JPS6121269A - Steel rod truss build-in reinforced concrete pillar - Google Patents

Steel rod truss build-in reinforced concrete pillar

Info

Publication number
JPS6121269A
JPS6121269A JP14297684A JP14297684A JPS6121269A JP S6121269 A JPS6121269 A JP S6121269A JP 14297684 A JP14297684 A JP 14297684A JP 14297684 A JP14297684 A JP 14297684A JP S6121269 A JPS6121269 A JP S6121269A
Authority
JP
Japan
Prior art keywords
steel
truss
reinforced concrete
concrete
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14297684A
Other languages
Japanese (ja)
Other versions
JPH0742805B2 (en
Inventor
若林 實
南 宏一
前田 篤美
清忠 宮井
輝雄 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoike Construction Co Ltd
Original Assignee
Konoike Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoike Construction Co Ltd filed Critical Konoike Construction Co Ltd
Priority to JP59142976A priority Critical patent/JPH0742805B2/en
Publication of JPS6121269A publication Critical patent/JPS6121269A/en
Publication of JPH0742805B2 publication Critical patent/JPH0742805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明社、高層建物ないしは超高層建築または長スパン
構築物の柱まど、大きな荷重を受ける鉄筋コンクリート
造柱に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to columns and windows of high-rise buildings, super high-rise buildings, or long-span structures, and reinforced concrete columns that are subject to large loads.

(従来の技術〕 従来の鉄筋コンクリート造柱はその耐力、特にじん性す
なわち粘シ強さに限界があって、地震による激しい繰)
返し荷重を受ければひび割れが生じ易いという欠点があ
る。従って、高層建築物の柱および大規模構築物などの
重要な柱は、その欠点を補5fF、めに鉄骨鉄Mコンク
リート造柱としているのが現状である。
(Conventional technology) Conventional reinforced concrete columns have limited strength, especially toughness, and are susceptible to severe tremors caused by earthquakes.
It has the disadvantage that it is prone to cracking when subjected to reverse loads. Therefore, the current situation is that important columns such as those of high-rise buildings and large-scale structures are made of steel-framed steel M-concrete columns to compensate for their shortcomings.

〔発明が解決しようとする関厘点〕[The point that the invention seeks to solve]

鉄筋コンクリート造柱は一般に鉛直荷重に対しては相当
大tkt−荷重まで耐えられるが、地震などによる水平
せん断力および曲げ応力並びに引張〕荷重に対して紘比
較的弱くてひび割れが入シ易く、特に一旦ぜん断亀裂の
生じた柱に鉛直荷重と同時に地震によゐ!1131返し
押し引き水平荷重がかかれば、亀裂が増大して急激に耐
力を失い建物嘉崩壊する危険がある。
Reinforced concrete columns can generally withstand vertical loads up to quite large loads, but they are relatively weak against horizontal shear force, bending stress, and tensile loads caused by earthquakes, etc., and are susceptible to cracking, especially once A column with a shear crack was subjected to a vertical load and an earthquake at the same time! 1131 If a horizontal load is applied, the cracks will increase and there is a risk that the building will suddenly lose its strength and collapse.

この対策として7−プ(帯筋)を多く密に入れればそれ
だけせん断補強の効果が出て、初期亀裂発生後の急激i
k破壊の拡大が防げて或柵度じん性を増すことができる
が、それにも自づと限度がある。すなわち鉄筋コンクリ
ート造柱の許容せん断力計算式に用いる帯筋比もt2%
が上限とされ、それ以上増してもせん断耐力が増さ1に
%fhことになりている。またこのように7−プを多く
密に入れることは、施工手間がかかル所要鋼材量が増す
ばかシでなくコンクリートの充填性をも阻害することと
なる。。
As a countermeasure for this, the more 7-springs (tips) are placed densely, the more effective the shear reinforcement will be, and the sudden i
Although it is possible to prevent the spread of k-rupture and increase the toughness of the fence to some extent, there is a limit to this. In other words, the stirrup ratio used in the formula for calculating the allowable shear force of reinforced concrete columns is also t2%.
is set as the upper limit, and even if the shear strength is increased beyond that, the shear strength increases by 1% fh. In addition, placing a large number of 7-pipes densely in this manner not only increases construction time and the amount of steel required, but also impairs the filling properties of concrete. .

従って高層建物ないしは超高層建築、ま九は大きな荷重
を受ける大スパン・大規模構築物などの重要な柱は、鉄
骨鉄筋コンクリート造または鉄骨造としてじん性を大き
くすることによって、地震による激しい繰如返し荷重を
受けても急激に耐力が低下して破損することがないよう
にするのが一般的である。しかし鉄骨鉄筋コンクリート
造は鉄筋コンクリート造に比べて、手間も工期も多くか
か)所要鋼材量も増し、可成ルの=ストアツブとなる0
また狭い空間に鉄骨と鉄筋が錯綜するので施工しにくい
にか〕でなくコンクリートの充填性も悪く、単位水量の
少い良質のコンクリートが打てないという欠点もある。
Therefore, important columns in high-rise buildings, super high-rise buildings, and large-scale structures with large spans that are subject to large loads can be constructed with steel-framed reinforced concrete or steel structures to increase their toughness, allowing them to withstand the intense repeated loads caused by earthquakes. It is common practice to ensure that the proof strength does not suddenly decrease and breakage occurs even if the material is subjected to such damage. However, compared to reinforced concrete construction, steel-framed reinforced concrete construction requires more labor and construction time, and the amount of steel required increases, making it difficult to construct.
Another disadvantage is that not only is it difficult to construct because the steel frames and reinforcing bars are intertwined in a narrow space, but also that the filling properties of concrete are poor, making it difficult to cast high-quality concrete with a small unit water volume.

一方鉄−It造柱は軽微表建物に用いる場合は簡便廉価
であるが、荷重の大きい高層建惣などでは逆に割高とな
如、また耐火被覆や防錆塗装にも相当の工費を要するも
のである。
On the other hand, iron-it columns are simple and inexpensive when used in light front buildings, but they are rather expensive for high-rise buildings with heavy loads, and require considerable construction costs for fire-resistant coating and anti-rust coating. It is.

〔問題点を解決するための手段〕[Means for solving problems]

上記の諸欠点を解決するために本発明では、鉄骨鉄筋コ
ンクリート造(以下SRO造と略記)柱のうちの鉄骨造
(以下S造と略記)柱に代わるものとして、第1図に示
すような4本のM棒を組み合わせて四角錐型の立体トラ
ス状にしたものを考案し、これを柱の中に入れることと
した。そうしてその外側には柱の材軸に平行な主筋とフ
ープを配筋し、辷れかSRO造柱のうちの鉄筋コンクリ
ート造(以下RO造と略記)都の配筋に該当することと
なる。
In order to solve the above-mentioned drawbacks, in the present invention, as a substitute for steel-framed (hereinafter abbreviated as S-structure) columns among steel-framed reinforced concrete (hereinafter abbreviated as SRO-structure) columns, four I devised a four-dimensional pyramid-shaped truss by combining the M sticks of books, and decided to place this inside the pillar. Then, on the outside, main reinforcement and hoops are arranged parallel to the axis of the column, which corresponds to the reinforcement arrangement for reinforced concrete construction (hereinafter abbreviated as RO construction) of the SRO construction columns. .

〔作用〕[Effect]

上下階梁の内法高さHoの中央で交わるように図の如く
組んだ4本の鋼棒1は、その交点を頂点とする上下対称
の2つの四角錐を連結した立体トラスと見做すことがで
きる。従ってこの柱に地震水平力がかかれば第5図のよ
うに、X方向の地震に対しては2本のiv4俸1&に引
張力が生じ他の2本の鋼棒1bに圧縮力がかかつて水平
せん断力。8と釣合い、また対角り方向の地震に対して
はそれぞれ1本の鋼棒1aの引張力と1111の圧縮力
で抵抗する。この何れの場合にも鋼棒1の引張シ・圧縮
軸力のみで水平せん断力Q8をすべて吸収してしまい、
鋼棒とそれを包むコンクリートには、せん断パ曲げ・付
着応力などが生じることなくまた伝わらない。この場合
鋼棒を太くて断面積の大きいもの、ま4伏点と引張シ強
度の高い鋼材を使用すれば、そ″れだけ鋼棒トラスの負
担せん断力Q8を増大することができる。
The four steel rods 1 assembled as shown in the figure so as to intersect at the center of the internal height Ho of the upper and lower floor beams are regarded as a three-dimensional truss connecting two vertically symmetrical square pyramids with the intersection as the apex. be able to. Therefore, if an earthquake horizontal force is applied to this column, as shown in Figure 5, in response to an earthquake in the Horizontal shear force. 8, and diagonal earthquakes are resisted by the tensile force of one steel rod 1a and the compressive force of 1111, respectively. In either case, the horizontal shear force Q8 is completely absorbed by the tensile and compressive axial forces of the steel rod 1.
Shear, bending, and adhesive stress do not occur or are transmitted to the steel rod and the concrete surrounding it. In this case, if the steel bar is thick and has a large cross-sectional area, and if a steel material with a high yield point and tensile strength is used, the shear force Q8 borne by the steel bar truss can be increased accordingly.

そうして柱にかかる全せん断力QからこのQ8を差し引
いた残如の QR=Q−Qa  が、四隅主筋2と中間
主筋3(以下総称して平行主筋という)およびフープ4
並びにそれ等を包むコンクリート、すなわちRO造部に
かかることになるが、とのRO造部の受は持つ負担せん
断力は一般の鉄筋コンクるので、コンクリートのせん断
応力が小さくなってひび割れが生じなくなシ、またせん
断補強のためのフープも少くて済むことになる。
Then, the residual QR = Q - Qa obtained by subtracting this Q8 from the total shear force Q applied to the column is the four corner main reinforcements 2, the intermediate main reinforcements 3 (hereinafter collectively referred to as parallel main reinforcements) and the hoop 4.
In addition, the shear force that is applied to the concrete that surrounds them, that is, the RO structure, is the burden of ordinary reinforced concrete, so the shear stress of the concrete is small and cracks do not occur. Moreover, fewer hoops are needed for shear reinforcement.

またせん断力に柱内法高さを乗じたものが柱頭・柱脚モ
ーメントの和に表るが、曲げモーメントについても上記
のせん断力と全く同じ比率で、R0造部の平行主筋およ
びコンクリートに生ずる応力は一トラスの受は持つ分だ
け軽減されて小さくなる。
In addition, the shear force multiplied by the vertical height of the column appears in the sum of the column head and column base moments, but the bending moment also occurs in the parallel main reinforcement and concrete of the R0 structure at exactly the same ratio as the shear force above. The stress is reduced by the amount of stress that one truss has.

以上は静力学的な応力分担について述べたが、特に活貝
すべき点は大地震に対するしん性の差である。すなわち
一般のRO造柱は硬くて脆いので、大地震によ〕コンク
リートにせん断亀裂が入ってしまうと、その柱が鉛直荷
重を受けながら次に地震による緑多返し荷重を受ければ
その亀裂が拡大して急激に耐力が低下してしまうので、
いわゆる粘・ル強さに欠けることとまる。゛それに対し
て本発明によゐ柱は、たとえ大地震によってコンクリー
トに微mなりラックが発生し、或いは平行主筋の引張力
が降伏点を超えてRO造部が狽性城に入っても、なお大
きな層間変形Mまで鋼棒トラスが弾性域で抵抗するので
、変形の増大を抑制してコンクリートの破損を防止する
。さらに変ノ彪が大きくナッテトラスを構成する鋼棒1
の軸力がたとえ降伏荷重を超えて塑性域に入ったとして
も、なおその最大耐力を保持し続けて非常に大きな変形
量まで柱の耐力が衰えないので、粘シ強いしん性に冨ん
だ架構を構成することができる。このことは模型実験に
よって確認することができた。
I have described the static stress distribution above, but what is particularly important for living shellfish is the difference in their resistance to large earthquakes. In other words, ordinary RO columns are hard and brittle, so if a shear crack develops in the concrete due to a major earthquake, the crack will expand if the column is subjected to a vertical load and then subjected to repeated loads due to an earthquake. and the strength will drop rapidly,
The so-called lack of tenacity and strength is a problem. ``On the other hand, the columns according to the present invention can withstand even if a small rack occurs in the concrete due to a large earthquake, or even if the tensile force of the parallel main reinforcement exceeds the yield point and the RO structure enters into a state of failure. Furthermore, since the steel bar truss resists large interstory deformation M in the elastic range, the increase in deformation is suppressed and damage to the concrete is prevented. In addition, the steel bar 1 has a large bend and forms a natte truss.
Even if the axial force of the column exceeds the yield load and enters the plastic region, it will continue to maintain its maximum yield strength and the strength of the column will not decline even if the amount of deformation is extremely large. A frame can be constructed. This was confirmed through model experiments.

〔実施例〕〔Example〕

M1図に示すように4本の鋼棒1を、柱中央高さで交わ
るように、上階梁の下面と下階梁の上面すなわち床+6
1との間の柱の内法高さHome斜めに、かつ柱断面に
対して対角線方向に配するように曲げ加工し、その上下
をプレート5でつないで四角錐型に組み、トラスムを製
作する。この場合気体1は第2図の往1!’i面におい
て矢°印(−−−−>’)で示すように、柱中央での重
なシ代だけ柱の対角線よシ若干ずらせて組むようにする
As shown in diagram M1, four steel bars 1 are connected to the lower surface of the upper floor beam and the upper surface of the lower floor beam, that is, the floor +6
The internal height of the column between 1 and Home is bent so that it is arranged diagonally and diagonally to the cross section of the column, and the top and bottom are connected with plate 5 to form a square pyramid shape to produce a trussm. . In this case, gas 1 is 1 in Figure 2! As shown by the arrow (----->') on the 'i' side, assemble the pillars so that they are slightly shifted from the diagonal of the pillars by the overlapping margin at the center of the pillars.

な>鋼41!1は、丸舖・異形鉄筋・角鋼・平鋼・形鋼
・鋼管など何でもよいが、実施例は大径の総ネジ鉄筋ま
たは高強度の総ネジPO鋼棒を使用したものであって、
これを用いればナツトをどこにでも移動できるので、プ
レート5を所望の位置にナツト6で上下から締め付けて
簡単に固定することができて便利である。このプレート
5はトラスの成形の目的と共に、鋼棒1のパネルゾーン
へのアンカープレートの役目を果すことになる。また総
ネジ鉄筋または総ネジrail俸の採用によって、その
上下端の継手はカップラー7とロックナツト8またはエ
ポキシ樹脂などの注入画定法によって簡単安価に施工す
ることが可能である。
The steel 41!1 may be of any kind, such as round bar, deformed steel, square steel, flat steel, shaped steel, steel pipe, etc., but in this example, a large-diameter fully threaded reinforcing bar or a high-strength fully threaded PO steel bar is used. And,
If this is used, the nut can be moved anywhere, so the plate 5 can be easily fixed in a desired position by tightening the nut 6 from above and below, which is convenient. This plate 5 serves the purpose of forming the truss as well as an anchor plate to the panel zone of the steel bar 1. Further, by employing a fully threaded reinforcing bar or a fully threaded rail, the joints at the upper and lower ends can be easily and inexpensively constructed using a coupler 7 and a lock nut 8 or an injection definition method such as epoxy resin.

この鋼棒トラス人を1階づつ順次建ててその継手を施工
し、それを追ってその外側に四隅主筋2と必要に応じて
必要量の中間主筋3およびフープ4の配筋を行う。この
平行主筋2および3と7−プ4は、第4図に示すように
工場または地上にて1階高さまたは2〜3階高さ分をあ
らかじめ組んだ組立鉄筋として、トラスAの外側にかぶ
せるように上から落とし込んでもよい。
This steel bar truss is built one floor at a time and its joints are constructed, followed by four-corner main reinforcements 2 and, if necessary, the necessary amount of intermediate main reinforcements 3 and hoops 4. These parallel main bars 2 and 3 and 7-4 are installed on the outside of the truss A as pre-assembled reinforcing bars for the first floor height or the second to third floor height in a factory or on the ground, as shown in Fig. 4. You can also drop it from above to cover it.

柱配筋後、トラスAと柱筋のパネルゾーンに大梁主筋を
通してパネルゾーンのフープを巻き、大梁のスターラッ
プや小梁・床スラブ・壁体などの配筋と所要の型枠の施
工を行い、コンクリートを打設して所望の躯体の築造を
完了する。この場合大梁に4柱と同様icX形のトラス
配筋な併用すれば耐力とじん性を増すことができて有効
で611、また梁筋もあらかじめ組立鉄筋に成形してお
いて配筋することもできる。
After column reinforcement is placed, pass the girder main reinforcement through the panel zone of truss A and column reinforcing, wrap the hoop of the panel zone, arrange reinforcement for the girder stirrups, small beams, floor slabs, walls, etc., and construct the required formwork. , pour concrete and complete construction of the desired frame. In this case, it is effective to increase the strength and toughness by using ICX-type truss reinforcement for the girder as well as for the four columns.611 It is also possible to form the beam reinforcement into prefabricated reinforcing bars in advance and then arrange the reinforcement. can.

(発明の効果〕 以上によって概要を述べたが、最後に本発明の効果、す
なわち特徴をまとめて列記する。
(Effects of the Invention) Although the outline has been described above, the effects, that is, the characteristics of the present invention will be summarized and listed at the end.

げ)Ho造の、柱に比べて耐力が高く、同じ柱の大きさ
でも高強度の大径鋼棒を使用すれば邊かに高耐力の柱が
得られる。
G) It has a higher yield strength than a Ho-built column, and even if the size of the column is the same, if you use high-strength large-diameter steel rods, you can obtain a column with a much higher yield strength.

IP)特に地震による激しい繰シ返し動荷重に対して、
コンクリートのひび割れ破壊が防止されて変形の増大が
抑制され、またたとえ変形が増しても耐力の低下が少な
く、じん性に富んだ粘)強い建物または構築物となる。
IP) Especially against severe repeated dynamic loads caused by earthquakes,
This prevents cracking and failure of concrete, suppressing the increase in deformation, and even if deformation increases, there is little decrease in yield strength, resulting in a strong building or structure with high toughness.

e′9次にこの鋼棒トラスをf9RO造の鉄骨柱に比べ
れば、所要鋼材量が少いの紘云うまでもないが、4本の
!l棒を所定の形に曲げて組むだけであるので特に加工
手間は比べものにならない程少く、それだけ安くかつ早
く施工できる。
e'9Next, if we compare this steel bar truss with f9RO-built steel columns, it goes without saying that the amount of steel required is less, but only four! Since the L rods are simply bent into a predetermined shape and assembled, the processing effort is incomparably less, and construction can be done cheaper and faster.

に)なおこの鋼棒トラスがせん断力の過半を負担しテL
[5ので、Re造部の分担するせん断力が減ってコンク
リートにひび割れが生じK(<なり、またせん断補強の
ためQフープも少なくて済む。
) Furthermore, this steel bar truss bears the majority of the shear force.
[5, therefore, the shear force shared by the Re structure is reduced, causing cracks in the concrete.

(A)8RO造のように鉄骨と鉄筋の錯綜もなく、マタ
幅の広い鉄骨が入らないのでコンクリ−トノ充填性がよ
く、バイブレータ−の使用も容易である。従って単位水
量の少ない硬練りの良質なコンクリートが打設できるの
で、高強度のコンクリートを使用して耐力の高い経済設
計がし易い。また乾燥収縮などによるひび割れ発生4防
止でき、コンクリートの耐久性も向上して高品質の躯体
を築造できる。
(A) Unlike 8RO construction, there is no confusion between steel frames and reinforcing bars, and since there is no need for wide steel frames, concrete filling properties are good and vibrators can be easily used. Therefore, it is possible to cast high-quality, hard-mixed concrete with a small amount of water per unit, making it easy to use high-strength concrete and achieve economical design with high yield strength. It also prevents the occurrence of cracks due to drying shrinkage, etc., improves the durability of concrete, and allows the construction of high-quality structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における柱の鋼材の組立て状況
を示す斜視図、第2図は柱の横断面図、第3図は鋼棒ト
ラスに地震水平力がかかったときの力の釣合いを示す説
明図、第4図は平行主筋と7−プとによる組立鉄筋の斜
視図である。 1・・・・・・鋼棒 2・・・・・・四隅主筋 3・・・・・・中間主筋 4・・・・・・フープ 5・・・・・・プレート 6・・・・・・ナツト 7・・・・・・カッグラ− 8・・…・pツクナット ム・・・・・・トラス 特許出願人    株式会社 鴻 池 組第3図   
        第4図 昭和1年P月/3日 特許庁長官 志 賀  学  殿 1、事件の表示 ↑寺願昭り’ −/すDi 2、 発 明の名称 痢オ牛1− ′7 ’l、 vi7入〃ハbコンフリー
ト芝イL氏名 株式会社 K1警 (4Zん) 4、代理人 第3図
Fig. 1 is a perspective view showing how the steel materials of the column are assembled in an embodiment of the present invention, Fig. 2 is a cross-sectional view of the column, and Fig. 3 is the balance of forces when an earthquake horizontal force is applied to the steel bar truss. FIG. 4 is a perspective view of an assembled reinforcing bar made up of parallel main bars and 7-pipe. 1... Steel bar 2... Four corner main reinforcements 3... Intermediate main reinforcement 4... Hoop 5... Plate 6... Nut7...Kagura 8...Ptsukunuttom...Truss patent applicant Konoike Co., Ltd. Figure 3
Figure 4 Manabu Shiga, Director General of the Patent Office, P/3, 1939 1, Indication of the incident ↑ Temple Gansho Ri'-/S Di 2, Name of the invention 1-'7 'l, vi7 Enter Hab Comfleet Shibai L Name K1 Police Co., Ltd. (4Z) 4. Agent Figure 3

Claims (1)

【特許請求の範囲】[Claims] 4本の鋼棒(1)を、柱中央高さで交わるように上下階
梁の内法高さ(Ho)間を斜めに、かつ柱断面に対して
対角線方向に配して組んだトラス(A)を建ててその上
下端の継手を施工し、その外側に四隅主筋(2)および
必要に応じて必要量の中間主筋(3)とフープ(4)の
配筋を行い、コンクリートを打設して成る鋼棒トラス内
蔵鉄筋コンクリート造柱。
Truss ( Build A) and construct the joints at its upper and lower ends, arrange the four corner main reinforcements (2) and the necessary amount of intermediate main reinforcements (3) and hoops (4) on the outside, and pour concrete. A reinforced concrete column with a built-in steel bar truss.
JP59142976A 1984-07-10 1984-07-10 Steel bar truss built-in rebar concrete column Expired - Lifetime JPH0742805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142976A JPH0742805B2 (en) 1984-07-10 1984-07-10 Steel bar truss built-in rebar concrete column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142976A JPH0742805B2 (en) 1984-07-10 1984-07-10 Steel bar truss built-in rebar concrete column

Publications (2)

Publication Number Publication Date
JPS6121269A true JPS6121269A (en) 1986-01-29
JPH0742805B2 JPH0742805B2 (en) 1995-05-10

Family

ID=15328030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142976A Expired - Lifetime JPH0742805B2 (en) 1984-07-10 1984-07-10 Steel bar truss built-in rebar concrete column

Country Status (1)

Country Link
JP (1) JPH0742805B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122851A (en) * 1986-11-12 1988-05-26 株式会社 長谷川工務店 Prefabricated reinforcement and its use
JPS6394224U (en) * 1986-12-10 1988-06-17
JP2007085132A (en) * 2005-09-26 2007-04-05 Maeda Corp Reinforced concrete member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556818U (en) * 1978-10-12 1980-04-17
JPS5625576A (en) * 1979-08-10 1981-03-11 Nippon Kokan Kk Earthquakeeproof group silo
JPS5774449A (en) * 1980-10-25 1982-05-10 Kinji Tateno Construction of enclosure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556818U (en) * 1978-10-12 1980-04-17
JPS5625576A (en) * 1979-08-10 1981-03-11 Nippon Kokan Kk Earthquakeeproof group silo
JPS5774449A (en) * 1980-10-25 1982-05-10 Kinji Tateno Construction of enclosure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122851A (en) * 1986-11-12 1988-05-26 株式会社 長谷川工務店 Prefabricated reinforcement and its use
JPS6394224U (en) * 1986-12-10 1988-06-17
JP2007085132A (en) * 2005-09-26 2007-04-05 Maeda Corp Reinforced concrete member

Also Published As

Publication number Publication date
JPH0742805B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US5561956A (en) Concrete elements and connectors therefor
Bayati et al. Optimized use of multi-outriggers system to stiffen tall buildings
CN104674649B (en) Earthquake damage control system for thin-wall hollow pier
Cao et al. Research on seismic performance of shear walls with concrete filled steel tube columns and concealed steel trusses
CN110158768A (en) Prestressing force brace reinforced concrete frame conversion layer
CN213709858U (en) Structural unit body with self-stress function and truss structure system
JPS6121269A (en) Steel rod truss build-in reinforced concrete pillar
Dat et al. Shear-lag effect and its effect on the design of high-rise buildings
Kunisue et al. Retrofitting method of existing reinforced concrete buildings using elasto-plastic steel dampers
CN105155866A (en) Separable sheath floor-adding structure of masonry buildings and floor-adding method thereof
Saleem et al. A Comparative Study on high rise building for various geometrical shapes subjected to wind load of RCC & composite structure using ETABS
US11332928B2 (en) Panel of compound sheets for the construction of light-weight one-way joist slabs
CN101024972A (en) Building with combined structure and its constructing method
CN206815630U (en) A kind of superstructure for saving construction material
JP2686372B2 (en) Unit house
JPS602462B2 (en) Precast concrete shear wall assembly method
Krishna et al. STRENGTHENING OF BRICK BUILDINGS IN SEISMIC ZONES I II
Guangyu et al. Design and research on composite steel and concrete frame-core wall structure
Hossen et al. Seismic performance of concrete flat slabs
CN215330944U (en) Reinforced concrete column with shaped steel core column and lattice angle steel column
Nayak et al. Seismic Vulnerability Assessment for Various Shapes and Types of Reinforced Concrete Shear Walls in Multi-Storey Buildings
JP7368987B2 (en) Self-propelled multilevel parking lot
CN107060077B (en) Shear force control transverse force structure
JPH0367175B2 (en)
McMullin Concrete Lateral Design