び易くし、かつ放電状態を安定
化させるとともに、もし試料表面にわずかな炭素
成分の汚れ等がある場合にはそれ除去することが
目的である。
The gas control unit 3 includes a high-purity argon gas cylinder 9,
High-purity argon gas cylinder 10 mixed with oxygen gas at about 0.001 to 0.1%, flow meter with needle valve 11
a, 11b, electromagnetic valves 12a, 12b, etc., and performs flow path switching and flow rate control of argon gas and oxygen-mixed argon gas. First, after setting the analysis sample 6 in the carbon monoxide gas generation section 1, follow the path of the arrow in FIG.
a, gas supply pipe 13, discharge chamber 8, gas transport pipe 15
and argon gas in the path to the solenoid valve 12c.
It flows at a flow rate of 20/min to exhaust and remove the atmosphere remaining in the discharge chamber 8 and to preliminarily cause a spark discharge. This preliminary discharge is performed in order to prevent this from occurring, since if discharge is started from the beginning with oxygen-mixed argon gas, it will become a diffusion discharge, making it impossible to obtain a normal spark discharge and deteriorating the accuracy of carbon analysis. That is, the purpose is to make the discharge easier to fly, to stabilize the discharge state, and to remove any slight carbon component stains on the sample surface.

次にこの予備放電を止めずに雰囲気ガスを酸素
混合アルゴンガスに切替える。すなわち、酸素混
合アルゴンガスボンベ10、流量計11b、電磁
弁12b、供給管13、放電室8、搬送管14、
電磁弁12c、微粒子フイルター15およびガス
計量管16の経路に酸素混合アルゴンガスを0.5
〜3/minの流量で流してスパーク放電を飛ば
す。このスパーク放電の雰囲気ガスの切替が本発
明の特徴であるが、ガス切替を行わない特開昭59
−186563と、0.20%の炭素を含む鉄鋼試料の10回
繰り返した時の分析精度(変動係数)を比較し
た。その結果、本発明の変動係数は0.85%で、特
願昭59−186563の3.7%に比べ大幅に分析精度の
向上がはかられた。
Next, the atmospheric gas is switched to oxygen-mixed argon gas without stopping this preliminary discharge. That is, an oxygen mixed argon gas cylinder 10, a flow meter 11b, a solenoid valve 12b, a supply pipe 13, a discharge chamber 8, a conveyance pipe 14,
0.5% of oxygen mixed argon gas is introduced into the path of the solenoid valve 12c, particulate filter 15, and gas metering tube 16.
Flow at a flow rate of ~3/min to generate spark discharge. Switching the atmospheric gas for this spark discharge is a feature of the present invention, but Japanese Patent Application Laid-Open No. 59-1991 does not switch the gas.
-186563 and a steel sample containing 0.20% carbon, the analysis accuracy (coefficient of variation) was compared when repeated 10 times. As a result, the coefficient of variation of the present invention was 0.85%, which was a significant improvement in analysis accuracy compared to 3.7% of Japanese Patent Application No. 59-186563.

サンプリング部4は、電磁弁12c、微粒子フ
イルター15、ガス計量管16などから構成され
る。アルゴンガス流通下でスパーク放電を行う
と、鉄鋼試料中の鉄、炭素、マンガン、けい素、
硫黄、燐などの各元素は励起されるが、ごく短時
間の内にお互が粒子を形成する。この粒子は、
0.01μm程度の極めて微細な超微粒子で、スパー
ク放電の回路定数などにも左右されるが、その成
分組成はもとの鉄鋼試料の成分組成に近い、しか
し、高純度アルゴンガスに酸素ガスを混合して上
記と同様にスパーク放電を行うと、鉄鋼試料中の
鉄、マンガン、けい素等は超微粒子を形成する
が、炭素は励起された瞬間に酸素と反応して一酸
化炭素および二酸化炭素ガスの酸化物ガスを生成
することを見い出した。生成ガスの主成分は一酸
化炭素ガスであつた。放電室8で生成した一酸化
炭素ガスは微粒子フイルター15で一緒に送られ
てきた鉄などの微粒子2が除去され、1〜5c.c.程
度で一定容量とした切替弁つき細管からなるガス
計量管16を満たして系外に排出される。計量管
16に満たされた一酸化炭素ガスは、切替弁の操
作によつて別のボンベから供給されるアルゴンガ
スをキヤリアーガスとして検出部5へ送られる。
The sampling section 4 includes a solenoid valve 12c, a particulate filter 15, a gas measuring tube 16, and the like. When spark discharge is performed under argon gas flow, iron, carbon, manganese, silicon and
Each element, such as sulfur and phosphorus, is excited, but they form particles together within a very short time. This particle is
They are extremely fine particles of about 0.01 μm in size, and their composition is close to that of the original steel sample, although it depends on the circuit constants of the spark discharge. However, they are made by mixing oxygen gas with high-purity argon gas. When a spark discharge is performed in the same manner as above, iron, manganese, silicon, etc. in the steel sample form ultrafine particles, but the moment carbon is excited, it reacts with oxygen and forms carbon monoxide and carbon dioxide gas. It was discovered that the oxide gas of The main component of the produced gas was carbon monoxide gas. The carbon monoxide gas generated in the discharge chamber 8 is filtered through a particulate filter 15 to remove fine particles 2 such as iron, which are sent along with the carbon monoxide gas, and a gas metering device consisting of a thin tube with a switching valve has a constant capacity of about 1 to 5 c.c. It fills the pipe 16 and is discharged outside the system. The carbon monoxide gas filled in the metering tube 16 is sent to the detection section 5 using argon gas supplied from another cylinder as a carrier gas by operating the switching valve.

検出部5は、ガス還元装置17、水素炎イオン
化検出器(FID)18およびデータ処理装置19
などから構成される。FID検出器18はガスクロ
マトグラフに一般的に用いられる検出器である
が、水素炎を励起源として分析成分をイオン化
し、そのイオン電流を測定するものである。一酸
化炭素および二酸化炭素ガスはFID検出器で直接
測定できないために、FID検出器の前にニツケル
触媒を加熱したガス還元装置17を取り付ける。
一酸化炭素や二酸化炭素はメタンに還元されて
FIDに導入され、高感度で検出部される。検出信
号はデータ処理部19に送られ、検出ピーク高さ
あるいはピーク面積が求められ、予め鉄鋼標準試
料を用いて決定された検量線をもとに、鉄鋼試料
中の炭素含有率が算出される。ガス計量管16と
ガス還元装置17との間にガス成分分離用カラム
を取りつけて測定すると約3分程度で一酸化炭素
および二酸化炭素が分離検出されるが、これら以
外にFIDに対して測定を妨害するガス成分は検出
されなかつたので、分離カラムの取に付けは必ず
しも必要ではない。従つて、分離カラムを用いな
い場合は、一酸化炭素および微量生成する二酸化
炭素はいずれも還元装置17によつてメタンに還
元されるので、FIDでは両ガス成分の合量が40秒
程度の短時間で測定される。スパーク放電時の酸
素(40ppm)混合アルゴンガスの流量を2/
min、一酸化炭素生成ガスのサンプリング量を1
mlとし、鉄鋼標準試料中の炭素を分析し、作成し
た検量線例を第2図に示した。第2図からわかる
ように、本発明によれば鉄鋼試料中の微量の炭素
を1分以内の短時間で簡単に精度よく定量でき
る。
The detection unit 5 includes a gas reduction device 17, a flame ionization detector (FID) 18, and a data processing device 19.
Consists of etc. The FID detector 18 is a detector commonly used in gas chromatographs, and uses a hydrogen flame as an excitation source to ionize an analytical component and measure the ion current. Since carbon monoxide and carbon dioxide gas cannot be directly measured with an FID detector, a gas reduction device 17 in which a nickel catalyst is heated is installed in front of the FID detector.
Carbon monoxide and carbon dioxide are reduced to methane
Introduced into FID and detected with high sensitivity. The detection signal is sent to the data processing unit 19, the detected peak height or peak area is determined, and the carbon content in the steel sample is calculated based on a calibration curve determined in advance using a steel standard sample. . If a gas component separation column is attached between the gas metering pipe 16 and the gas reduction device 17 and the measurement is performed, carbon monoxide and carbon dioxide will be separated and detected in about 3 minutes. Since no interfering gas components were detected, the installation of a separation column was not absolutely necessary. Therefore, if a separation column is not used, both carbon monoxide and carbon dioxide produced in small amounts are reduced to methane by the reduction device 17, so in FID, the total amount of both gas components can be reduced in a short period of about 40 seconds. Measured in hours. The flow rate of oxygen (40ppm) mixed argon gas during spark discharge is 2/
min, the sampling amount of carbon monoxide gas is 1
Fig. 2 shows an example of a calibration curve created by analyzing carbon in a steel standard sample. As can be seen from FIG. 2, according to the present invention, trace amounts of carbon in a steel sample can be easily and accurately quantified in a short time of less than one minute.

(発明の効果) 本発明は以上説明したように、これまで採用さ
れてきたブロツク形状試料を対象に金属中の炭素
を迅速分析する発光分光分析法による場合に比
べ、分析対象元素が炭素に限定されるものの、振
動、温度変化、塵埃等の分析装置に対する測定環
境など制約条件がゆるく、また装置価格も1/5程
度の安価である。分析所用時間も短かく、定量感
度にも優れる非破壊迅速分析として有用で、鉄
鋼、チタン、アルミニウム、銅などの金属等の品
質評価に最も重要な元素である炭素を対象とする
ことから、金属の精錬や製造プロセス等の操業管
理に極めて効果が大きい。
(Effects of the Invention) As explained above, the present invention has the advantage that the element to be analyzed is limited to carbon, compared to the conventional optical emission spectrometry method that rapidly analyzes carbon in metals using block-shaped samples. However, the constraints on the measurement environment for the analyzer such as vibrations, temperature changes, and dust are loose, and the equipment price is about 1/5th of the low price. It is useful as a non-destructive rapid analysis with short laboratory time and excellent quantitative sensitivity, and it targets carbon, which is the most important element for quality evaluation of metals such as steel, titanium, aluminum, and copper. It is extremely effective for operational management of refining and manufacturing processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の構成を
示す説明図である。第2図は本発明の方法より鉄
鋼標準試料中の炭素を分析し、作成した検量線の
例である。なお、第1図中の番号は以下のことを
示している。 1……一酸化炭素ガス生成部、2……スパーク
放電用電源部、3……雰囲気ガス制御部、4……
ガスサンプリグ部、5……検出部、6……分析試
料、7……対電極、8……スパーク放電室、9…
…アルゴンガスボンベ、10……酸素混合アルゴ
ンガスボンベ、15……微粒子フイルター、16
……ガス計量管、17……ガス還元装置、18…
…水素炎イオン化検出器。
FIG. 1 is an explanatory diagram showing the configuration of an apparatus for implementing the present invention. FIG. 2 is an example of a calibration curve prepared by analyzing carbon in a steel standard sample using the method of the present invention. Note that the numbers in FIG. 1 indicate the following. DESCRIPTION OF SYMBOLS 1... Carbon monoxide gas generation part, 2... Spark discharge power supply part, 3... Atmosphere gas control part, 4...
Gas sampling section, 5...Detection section, 6...Analysis sample, 7...Counter electrode, 8...Spark discharge chamber, 9...
...Argon gas cylinder, 10...Oxygen mixed argon gas cylinder, 15...Particle filter, 16
...Gas measuring tube, 17...Gas reduction device, 18...
...Hydrogen flame ionization detector.

Claims (1)

【特許請求の範囲】 1 金属試料表面にスパーク放電を飛ばして発生
させたガス成分を対象に試料中の炭素成分含有率
を求める分析方法において、 最初に不活性ガス雰囲気下で予備的にスパーク
放電を行つて試料表面状態および放電状態を安定
化させたのちに、微量の酸素を含んだ不活性ガス
雰囲気に切り替えてスパーク放電を行い、発生し
た一酸化炭素等の炭素ガス成分を還元してメタン
に変えて水素炎中に導入し、炭素成分のイオン電
流を測定して炭素含有率を求めることを特徴とす
る金属試料中の炭素の迅速分析方法。
[Claims] 1. In an analysis method for determining the carbon component content in a sample using gas components generated by spark discharge on the surface of a metal sample, the spark discharge is first performed preliminary in an inert gas atmosphere. After stabilizing the sample surface condition and discharge condition, spark discharge is performed in an inert gas atmosphere containing a trace amount of oxygen, reducing carbon gas components such as carbon monoxide generated and producing methane. A method for rapid analysis of carbon in a metal sample, characterized by introducing the carbon into a hydrogen flame and measuring the ionic current of the carbon component to determine the carbon content.
JP60052393A 1985-03-18 1985-03-18 Quick analysis of carbon in metal sample Granted JPS61212761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052393A JPS61212761A (en) 1985-03-18 1985-03-18 Quick analysis of carbon in metal sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052393A JPS61212761A (en) 1985-03-18 1985-03-18 Quick analysis of carbon in metal sample

Publications (2)

Publication Number Publication Date
JPS61212761A JPS61212761A (en) 1986-09-20
JPH0450981B2 true JPH0450981B2 (en) 1992-08-17

Family

ID=12913556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052393A Granted JPS61212761A (en) 1985-03-18 1985-03-18 Quick analysis of carbon in metal sample

Country Status (1)

Country Link
JP (1) JPS61212761A (en)

Also Published As

Publication number Publication date
JPS61212761A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
Shigeta et al. Application of a micro-droplet generator for an ICP-sector field mass spectrometer–optimization and analytical characterization
Gray Mass-spectrometric analysis of solutions using an atmospheric pressure ion source
US5394092A (en) System for identifying and quantifying selected constituents of gas samples using selective photoionization
Compernolle et al. Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalysts as an example
US7782456B2 (en) Direct ICP emission spectral analysis method of solid sample
Latkoczy et al. Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS)
Nomizu et al. Determination of femto-gram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction
Gendt et al. Quantitative analysis of iron-rich and other oxide-based samples by means of glow discharge mass spectrometry
Burman et al. Comparison of different plasma excitation and calibration methods in the analysis of geological materials by optical emission spectrometry
Falk et al. Calibration of laser-ablation ICP-MS. Can we use synthetic standards with pneumatic nebulization?
Straaten Analysis of platinum powder by glow discharge mass spectrometry
Barshick et al. Analysis of solution residues by glow discharge mass spectrometry
JPH0450981B2 (en)
Coedo et al. Spark ablation as sampling device for inductively coupled plasma mass spectrometric analysis of low-alloyed steels
Peng et al. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders
JPS6165154A (en) Method and instrument for quick analysis of carbon and sulfur components in metallic sample
Van Hoye et al. Accuracy of analysis of steels by use of a spark-source mass spectrometer with electrical detection
JP3206870B2 (en) Method and apparatus for measuring nitrogen gas or water vapor in argon gas, method and apparatus for simultaneous measurement of nitrogen gas and water vapor
Broekaert et al. Investigations of a jet-assisted glow discharge lamp for optical emission spectrometry
Strauss et al. Size-resolved analysis of fine and ultrafine particulate matter by laser-induced breakdown spectroscopy
Marabini et al. Inductively coupled plasma-mass spectrometry: Capabilities and applications
Scribner Emission spectroscopy
JPS60233538A (en) Method and instrument for quick analyzing carbon, phosphorous and sulfur components with formation of hydride
Fay et al. Emission Spectrometric Method and Analyzer for Traces of Nitrogen in Argon.
Lomdahl et al. The atomic emission spectrometric determination of non-conducting materials with a boosted-output glow-discharge source