JPS6121247B2 - - Google Patents

Info

Publication number
JPS6121247B2
JPS6121247B2 JP54021952A JP2195279A JPS6121247B2 JP S6121247 B2 JPS6121247 B2 JP S6121247B2 JP 54021952 A JP54021952 A JP 54021952A JP 2195279 A JP2195279 A JP 2195279A JP S6121247 B2 JPS6121247 B2 JP S6121247B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
acid
vinyl chloride
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54021952A
Other languages
Japanese (ja)
Other versions
JPS55115412A (en
Inventor
Hiroshi Okada
Kunyuki Goto
Yasuki Sasaki
Hideyuki Itagaki
Takehisa Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2195279A priority Critical patent/JPS55115412A/en
Publication of JPS55115412A publication Critical patent/JPS55115412A/en
Publication of JPS6121247B2 publication Critical patent/JPS6121247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、塩化ビニルの改良された重合方法に
関し、更に詳しくは、重合に際して重合槽内壁及
び重合操作中にモノマーが接触する装置部分への
ポリマー付着防止方法に関する。 塩化ビニルを単独でまたこれと共重合しうるモ
ノマーと共に重合(以下、単に重合と略称す
る。)するに際し、重合槽内壁、還流冷却器、撹
拌翼、邪魔板および各種付属配管接続部等、重合
操作中にモノマーが接触する装置部分にポリマー
が付着するため重合槽の冷却能力が減少したり、
あるいは一旦付着した後剥離したポリマーが塩化
ビニルの単独重合体または共重合体(以下、製品
と略称)中に混入して製品の品質を低下させるな
どの問題が生じる。従つて、重合終了後毎回重合
槽内を清掃した後再び重合するのが通例である
が、そのためには多大の労力と時間を必要とし、
重合槽の稼動率の低下や製品コストの増加をもた
らしている。 従来からこのような重合槽内壁へのポリマー付
着防止に関して多くの方法が提案されているが、
それらの方法はポリマーの付着防止に効果はあつ
ても、たとえば重合速度を遅くしたり、製品の諸
物性を悪化させるなどの欠点があり、いずれも工
業的に用いる方法としては満足できるものではな
かつた。 重合速度や製品の諸物性に悪影響を与えない方
法も提供されているが、しかしながら、この方法
もポリマー付着防止の効果が大きくない欠点があ
る。たとえば、特開昭50−87号には、一成分とし
てアルデヒドを有する反応混合物から形成される
極性基を含有する架橋した重合体物質の不溶性層
が沈着している内壁面を有する反応容器中で塩化
ビニルの重合を行う方法を開示されている。この
方法によるならば、壁面に沈着した重合体物質は
架橋−すなわち三次元化しているので、塩化ビニ
ルの重合反応液に溶出して行きにくく、たしかに
重合速度が遅くなるようなことはない。このよう
に重合体物質を塗布することにより、ポリマー付
着を防止する方法は、その重合体物質がラジカル
捕足剤として働くか、あるいは親水性があるため
に壁面が撥油性を示し塩化ビニルモノマーを寄せ
つけないかにような理由で効果を発揮しているも
のと考えられる。ところが、特開昭50−87号記載
の方法のように、架橋した重合体物質を用いる
と、そのような効果が小さくなる。たとえば一例
として、出発原料としてフエノールとホルムアル
デヒドを用いた架橋縮合物は、フエノール樹脂と
して知られているが、この樹脂は親水性を示さ
ず、また、ラジカル捕促効果も有していないた
め、ポリマー付着防止に有効ではない。 特開昭51−134777号には、重合反応器の内面に
ポリ芳香族アミンからなる縮合重合体を塗布する
方法が開示されている。ポリ芳香族アミンはラジ
カル捕促効果を有しているため、これからなる縮
合重合体を重合反応器の内面に塗布しておけば、
ポリマー付着防止に有効であると述べている。し
かし本発明者らの実験結果ではポリ芳香族アミン
からなる縮合重合体の塗布効果も満足できるもの
でなかつた。 本発明者らは、特願昭52−152391号に示すよう
に、重合槽内壁にあらかじめフミン酸またはその
誘導体を塗布する方法を見い出したが、フミン酸
またはその誘導体は重合槽内壁への定着性が必ず
しもよくなく、重合槽内で重合反応液を撹拌する
ことによつて生じる流れのため壁面から剥離する
ことがあり、常に充分なポリマー付着防止効果を
発揮しているとは云い難い。 したがつて、本発明の目的は、上記フミン酸ま
たはその誘導体を用いた改良された塩化ビニルの
重合方法を更に改良して、塩化ビニルの重合に際
し、上記のような悪影響を及ぼさないで、かつ充
分にポリマー付着を防止する実用的な重合方法を
提供することである。 本発明者らは研究を重ねた結果、塩化ビニルを
重合するに際し、重合槽内壁やそのほか重合操作
中にモノマーが接触する重合装置、重合付属機器
の部分に、あらかじめフミン酸またはその誘導体
とアルデヒドなどとの低度縮合物を塗布しておけ
ばポリマーの付着が大巾に減少し、かつ少量付着
したポリマーも水洗等によつて容易に除去でき、
しかも重合反応を遅くしたり製品の諸物性を悪化
させるなどの悪影響がないことを見い出し、本発
明に到達した。 すなわち、本発明は塩化ビニルを、単独でまた
はこれと共重合しうるモノマーと共に、水性媒体
中でまたは塊状で重合するに際し、あらかじめ、
重合槽内壁および重合操作中にモノマーが接触す
る装置部分に、フミン酸またはその誘導体と、ア
ルデヒドとのあるいはアルデヒドとフエノールと
の低度縮合物を塗布することを特徴とする塩化ビ
ニルの重合方法である。 本発明では塗布薬物として、フミン酸またはそ
の誘導体と、アルデヒドとのあるいはアルデヒド
とフエノールとの低度縮合物(以下、単にフミン
酸の低度縮合物という。)が使用される。ここで
本発明にいうフミン酸の誘導体とは、ニトロフミ
ン酸、およびフミン酸あるいはニトロフミン酸の
カリウム塩、ナトリウム塩、カルシウム塩、マグ
ネシウム塩、アルミニウム塩あるいはアンモニウ
ム塩を意味する。 また、本発明にいうフミン酸の低度縮合物と
は、上記フミン酸またはその誘導体とアルデヒ
ド、脂肪族アルコールもしくはフエノール、脂肪
酸もしくは芳香族カルボン酸との縮合反応物で、
10重量%の苛性ソーダ水溶液と相溶する縮合物で
ある。 本発明に使用するフミン酸およびニトロフミン
酸は正確な化学構造はまた決定されていないが、
フエノール性水酸基とカルボキシル基を有してい
ることが知られており、一例として、次のような
示性式が与えられている。 フミン酸:C78H52O5(COOH)8(OH)7(CO)2 ニトロフミン酸:C49H44O10(COOH)5(OH)6 (CO)4(NO23(NOH) フミン酸またはその誘導体は、アルデヒド類、
アミン類、アルコール類(フエノール類も含
む)、カルボン酸類と反応して縮合物を生成す
る。本発明で使用される縮合物は、縮合反応が高
度に進行していないものであつて、10重量%の苛
性ソーダ水溶液と相溶する低度縮合物である。 ここにいう「相溶する」とは該縮合物と10重量
%の苛性ソーダ水溶液とを混合した場合、その混
合割合如何にかかわらず該混合物は均一な一つの
相を形成することを意味する。縮合反応は、フミ
ン酸またはその誘導体に対して、アルデヒド、フ
エノール、アルコール、カルボン酸等を過剰に存
在させて行う。フミン酸またはその誘導体1モル
に対し、上記アルデヒドなどを1モル以上反応さ
せる。フミン酸またはその誘導体の平均分子量は
蒸気圧降下法等常法によつて求めることができ
る。 本発明においては、前記の縮合物の中で、アル
デヒドもしくはフエノールとの縮合物が好適に使
用される。縮合反応に用いられるアルデヒドとし
ては、ホルムアルデヒド、アセトアルデヒド、フ
ルフラールがあげられる。縮合反応はアルカリ触
媒の存在下80〜100℃の温度範囲で実施される。
この場合、フエノール、クレゾール、レゾルシ
ン、ハイドロキシン等を共存させ、共縮合を行う
ことは自由である。 なお、この縮合反応の追跡を定量的に行うこと
は困難である。何故ならば、フミン酸またはその
誘導体は、正確な化学構造が決定されていないか
らである。しかし、フミン酸またはその誘導体を
アルデヒド等と反応させることにより、反応液の
粘度が時間と共に次第に上昇するので、縮合反応
が起つている事実は確認できる。 本発明において、フミン酸またはその誘導体の
縮合反応を高度に行なうのは好ましくない。縮合
反応は初期の段階にとどめるべきであり、縮合物
は、10重量%の苛性ソーダ水溶液と相溶する低度
縮合物が用いられる。10重量%の苛性ソーダ水溶
液と相溶しないまでに高度に縮合反応を行なつた
縮合物を用いると、本発明の効果は小さくなる。 本発明を有利に実施するためには、低度縮合物
の分子量が元の出発原料のフミン酸またはその誘
導体の分子量の20%増以上になるまで縮合反応を
行うことが望ましい。分子量の増加が20%未満の
場合は重合槽内壁への定着性が向上しない。 本発明のフミン酸の低度縮合物を塩化ビニルの
重合槽内壁等へ塗布すれば何故ポリマー付着を防
止することができるのか明らかでないが、骨核と
なつている芳香族環およびOH基、COOH基、ニ
トロフミン酸の場合はさらにNO2基等が有効に働
いていると考えることができる。フミン酸または
その誘導体をアルデヒド、フエノール等と反応さ
せて初期縮合物の形にすることにより、重合槽内
壁等への定着性が驚くほど改良される。 本発明の処理を施した壁面は水に対しての濡れ
が非常によくなり撥油性を示すことが観察され
る。従つて重合反応中にモノマーが壁面に接近さ
れることが妨げられてポリマー付着の防止に効果
があると考えることができる。そしてフミン酸ま
たはその誘導体を初期縮合物の形にしたため壁面
への定着性が改良され、塗布膜が重合槽内で重合
反応液を撹拌することによつて生じる流れのため
壁面から剥離するようなことはない。 本発明を実施するにあたり、フミン酸の低度縮
合物は水溶液の形で塗布するのが便利であるが、
有機溶媒に溶解して塗布することもできるので、
上記縮合物を溶解し得る溶媒と共に用いることは
差支えない。特に有利な方法は苛性ソーダ水溶液
に溶解して塗布に供する方法である。 本発明を実施するにあたり、フミン酸の低度縮
合物の液を重合槽内壁等へ塗布するのであるが、
その固形分濃度は0.05〜15重量%の範囲で用いる
のが作業上好都合である。ここで固形分濃度とは
縮合物を意味し、具体的には試料を135℃のエア
バスに入れ、1時間乾燥した後の不揮発成分の量
を測定することによつて固形分量を求める。 本発明で塗布とは、作業の態様ではなく結果と
してフミン酸の低度縮合物を器壁に存在させるこ
とを意味し、塗布の方法は特に限定を要しない
が、通常は刷毛塗りあるいはスプレー等の方法で
行うことができ、その塗布量も特に限定を要しな
いが通常は固形分として0.005〜10g/m2とするの
が好ましい。 本発明を実施するにあたつて、フミン酸の低度
縮合物を塗布した後、水で塗布面を洗滌するのが
好ましい。この操作によりたとえ必要以上に塗布
された塗布液も洗い流されるし、また、フミン酸
の低度縮合物は中性の水に溶解しないので重合槽
等の壁面への固着を促進する。さらに有利なこと
に、過剰のものが除去されるため、塩化ビニルの
重合反応を遅くしたりあるいは得られる製品の諸
物性を悪くしたりする悪影響が回避される。尚、
水の代りに塩酸、硝酸、りん酸、炭酸等の無機
酸、あるいは蟻酸、酢酸、フイチン酸等の有機酸
でPHを6以下に調節した酸性水を塗布面で洗滌し
てもよい。 塗布は毎バツチ重合開始前に行なつてもよく、
また塗布後数バツチ以上簡単な水洗のみで継続し
て重合を行うこともできる。 また、本発明が適用できる重合は、塩化ビニル
の単独重合のみならず、塩化ビニルと共重合しう
るモノマー、たとえば、エチレン、プロピレン等
のオレフイン、酢酸ビニル、スチレン等のビニル
系モノマー、アクリルニトリル、アクリル酸エス
テル等のアクリル系モノマー、マレイン酸、マレ
イン酸エステル、フマル酸、フマル酸エステル等
のジカルボン酸系モノマー等の共重合にも有効に
適用できる。これらの共重合するモノマーは、塩
化ビニルに対して20重量%を越えない範囲で使用
することができる。 さらに、本発明が適用できる重合形式は、水性
懸濁重合、水性乳化重合および重合媒体を含まな
いいわゆる塊状重合にも各々の通常の重合条件下
で有効に適用できる。 本発明の方法によれば、ポリマー付着防止の効
果が従来の方法より格段に大きくなり、しかも重
合速度が遅くなつたりあるいは製品の諸物性が悪
くなつたりするような悪影響はない。 以下、実施例により本発明を説明する。 塗布液の製造例 1: 還流冷却器付三ツ口フラスコに蒸気圧降下法で
求めた平均分子量1000のフミン酸50g、48重量%
のホルマリン100g、苛性ソーダ2gを装入し、85
℃で8時間反応させ、然る後室温まで冷却し、反
応液を希塩酸で中和したところ褐色の沈澱物をえ
た。この沈澱物の平均分子量は1300であつた。 この沈澱物を水洗後乾燥し、2重量%の苛性ソ
ーダ水溶液に溶解して固形分濃度が5重量%にな
るように調節した。 塗布液の製造例 2: 還流冷却器付三ツ口フラスコにニトロフミン酸
500g、石炭酸470g、レゾルシン20g、48重量%の
ホルマリン1000g、苛性ソーダ20gを装入し、85
℃で反応させた。 ASTM D2196に記載された方法に準拠して、
60rpmでNo.3のスピンドルを用いて80℃における
粘度が1000センチポイズになるまで反応を続けた
ところ褐色の粘稠な液が得られた。このようにし
て得られた縮合物を、2重量%の苛性ソーダ水溶
液に溶解して固形分濃度が5重量%になるよう調
節して塗布液を調製した。 実施例 1 製造例1の塗布液を、内容積7m3のステンレス
製重合槽の内壁に噴霧器でスプレーし、さらに水
で壁面を洗滌した。 このような処置をした後、脱イオン水3000Kg、
t−ブチルパ−オキシピバレート0.6Kg、鹸化度
80モル%の部分鹸化ポリビニルアルコール2Kgを
装入し、内部の空気を真空ポンプで排除した。然
る後、塩化ビニル2000Kgを装入し、57℃で圧力が
5Kg/cm2に達するまで反応を続けた。 反応終了後未反応モノマーを回収し、ポリマー
スラリーを排出後重合槽内壁に付着したポリマー
の重量を調べた。 ポリマースラリーは脱水後乾燥し製品として取
得し、下記の方法により諸物性を測定した。結果
を第1表に示した。第1表に示した如く、本発明
の方法によれば、ポリマー付着量が顕著に少な
く、また付着したポリマーも簡単は水洗で容易に
洗い流すことができた。得られた製品の物性もす
ぐれている。 1 平均重合度:JIS K6721による 2 みかけ比重:JIS K6721による 3 フイツシユアイ: PVC 100g 2−エチルヘキシルフタレート 50g 東亜理化製安定剤アドバスタブBC−1000J 5g 上記の混合物を150℃の2本ロールを用い
て、ロール面間隔0.3mm間隔で5分間混練し、
シートを作製する。然る後10cm×10cmの面積に
存在するフイツシユアイの個数を透視して数え
る。 4 ポロシテイ:水銀圧入法による。 比較例 1 フミン酸、ホルムアルデヒド低度縮合物の塗布
をまつたく行わなかつた以外は実施例1と同様に
した。結果を第1表に示した。第1表に示したよ
うに内壁へのポリマー付着量はきわめて多い。
The present invention relates to an improved method for polymerizing vinyl chloride, and more particularly to a method for preventing polymer adhesion to the inner walls of a polymerization tank and to parts of the equipment that come into contact with monomers during polymerization. When vinyl chloride is polymerized alone or together with monomers that can be copolymerized with it (hereinafter simply referred to as polymerization), the inner walls of the polymerization tank, reflux condenser, stirring blades, baffle plates, various attached piping connections, etc. Polymer adheres to parts of the equipment that come into contact with monomers during operation, reducing the cooling capacity of the polymerization tank.
Alternatively, a problem arises in that the polymer that is once attached and then peeled off is mixed into the vinyl chloride homopolymer or copolymer (hereinafter referred to as "product"), degrading the quality of the product. Therefore, it is customary to clean the inside of the polymerization tank after each polymerization and then repeat the polymerization, but this requires a great deal of effort and time.
This results in a decrease in the operating rate of the polymerization tank and an increase in product costs. Many methods have been proposed to prevent polymers from adhering to the inner walls of polymerization tanks.
Although these methods are effective in preventing polymer adhesion, they have drawbacks such as slowing down the polymerization rate and deteriorating various physical properties of the product, and none of them are satisfactory for industrial use. Ta. A method has been proposed that does not adversely affect the polymerization rate or the physical properties of the product, but this method also has the drawback that it is not very effective in preventing polymer adhesion. For example, JP-A-50-87 discloses that in a reaction vessel having an inner wall surface deposited an insoluble layer of a crosslinked polymeric material containing polar groups formed from a reaction mixture having an aldehyde as one component. A method for carrying out the polymerization of vinyl chloride is disclosed. According to this method, since the polymer substance deposited on the wall surface is crosslinked, that is, three-dimensional, it is difficult to be eluted into the vinyl chloride polymerization reaction solution, and the polymerization rate does not become slow. The method of preventing polymer adhesion by applying a polymer substance in this way is that the polymer substance acts as a radical scavenger or is hydrophilic, making the wall surface oil repellent and preventing vinyl chloride monomers. It is thought that it is effective because it keeps the insects away. However, when a crosslinked polymer material is used as in the method described in JP-A-50-87, such effects are reduced. For example, a crosslinked condensate using phenol and formaldehyde as starting materials is known as a phenolic resin, but this resin does not exhibit hydrophilicity or has a radical scavenging effect, so it is difficult to use as a polymer. Not effective in preventing adhesion. JP-A-51-134777 discloses a method of coating the inner surface of a polymerization reactor with a condensation polymer consisting of a polyaromatic amine. Polyaromatic amines have a radical scavenging effect, so if a condensation polymer made from polyaromatic amines is applied to the inner surface of a polymerization reactor,
It states that it is effective in preventing polymer adhesion. However, according to the experimental results of the present inventors, the coating effect of the condensation polymer made of polyaromatic amine was also not satisfactory. As shown in Japanese Patent Application No. 52-152391, the present inventors have discovered a method of applying humic acid or its derivatives to the inner wall of the polymerization tank in advance, but humic acid or its derivatives have a tendency to stick to the inner wall of the polymerization tank. However, the flow generated by stirring the polymerization reaction solution in the polymerization tank may cause it to peel off from the wall surface, and it cannot be said that it always exhibits a sufficient effect of preventing polymer adhesion. Therefore, an object of the present invention is to further improve the improved method for polymerizing vinyl chloride using humic acid or its derivatives, so that the process of polymerizing vinyl chloride does not have the above-mentioned adverse effects, and The object of the present invention is to provide a practical polymerization method that sufficiently prevents polymer adhesion. As a result of repeated research, the present inventors have found that when polymerizing vinyl chloride, humic acid or its derivatives and aldehyde are added to the inner walls of the polymerization tank and other parts of the polymerization equipment and polymerization accessory equipment that come into contact with the monomer during the polymerization operation. By applying a low-grade condensate of 20% and 30% of the total amount of polymer, adhesion of the polymer can be greatly reduced, and even a small amount of polymer adhering can be easily removed by washing with water, etc.
Moreover, they have discovered that there are no adverse effects such as slowing down the polymerization reaction or deteriorating various physical properties of the product, and have arrived at the present invention. That is, in the present invention, when vinyl chloride is polymerized alone or together with a monomer that can be copolymerized with vinyl chloride in an aqueous medium or in bulk,
A vinyl chloride polymerization method characterized by applying a low-degree condensate of humic acid or a derivative thereof and an aldehyde or an aldehyde and a phenol to the inner wall of a polymerization tank and the parts of the equipment that come into contact with monomers during the polymerization operation. be. In the present invention, a low-degree condensate of humic acid or a derivative thereof and an aldehyde or an aldehyde and a phenol (hereinafter simply referred to as a low-degree condensate of humic acid) is used as a coating drug. Here, the term "derivatives of humic acid" as used in the present invention means nitrofumic acid, and potassium salts, sodium salts, calcium salts, magnesium salts, aluminum salts, or ammonium salts of humic acid or nitrofumic acid. Furthermore, the low-degree condensate of humic acid according to the present invention is a condensation reaction product of the humic acid or its derivative and an aldehyde, an aliphatic alcohol or a phenol, a fatty acid or an aromatic carboxylic acid,
It is a condensate that is compatible with a 10% by weight aqueous solution of caustic soda. Although the exact chemical structures of humic acid and nitrofumic acid used in the present invention have not been determined,
It is known to have a phenolic hydroxyl group and a carboxyl group, and the following formula is given as an example. Humic acid: C 78 H 52 O 5 (COOH) 8 (OH) 7 (CO) 2 Nitrohumic acid: C 49 H 44 O 10 (COOH) 5 (OH) 6 (CO) 4 (NO 2 ) 3 (NOH) Humic acid or its derivatives are aldehydes,
Reacts with amines, alcohols (including phenols), and carboxylic acids to form condensates. The condensate used in the present invention is one in which the condensation reaction has not progressed to a high degree, and is a low-degree condensate that is compatible with a 10% by weight aqueous solution of caustic soda. "Compatible" as used herein means that when the condensate and a 10% by weight aqueous caustic soda solution are mixed, the mixture forms a single homogeneous phase regardless of the mixing ratio. The condensation reaction is carried out in the presence of an excess of aldehyde, phenol, alcohol, carboxylic acid, etc. relative to humic acid or its derivative. One mole or more of the above aldehyde or the like is reacted with one mole of humic acid or its derivative. The average molecular weight of humic acid or its derivatives can be determined by a conventional method such as the vapor pressure drop method. In the present invention, among the above condensates, condensates with aldehydes or phenols are preferably used. Examples of aldehydes used in the condensation reaction include formaldehyde, acetaldehyde, and furfural. The condensation reaction is carried out in the presence of an alkaline catalyst in the temperature range of 80-100°C.
In this case, phenol, cresol, resorcinol, hydroxine, etc. may be co-present and co-condensation may be carried out freely. Note that it is difficult to quantitatively track this condensation reaction. This is because the exact chemical structure of humic acid or its derivatives has not been determined. However, by reacting humic acid or a derivative thereof with an aldehyde or the like, the viscosity of the reaction solution gradually increases over time, so it can be confirmed that a condensation reaction is occurring. In the present invention, it is not preferable to conduct a condensation reaction of humic acid or its derivatives to a high degree. The condensation reaction should be kept at an early stage, and a low-grade condensate that is compatible with a 10% by weight aqueous solution of caustic soda is used. If a condensate that has undergone a condensation reaction to such a degree that it is incompatible with a 10% by weight aqueous solution of caustic soda is used, the effects of the present invention will be reduced. In order to carry out the present invention advantageously, it is desirable to carry out the condensation reaction until the molecular weight of the low-degree condensate increases by 20% or more over the molecular weight of the original starting material humic acid or its derivative. If the molecular weight increase is less than 20%, the adhesion to the inner wall of the polymerization tank will not improve. It is not clear why polymer adhesion can be prevented by applying the low-degree condensate of humic acid of the present invention to the inner wall of a vinyl chloride polymerization tank, etc. In the case of nitrofuminic acid, it can be thought that NO 2 groups and the like are also working effectively. By reacting humic acid or its derivatives with aldehyde, phenol, etc. to form an initial condensate, the adhesion to the inner walls of the polymerization tank is surprisingly improved. It is observed that the wall surface treated according to the present invention has very good wettability with water and exhibits oil repellency. Therefore, it can be considered that the monomer is prevented from approaching the wall surface during the polymerization reaction, which is effective in preventing polymer adhesion. Since humic acid or its derivatives are in the form of an initial condensate, the adhesion to the wall surface is improved, and the coating film does not peel off from the wall surface due to the flow generated by stirring the polymerization reaction solution in the polymerization tank. Never. In carrying out the present invention, it is convenient to apply the low-degree condensate of humic acid in the form of an aqueous solution;
It can also be applied by dissolving it in an organic solvent.
There is no problem in using the above condensate together with a solvent that can dissolve it. A particularly advantageous method is to dissolve it in an aqueous caustic soda solution and apply it. In carrying out the present invention, a liquid of a low-degree condensate of humic acid is applied to the inner wall of a polymerization tank, etc.
It is convenient for work to use the solid content in a range of 0.05 to 15% by weight. The solid content concentration here means a condensate, and specifically, the solid content is determined by placing a sample in an air bath at 135°C and measuring the amount of nonvolatile components after drying for 1 hour. In the present invention, application refers to the presence of a low-grade condensate of humic acid on the wall of the vessel as a result, not the mode of operation, and the method of application is not particularly limited, but it is usually applied by brushing or spraying. The coating amount is not particularly limited, but it is usually preferably 0.005 to 10 g/m 2 as a solid content. In carrying out the present invention, it is preferable to wash the coated surface with water after applying the low-degree condensate of humic acid. By this operation, even if the coating solution is applied in excess of the amount required, it is washed away, and since the low-degree condensate of humic acid is not soluble in neutral water, it promotes adhesion to the walls of the polymerization tank, etc. Further advantageously, since the excess is removed, negative effects that slow down the vinyl chloride polymerization reaction or impair the physical properties of the resulting product are avoided. still,
Instead of water, the coated surface may be washed with acidic water whose pH is adjusted to 6 or less with an inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, or carbonic acid, or an organic acid such as formic acid, acetic acid, or phytic acid. Coating may be done before starting polymerization of each batch.
Further, after application, polymerization can be carried out continuously by simply washing several batches or more with water. In addition, the polymerization to which the present invention can be applied includes not only homopolymerization of vinyl chloride, but also monomers copolymerizable with vinyl chloride, such as olefins such as ethylene and propylene, vinyl monomers such as vinyl acetate and styrene, acrylonitrile, It can also be effectively applied to the copolymerization of acrylic monomers such as acrylic esters, dicarboxylic acid monomers such as maleic acid, maleic esters, fumaric acid, and fumaric esters. These copolymerizable monomers can be used in an amount not exceeding 20% by weight based on vinyl chloride. Furthermore, the polymerization formats to which the present invention is applicable can also be effectively applied to aqueous suspension polymerization, aqueous emulsion polymerization, and so-called bulk polymerization, which do not contain a polymerization medium, under their respective customary polymerization conditions. According to the method of the present invention, the effect of preventing polymer adhesion is much greater than that of conventional methods, and there are no adverse effects such as a slowing of the polymerization rate or deterioration of various physical properties of the product. The present invention will be explained below with reference to Examples. Manufacturing example of coating liquid 1: 50 g of humic acid with an average molecular weight of 1000 determined by the vapor pressure drop method, 48% by weight, in a three-necked flask with a reflux condenser.
Charge 100g of formalin and 2g of caustic soda, 85
The reaction mixture was allowed to react at .degree. C. for 8 hours, then cooled to room temperature, and the reaction solution was neutralized with dilute hydrochloric acid to yield a brown precipitate. The average molecular weight of this precipitate was 1300. This precipitate was washed with water, dried, and dissolved in a 2% by weight aqueous solution of caustic soda to adjust the solid content concentration to 5% by weight. Manufacturing example of coating liquid 2: Nitrohumic acid in a three-necked flask with a reflux condenser
500g, carbolic acid 470g, resorcinol 20g, 48% by weight formalin 1000g, caustic soda 20g, 85
The reaction was carried out at ℃. In accordance with the method described in ASTM D2196,
The reaction was continued using a No. 3 spindle at 60 rpm until the viscosity at 80°C reached 1000 centipoise, yielding a brown viscous liquid. The condensate thus obtained was dissolved in a 2% by weight aqueous solution of caustic soda and the solid content concentration was adjusted to 5% by weight to prepare a coating solution. Example 1 The coating solution of Production Example 1 was sprayed onto the inner wall of a stainless steel polymerization tank having an internal volume of 7 m 3 using a sprayer, and the wall surface was further washed with water. After such treatment, 3000Kg of deionized water,
t-Butyl peroxypivalate 0.6Kg, degree of saponification
2 kg of 80 mol % partially saponified polyvinyl alcohol was charged, and the air inside was removed using a vacuum pump. Thereafter, 2000 kg of vinyl chloride was charged, and the reaction was continued at 57°C until the pressure reached 5 kg/cm 2 . After the reaction was completed, unreacted monomers were collected, and after the polymer slurry was discharged, the weight of the polymer attached to the inner wall of the polymerization tank was determined. The polymer slurry was dehydrated and dried to obtain a product, and its physical properties were measured using the methods described below. The results are shown in Table 1. As shown in Table 1, according to the method of the present invention, the amount of polymer adhesion was significantly reduced, and the adhering polymer could be easily washed away with water. The physical properties of the obtained product are also excellent. 1 Average degree of polymerization: according to JIS K6721 2 Apparent specific gravity: according to JIS K6721 3 Fixture: PVC 100g 2-ethylhexyl phthalate 50g Toa Rika stabilizer Adbastab BC-1000J 5g The above mixture was heated at 150℃ using two rolls. Knead for 5 minutes with a roll surface interval of 0.3 mm,
Create a sheet. Then, look through and count the number of fisheyes present in an area of 10cm x 10cm. 4 Porosity: By mercury intrusion method. Comparative Example 1 The same procedure as Example 1 was carried out except that the low-level condensate of humic acid and formaldehyde was not applied. The results are shown in Table 1. As shown in Table 1, the amount of polymer deposited on the inner wall was extremely large.

【表】【table】

【表】 実施例 2 製造例2で得られた塗布液を、内容積7m3のス
テンレス製重合槽の内壁に噴霧器でスプレート
し、さらに水で壁面を洗滌した。 このような処置をした後、脱イオン水3000Kg、
2,2′−アゾビス−2,4−ジメチルバレロニト
リル0.5Kg、鹸化度80モル%の部分鹸化ポリビニ
ルアルコール1Kg、ヒドロキシプロピルメチルセ
ルロース1Kgを装入し、内部の空気を真空ポンプ
で除去した。然る後、塩化ビニル2000Kgを装入
し、57℃で圧力が5Kg/cm2に達するまで反応を続
けた。反応終了後未反応モノマーを回収し、ポリ
マースラリーを排出後重合槽内に付着したポリマ
ーの重量を調べた。結果を第2表に示した。第2
表に示した如く、本発明の方法によれば、ポリマ
ー付着量が顕著に少く、また付着したポリマーも
簡単な水洗で容易に洗い流すことができ、手作業
による除去作業の必要なしに次の重合バツチに進
むことができた。 比較例 2 上記ニトロフミン酸、石炭酸、レゾルシン、ホ
ルムアルデヒド低度縮合物の塗布をまつたく行わ
なかつた以外は実施例2と同様にした。結果を第
2表に示した。第2表に示したように内壁へのポ
リマー付着はきわめて多い。 比較例 3 ニトロフミン酸を2重量%の苛性ソーダ水溶液
に溶解して濃度が5重量%になるように調節して
塗布液を調節した。 ニトロフミン酸、石炭酸、レゾルシン、ホルム
アルデヒド低度縮合物からなる塗布液の代りに上
記塗布液を用いた以外は実施例2と同様にした。
結果を第2表に示した。第2表に示したように内
壁へのポリマー付着は少なかつたが、重合懸濁液
が存在した液相部の壁面に水洗のみでは除去でき
ないポリマーの薄膜の存在が認められ、次の重合
バツチに進すには若干の手作業による除去作業を
必要とした。
[Table] Example 2 The coating solution obtained in Production Example 2 was sprayed onto the inner wall of a stainless steel polymerization tank with an internal volume of 7 m 3 using a sprayer, and the wall surface was further washed with water. After such treatment, 3000Kg of deionized water,
0.5 kg of 2,2'-azobis-2,4-dimethylvaleronitrile, 1 kg of partially saponified polyvinyl alcohol with a degree of saponification of 80 mol%, and 1 kg of hydroxypropyl methylcellulose were charged, and the air inside was removed using a vacuum pump. Thereafter, 2000 kg of vinyl chloride was charged, and the reaction was continued at 57°C until the pressure reached 5 kg/cm 2 . After the reaction was completed, unreacted monomers were collected, and after the polymer slurry was discharged, the weight of the polymer adhering to the inside of the polymerization tank was determined. The results are shown in Table 2. Second
As shown in the table, according to the method of the present invention, the amount of polymer adhesion is significantly small, and the adhering polymer can be easily washed away with simple water washing, so that the next polymerization process can be carried out without the need for manual removal work. I was able to move forward. Comparative Example 2 The same procedure as in Example 2 was carried out except that the nitrofumic acid, carbolic acid, resorcinol, and formaldehyde low-grade condensate were not applied all over. The results are shown in Table 2. As shown in Table 2, polymer adhesion to the inner walls is extremely high. Comparative Example 3 A coating solution was prepared by dissolving nitrofumic acid in a 2% by weight aqueous solution of caustic soda and adjusting the concentration to 5% by weight. The same procedure as in Example 2 was carried out except that the above coating liquid was used instead of the coating liquid consisting of nitrofumic acid, carbolic acid, resorcinol, and a low-grade formaldehyde condensate.
The results are shown in Table 2. As shown in Table 2, there was little polymer adhesion to the inner wall, but a thin film of polymer was observed on the wall of the liquid phase where the polymerization suspension existed, which could not be removed by washing with water alone. Some manual removal work was required to proceed.

【表】 つた付着ポリマーの薄膜
実施例 3 製造例2で得られた塗布液を内容積1000のグ
ラスライニング重合槽の内壁に0.5g/m2の割合で
噴霧器でスプレーし、さらに水で壁面を洗滌し
た。 このような処置をした後、脱イオン水300Kg、
ソデイウム・ラウリルサフエート2Kg、セチルア
ルコール4Kgを装入し、55℃に加熱して50rpmの
ゆるやかな撹拌速度で10分間撹拌して乳化剤分散
液を調節した。然る後この乳化剤分散液を35℃ま
で冷却し、2,2′−アゾビス−2,4−ジメチル
バレロニトリル0.12Kgを添加し、内部の空気を真
空ポンプで排除した。次に塩化ビニル200Kgを装
入し50℃にて、50rpmの撹拌速度で重合槽内の圧
力が4Kg/cm2になるまで重合したところ重合槽内
には凝集生成物がほとんどない、かつ安定な塩化
ビニルポリマーラテツクスがえられた。未反応モ
ノマーを回収した後、ラテツクスを排出し重合槽
内壁の状態を調べたところ、ポリマー付着は実質
的に皆無であつた。 比較例 4 ニトロフミン酸低度縮合物の塗布を行わなかつ
た以外は実施例3と同じようにして塩化ビニルの
重合を行ない、重合後の重合槽内壁の状態を調べ
たところ、内壁全面に多量の膜状ポリマーの付着
が認められた。 実施例 4 重合装置として内容積4のステンレス製たて
型重合槽と内容積6のステンレス製横型重合槽
を組合せたものを使用した。これら重合槽の内壁
およびその他塩化ビニルが接触する部分に、製造
例2で得られた塗布液を0.2g/m2の割合で噴霧器
でスプレーし、さらに水で壁面を洗滌した。 このような処置をした後、真空ポンプを用いて
内部の空気を排除し、第1段の4たて型重合槽
に塩化ビニル1500g、2,2′−アゾビス−2,4
−ジメチルバレロニトリル0.3gを装入し、温度60
℃で1時間重合を行なつた後、内容物を第2段の
6横型重合槽に移送した。移送後、57℃で圧力
が6.5Kg/cm2に達するまで反応を続けた。未反応
モノマーを回収した後内容物を排出し、重合槽内
壁の状態を調べたところ、ごく少量のポリマー付
着が認められるのみであつた。付着しているポリ
マーはひじように脆弱で、2Kg/cm2の弱い水圧の
水で容易に除去することができ、除去したポリマ
ーを乾燥後重量測定したところ、第1段重合槽の
ものは4g、第2段重合槽のものは50gであつた。 比較例 5 ニトロフミン酸低度縮合物の塗布を行わなかつ
た以外は実施例4と同じようにして塩化ビニルの
重合を行ない、重合後の重合槽内壁の状態を調べ
たところ、多量のポリマー付着が認められた。付
着しているポリマーはひじように強固で15Kg/cm2
の水圧の水でも除去することができなかつた。機
械的に除去したポリマーの乾燥重量は、第1段重
合槽のものは10g、第2段重合槽のものは480gで
あつた。 実施例 5 製造例2で得られた塗布液を内容積7m3のステ
ンレス製重合槽の内壁および重合付属装置である
伝熱面積5m2のステンレス製環流冷却器の管内
(塩化ビニルと接触する部分)に0.05g/m2の割合
で塗布した。 このような処置をした後、脱イオン水3000Kg、
2,2′−アゾビス−2,4−ジメチルバレロニト
リル0.6Kg、鹸化度72モル%の部分鹸化ポリビニ
ルアルコール2Kgを装入し、内部の空気を真空ポ
ンプで排除した。然る後塩化ビニル2000Kgの装入
し、57℃で圧力が5Kg/cm2に達するまで反応を続
けた。この間、重合開始後1時間目から内圧降下
がはじまるまでの期間反応熱の一部除去を還流冷
却器を援用することにより行なつた。 反応終了後未反応モノマーを回収し、ポリマー
スラリーを排出後重合槽内壁、環流冷却器管内、
撹拌翼、撹拌軸、バツフル等重合中塩化ビニルが
接触する部分を簡単に水洗するだけで、塗布液の
塗布と重合バツチを合計30回くりかえした。この
間、重合槽および還流冷却器の冷却能力が低下す
るようなことは認められず、また各壁面に付着ポ
リマーが蓄積するようなこともなかつた。 実施例 6 製造例2で得られた塗布液を内容積300のス
テンレス製重合槽の内壁に0.5g/m2の割合で噴霧
器でスプレーし、さらに水で壁面を洗滌した。こ
のような処置をした後、脱イオン水200Kg、ラウ
ロイルパーオキサイド0.05Kg、ヒドロキシプロピ
ルセルローズ0.15Kg、酢酸ビニル5Kgを装入し内
部の空気を真空ポンプで排除した。然る後塩化ビ
ニル95Kgを装入し、65℃で圧力が5Kg/cm2に達す
るまで反応を続けた。反応終了後未反応モノマー
を回収し、ポリマースラリーを排出後重合槽内壁
に付着したポリマーを調べたところ、2Kg/cm2
水圧の水で容易に除去できる付着ポリマー30gが
存在したのみであつた。
[Table] Example 3 of thin film of ivy-adhering polymer. Spray the coating solution obtained in Production Example 2 onto the inner wall of a glass-lined polymerization tank with an internal volume of 1000 at a rate of 0.5 g/m 2 using a sprayer, and then cover the wall surface with water. Washed. After such treatment, 300Kg of deionized water,
2 kg of sodium lauryl sulfate and 4 kg of cetyl alcohol were charged, heated to 55°C, and stirred at a gentle stirring speed of 50 rpm for 10 minutes to prepare an emulsifier dispersion. Thereafter, this emulsifier dispersion was cooled to 35°C, 0.12 kg of 2,2'-azobis-2,4-dimethylvaleronitrile was added, and the air inside was removed using a vacuum pump. Next, 200 kg of vinyl chloride was charged and polymerized at 50°C with a stirring speed of 50 rpm until the pressure inside the polymerization tank reached 4 kg/ cm2 . A vinyl chloride polymer latex was obtained. After collecting unreacted monomers, the latex was discharged and the condition of the inner wall of the polymerization tank was examined, and it was found that there was virtually no polymer adhesion. Comparative Example 4 Vinyl chloride was polymerized in the same manner as in Example 3, except that the nitrofumic acid low-level condensate was not applied. When the condition of the inner wall of the polymerization tank after polymerization was examined, it was found that a large amount was found all over the inner wall. Adhesion of film-like polymer was observed. Example 4 A combination of a vertical stainless steel polymerization tank with an internal volume of 4 and a horizontal stainless steel polymerization tank with an internal volume of 6 was used as a polymerization apparatus. The coating solution obtained in Production Example 2 was sprayed with a sprayer at a rate of 0.2 g/m 2 onto the inner walls of these polymerization tanks and other parts that came into contact with vinyl chloride, and the walls were further washed with water. After taking these steps, the air inside was removed using a vacuum pump, and 1500 g of vinyl chloride and 2,2'-azobis-2,4 were placed in the first stage 4-vertical polymerization tank.
- Charge 0.3g of dimethylvaleronitrile, temperature 60
After polymerization was carried out for 1 hour at ℃, the contents were transferred to a second stage of 6 horizontal polymerization tanks. After the transfer, the reaction was continued at 57° C. until the pressure reached 6.5 Kg/cm 2 . After collecting the unreacted monomers, the contents were discharged and the condition of the inner wall of the polymerization tank was examined, and only a small amount of polymer adhesion was observed. The attached polymer is as fragile as an elbow, and can be easily removed with water at a weak water pressure of 2 kg/cm 2. When the weight of the removed polymer was measured after drying, the weight of the polymer in the first stage polymerization tank was 4 g. , and that in the second stage polymerization tank was 50 g. Comparative Example 5 Vinyl chloride was polymerized in the same manner as in Example 4, except that the nitrofumic acid low condensate was not applied. When the condition of the inner wall of the polymerization tank after polymerization was examined, it was found that a large amount of polymer was attached. Admitted. The attached polymer is as strong as an elbow and weighs 15Kg/cm 2
It could not be removed even with water at a high pressure. The dry weight of the mechanically removed polymer was 10 g in the first stage polymerization tank and 480 g in the second stage polymerization tank. Example 5 The coating solution obtained in Production Example 2 was applied to the inner wall of a stainless steel polymerization tank with an internal volume of 7 m 3 and inside the pipes of a stainless steel reflux cooler with a heat transfer area of 5 m 2 (the part that comes into contact with vinyl chloride), which is an accessory device for polymerization. ) at a rate of 0.05g/m 2 . After such treatment, 3000Kg of deionized water,
0.6 kg of 2,2'-azobis-2,4-dimethylvaleronitrile and 2 kg of partially saponified polyvinyl alcohol with a degree of saponification of 72 mol% were charged, and the air inside was removed using a vacuum pump. Thereafter, 2000 kg of vinyl chloride was charged, and the reaction was continued at 57°C until the pressure reached 5 kg/cm 2 . During this period, part of the reaction heat was removed by using a reflux condenser from 1 hour after the start of polymerization until the internal pressure began to drop. After the reaction is complete, unreacted monomers are collected, and the polymer slurry is discharged from the inner wall of the polymerization tank, inside the reflux condenser pipe,
By simply washing with water the parts that come into contact with vinyl chloride during polymerization, such as stirring blades, stirring shafts, and batches, the application of the coating liquid and batch polymerization were repeated a total of 30 times. During this time, no decrease in the cooling capacity of the polymerization tank or reflux condenser was observed, nor was there any accumulation of adhering polymer on the walls. Example 6 The coating solution obtained in Production Example 2 was sprayed onto the inner wall of a stainless steel polymerization tank having an internal volume of 300 mm at a rate of 0.5 g/m 2 using a sprayer, and the wall surface was further washed with water. After such treatment, 200 kg of deionized water, 0.05 kg of lauroyl peroxide, 0.15 kg of hydroxypropyl cellulose, and 5 kg of vinyl acetate were charged, and the air inside was removed using a vacuum pump. Thereafter, 95 kg of vinyl chloride was charged, and the reaction was continued at 65°C until the pressure reached 5 kg/cm 2 . After the reaction was completed, unreacted monomers were collected, and after discharging the polymer slurry, the polymer adhering to the inner wall of the polymerization tank was examined, and it was found that only 30 g of adhering polymer existed, which could be easily removed with water at a pressure of 2 kg/cm 2 . .

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニルを、単独でまたこれと共重合しう
るモノマーと共に、水性媒体中でまたは塊状で重
合するに際し、あらかじめ、重合槽内壁および重
合操作中にモノマーが接触する装置部分に、フミ
ン酸またはその誘導体と、アルデヒドとのあるい
はアルデヒドとフエノールとの低度縮合物を塗布
しておくことを特徴とする塩化ビニルの重合方
法。
1. When vinyl chloride is polymerized alone or together with a monomer that can be copolymerized with vinyl chloride in an aqueous medium or in bulk, humic acid or its A method for polymerizing vinyl chloride, which comprises applying a derivative and a low-degree condensate of an aldehyde or an aldehyde and a phenol.
JP2195279A 1979-02-28 1979-02-28 Polymerization of vinyl chloride Granted JPS55115412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195279A JPS55115412A (en) 1979-02-28 1979-02-28 Polymerization of vinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195279A JPS55115412A (en) 1979-02-28 1979-02-28 Polymerization of vinyl chloride

Publications (2)

Publication Number Publication Date
JPS55115412A JPS55115412A (en) 1980-09-05
JPS6121247B2 true JPS6121247B2 (en) 1986-05-26

Family

ID=12069391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195279A Granted JPS55115412A (en) 1979-02-28 1979-02-28 Polymerization of vinyl chloride

Country Status (1)

Country Link
JP (1) JPS55115412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397109U (en) * 1986-12-13 1988-06-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113187A (en) * 1994-10-19 1996-05-07 Shinkurushima Dock:Kk Hatch cover with wood anti-slip fixture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150887A (en) * 1974-09-18 1976-05-04 Goodrich Co B F JUGOTAI FUCHAKUOHAI JOSURUHOHO
JPS51134777A (en) * 1975-05-02 1976-11-22 Goodrich Co B F Method of substantially preventing polymer layer formation on interior surface of polymerization vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150887A (en) * 1974-09-18 1976-05-04 Goodrich Co B F JUGOTAI FUCHAKUOHAI JOSURUHOHO
JPS51134777A (en) * 1975-05-02 1976-11-22 Goodrich Co B F Method of substantially preventing polymer layer formation on interior surface of polymerization vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397109U (en) * 1986-12-13 1988-06-23

Also Published As

Publication number Publication date
JPS55115412A (en) 1980-09-05

Similar Documents

Publication Publication Date Title
JP2002241433A (en) Novel vinyl alcohol resin and its use
JPS5812893B2 (en) Polymerization method of vinyl chloride
US4093787A (en) Vinyl chloride polymerization process
US4355141A (en) Polymerizing vinyl chloride in reactor treated with condensates
US5674954A (en) Method of preventing scale adhesion to the surfaces of a polymerization tank and the like
JPS6121247B2 (en)
US4181787A (en) Vinyl halide polymerization process and reactor therefor
JP2831412B2 (en) Polymerization method of vinyl chloride
JPH0574605B2 (en)
JPS5814445B2 (en) Polymerization method of vinyl chloride
JPS5814444B2 (en) Polymerization method of vinyl chloride
US6174986B1 (en) Polymerization of vinyl chloride
JPH10231302A (en) Polymerization of vinyl chloride
JPS5814447B2 (en) Polymerization method of vinyl chloride
JPH10226705A (en) Method for polymerizing vinyl chloride monomer
JP2916284B2 (en) Polymerization method of vinyl chloride
JPS62132907A (en) Method for polymerizing vinyl chloride
JPS62138508A (en) Polymerization of vinyl chloride
CA1176772A (en) Process for polymerizing vinyl chloride
JPS6223117B2 (en)
JPH04306216A (en) Production of modified phenolic resin
JPS6042245B2 (en) Polymerization method of vinyl chloride
JPH1060008A (en) Polymerization of vinyl chloride
JPH09235304A (en) Polymerization of vinyl chloride-based monomer
KR810001790B1 (en) Vinyl halide polymerisation process