JPS61211342A - Production of ultrafine high-molecular material particle - Google Patents

Production of ultrafine high-molecular material particle

Info

Publication number
JPS61211342A
JPS61211342A JP5065185A JP5065185A JPS61211342A JP S61211342 A JPS61211342 A JP S61211342A JP 5065185 A JP5065185 A JP 5065185A JP 5065185 A JP5065185 A JP 5065185A JP S61211342 A JPS61211342 A JP S61211342A
Authority
JP
Japan
Prior art keywords
polymer
molecular material
particles
particle size
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065185A
Other languages
Japanese (ja)
Inventor
Hideki Iijima
秀樹 飯島
Kenji Kamiide
上出 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5065185A priority Critical patent/JPS61211342A/en
Publication of JPS61211342A publication Critical patent/JPS61211342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To obtain the titled ultrafine particle which is in the form of a true sphere and has the desired average particle size and particle size distribution, by subjecting a high- molecular material soln. to a microscopic phase separation by cooling, evaporation, etc., to separate it into an amorphous high-molecular material-rich phase particle and a high- molecular material-lean dispersion medium and recovering the former. CONSTITUTION:A high-molecular material (e.g. cellulose linters) having an average degree of polymn. Dp of 500 or below is dissolved in a good solvent (e.g. cuprammonium soln.) in such a proportion as to give a high-molecular material soln. which has a concn. of 0.1wt% or above and a viscosity eta of 10cp or below at 20 deg.C and satisfies the relationship of the formula (wherein Dp is an average degree of polymn. and eta is viscosity). The high-molecular material soln. is subjected to microscopic phase separation by cooling said soln., evaporating said good solvent from said soln., mixing said soln. with a non-solvent (e.g. acetone) for said high-molecular compd. or a combination thereof to separate it into an amorphous high- molecular material-rich phase particle and a high-molecular material-lean dispersion medium. The high-molecular material-rich phase particle in the dispersed state is separated, recovered and spray-dried to obtain in the title ultrafine particle having an average particle size of 0.02-10mu.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高分子化合物よシなる超微粒子の製造方法に
関する。本明細書において「超微粒子」とは、形状がほ
ぼ真球状であって、平均粒径が1.0μm以下の粒子を
さす。また、本明細書において「高分子化合物」とは、
分子量が1000以上で、主鎖が主として共有結合から
できている化合物をさし、炭素原子以外の元素を主成分
とする無機系高分子化合物は含まない。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ultrafine particles made of polymer compounds. In this specification, "ultrafine particles" refer to particles that are approximately spherical in shape and have an average particle size of 1.0 μm or less. In addition, in this specification, "polymer compound" means
It refers to a compound with a molecular weight of 1000 or more and whose main chain is mainly made up of covalent bonds, and does not include inorganic polymer compounds whose main component is an element other than carbon atoms.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

高分子化合物よりなる微粒子としては、これまで、ナイ
ロン、?リスチレン、ポリアクリロニトリル、ポリエチ
レン、ポリプロピレン、フッ素系高分子化合物、天然セ
ルロース、再生セルロースなどからなるものが知られて
いる。これらの微粒子の平均粒径は、bわゆるラテック
スと呼ばれるもの以外では、5,0μm以上である。
Until now, fine particles made of polymer compounds have been used such as nylon, ? Those made of listyrene, polyacrylonitrile, polyethylene, polypropylene, fluorine-based polymer compounds, natural cellulose, regenerated cellulose, etc. are known. The average particle size of these fine particles is 5.0 μm or more, except for what is called latex.

微粒子の製法には、物理的方法と化学的方法とがある。There are two methods for producing fine particles: physical methods and chemical methods.

物理的方法は、原理的には微粒子の粉砕といえる。例え
ば機械力によシすりつぶす方法、粒子同志を衝突させて
分裂させる方法、凍結割断法などがある。これらの物理
的方法で得られる微粒子の形状は球状でなく、定まって
いない。さらに、得られた微粒子の粒径分布の幅は大き
い。これらの方法で平均粒径3μm以下の微粒子を得る
には、長期間の粉砕工程を繰シ返さなければならない等
、極めて困難な点があった。
In principle, the physical method can be said to be the pulverization of fine particles. Examples include a method of grinding by mechanical force, a method of causing particles to collide and break up, and a freeze-fracture method. The shape of the fine particles obtained by these physical methods is not spherical or fixed. Furthermore, the width of the particle size distribution of the obtained fine particles is wide. In order to obtain fine particles with an average particle size of 3 μm or less using these methods, there are extremely difficult points such as the need to repeat the crushing process over a long period of time.

一方、化学的方法の中心は、乳化重合によるものである
。得られた粒子の形状は球形に近い。しかし、この方法
を適用できる素材は限られており。
On the other hand, the main chemical method is based on emulsion polymerization. The shape of the obtained particles is close to spherical. However, the materials to which this method can be applied are limited.

また、この方法による粒径制御は難しいなどの欠点があ
った。
In addition, this method has drawbacks such as difficulty in controlling particle size.

さらに、物理的方法と化学的方法との中間に属する方法
として、破砕した粒子を酸、アルカリ等の腐食性試薬で
処理する方法がある。この方法でも、物理的方法の欠点
である破砕による粒子形状の不均一性1粒径分布の不均
一性や、高分子化合物の結晶領域および非晶領域の不均
一性などを除くことができず、また、化学的方法の欠点
であった粒径制御の困難性は充分に解決されていない。
Furthermore, as a method between physical methods and chemical methods, there is a method in which crushed particles are treated with a corrosive reagent such as acid or alkali. Even with this method, it is not possible to eliminate the drawbacks of physical methods, such as non-uniformity in particle shape, non-uniformity in particle size distribution, and non-uniformity in crystalline and amorphous regions of polymer compounds. Furthermore, the difficulty in particle size control, which was a drawback of chemical methods, has not been sufficiently solved.

本発明の目的は、上述のような従来技術の欠点を考慮し
、溶媒に溶解することができる高分子化合物からミクロ
相分離法により平均粒子径が0.0211m以上l、以
上Rr1以下の高分子超微粒子全製造する方法全提供す
ることにある。
The purpose of the present invention is to take into consideration the drawbacks of the prior art as described above, and to obtain polymers with an average particle diameter of 0.0211 m or more and Rr1 or less by using a microphase separation method from polymer compounds that can be dissolved in a solvent. The purpose of the present invention is to provide a method for producing ultrafine particles.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法におけるミクロ相分離とは、高分子化合物と
その良溶媒とからなる均一な一相系において、(1)そ
の系を冷却するか、もしくは、(2)その糸から良溶媒
を蒸発させるか、もしくは、(3)その系にその高分子
化合物の非溶媒を添加するかのいずれかの操作、または
これら(1)〜(3)の操作の組合せにより、無定形高
分子濃厚相が粒径約1μm以下の粒子相となるように高
分子濃厚相と高分子希薄相との二相状態に相分離するこ
とをいり。高度な結晶性を示す高分子化合物の溶液を相
分離させると、しばしば板状の固体相が析出する場合が
ある。この場合は、温度を高くして固体相の融点以上に
すれば、無定形の濃厚相の粒子が’IJできる。
Microphase separation in the method of the present invention refers to, in a homogeneous one-phase system consisting of a polymer compound and its good solvent, (1) cooling the system or (2) evaporating the good solvent from the thread. or (3) adding a non-solvent for the polymer compound to the system, or a combination of these operations (1) to (3), the amorphous polymer concentrated phase becomes granular. It involves phase separation into a two-phase state of a polymer-rich phase and a polymer-dilute phase to form a particle phase with a diameter of about 1 μm or less. When a solution of a highly crystalline polymer compound is subjected to phase separation, a plate-like solid phase often precipitates. In this case, if the temperature is raised to a temperature higher than the melting point of the solid phase, amorphous dense phase particles can be 'IJ'ed.

超微粒子とは、形状がほぼ真球状であり、平均粒径が1
μm以下の粒子をさす。真球状とは電子顕微鏡写真で観
察される粒子の直径が±10%以内の範囲におさまるこ
とを言う。
Ultrafine particles are almost perfectly spherical in shape and have an average particle size of 1
Refers to particles smaller than μm. "True spherical" means that the particle diameter observed in an electron micrograph falls within a range of ±10%.

また、本発明方法で使用する高分子化合物は、分子量が
1000以上であり、主鎖が主として共有結合からでき
ている化合物であり、炭素原子を主成分とする有機系高
分子化合物が主な対象である。
In addition, the polymer compound used in the method of the present invention has a molecular weight of 1000 or more, the main chain is mainly made of covalent bonds, and the main target is an organic polymer compound whose main component is carbon atoms. It is.

本明細書において粒子径または粒径とは、電子顕微鏡法
により測定される粒子径または粒径金さす。もつとも、
粒子径が0.1 μm以下の領域であって、電子顕微鏡
法では明瞭に粒径を測定できない場合は、光準弾性光散
乱法による平均粒径も併用する。ま九、粒子径の表示は
数平均の平均粒子径を意味する。
In this specification, the particle size or grain size refers to the particle size or particle size measured by electron microscopy. However,
If the particle size is in the region of 0.1 μm or less and the particle size cannot be clearly measured by electron microscopy, the average particle size by optical quasi-elastic light scattering is also used. (9) The particle size indicated means the number average particle size.

本発明方法で使用する高分子化合物の良溶媒とは、前記
の高分子化合物を20℃において1重量%以上の濃度で
溶解させることのできる溶媒をいう。一方、非溶媒とは
、20℃において0.01重量%以下の濃度でしか溶解
させることのできない溶媒をいう。
A good solvent for the polymer compound used in the method of the present invention refers to a solvent that can dissolve the aforementioned polymer compound at a concentration of 1% by weight or more at 20°C. On the other hand, a non-solvent refers to a solvent that can be dissolved only at a concentration of 0.01% by weight or less at 20°C.

高分子化合物がその良溶媒に溶解している高分子溶液を
ミクロ相分離状態に移行させるには、(1)高分子溶液
を徐々に冷却する、(2)′i11分子溶液から良溶媒
を蒸発させる、もしくは(3)高分子fヒ金物の非溶媒
を添加する、前記<1)〜(3)の3種類の方法の込ず
れかを単独で実施するか、または、これらの(13〜(
3)の操作2種または3種を任意に組合せて、一時に同
時進行的に実施するか、もしくは、連続的に順次実施す
ればよm 6 ミクロ相分離状態としては、高分子濃厚
相が粒子となる場合と、高分子化合物が粒子となる場合
とが存在するが、いずれのミクロ相分離状態が生起する
かは、高分子化合物の種類と濃度、使用する溶媒の種類
と濃度、ミクロ相分離させる操作法、温度等の諸条件に
よシ変化するので、−概に規定することはできない。
In order to transfer a polymer solution in which a polymer compound is dissolved in its good solvent to a microphase-separated state, (1) gradually cool the polymer solution, (2) evaporate the good solvent from the 11-molecule solution. or (3) adding a non-solvent of polymeric arsenic metal, any one of the three methods of <1) to (3) above may be carried out alone, or these (13 to (
You can arbitrarily combine two or three of the operations in 3) and perform them simultaneously or sequentially. There are cases in which the polymer compound forms particles, and cases in which the polymer compound forms particles.Which microphase separation state occurs depends on the type and concentration of the polymer compound, the type and concentration of the solvent used, and the microphase separation state. It cannot be generally defined because it varies depending on various conditions such as the operating method and temperature.

しかし、上記の諸条件全適宜選択すれば、個′々の場合
について、高分子濃厚相が粒子として存在する場合は必
ず存在しており、その場合の条件を定めることは可能で
ある。
However, if all the above-mentioned conditions are selected appropriately, it is possible to determine the conditions for each individual case in which the polymer-rich phase is always present in the form of particles.

一般に、高分子溶液がミクロ相分離状態へ移行す・る過
程においては、まず、平均粒径が0.02μm(200
X)の1次粒子が出現する。これら1次粒子は、互いに
衝突を繰シ返しながら、平均粒径1.θμm程度の2次
粒子にまで成長することができる。平均粒径が約1μm
に達すると、2次粒子同志の衝突が頻繁とな)1粒子は
単独で存在するよりも、数珠状に連な夛始める。このよ
うに2次粒子が連なることによって高分子多孔体が形成
される機構は、高分子多孔;膜の製法として、すでに利
用されているが、2次粒子あるいは、1次粒子を単独に
智達する方法については、これまで検討されることがな
かった。
Generally, in the process in which a polymer solution transitions to a microphase separation state, the average particle size first becomes 0.02 μm (200 μm).
The primary particles of X) appear. These primary particles repeatedly collide with each other and have an average particle size of 1. It can grow to secondary particles of about θ μm. Average particle size is approximately 1μm
When the particle size reaches 1, the collisions between secondary particles become more frequent.) Rather than a single particle existing alone, each particle begins to form a string of beads. The mechanism by which a porous polymer body is formed by a series of secondary particles is already used as a method for manufacturing porous polymer membranes; This method has never been considered.

本発明者らは、高分子溶液組成とミクロ相分離状態との
相関性について鋭意検討した結果、高分子溶液の粘度が
20℃で10cP以下であるとき、(1)その高分子溶
液全冷却する、(2)その高分子溶液から溶媒を蒸発さ
せる、もしくけ、(3)その高分子溶液とその高分子化
合物の非溶媒とを混合する、これら(1)〜(3)の3
種の操作のいずれか1つの操作、または、これら(1)
〜(3)の複数の操作の任意の組合せによシ、高分子溶
液を、高分子濃厚相が粒子相となるようにミクロ相分離
させると、上述の2次粒子同志が数珠状に連なる現象が
発生せずに、平均粒径0.021B以上1.0μm以下
の高分子超微粒子が製造できることを見い出した。
As a result of intensive study on the correlation between the polymer solution composition and the state of microphase separation, the present inventors found that when the viscosity of the polymer solution is 10 cP or less at 20°C, (1) the polymer solution is completely cooled. , (2) evaporating the solvent from the polymer solution, and (3) mixing the polymer solution with a non-solvent for the polymer compound. 3 of these (1) to (3)
Any one of the seed operations or these (1)
When a polymer solution is subjected to microphase separation such that the polymer-rich phase becomes a particle phase by any combination of the operations described in (3) above, the above-mentioned phenomenon in which the secondary particles are linked together in a beaded pattern occurs. It has been found that ultrafine polymer particles having an average particle diameter of 0.021 B or more and 1.0 μm or less can be produced without causing any of the following.

高分子溶液の粘度を規定する1つの要素は、高分子溶液
中の高分子化合物の重合度である。重合度が超微粒子製
造の過程でどのように影響するのかについての詳細は不
明であるが、平均重合度Dpと20℃における高分子溶
液の粘度ηとが、下記の式(1)ヲ満たす範囲にあるこ
とが望ましい。
One factor that defines the viscosity of a polymer solution is the degree of polymerization of the polymer compound in the polymer solution. The details of how the degree of polymerization affects the process of producing ultrafine particles are unknown, but the range in which the average degree of polymerization Dp and the viscosity η of the polymer solution at 20°C satisfies the following formula (1) is unknown. It is desirable that the

Dp≦(75o/log2 ) (] −tagη) 
(1)前記の式(1)で、ηは20℃における高分子溶
液の粘度(cP)であり、Dpは高分子化合物あ平均重
合度である。
Dp≦(75o/log2) (] −tagη)
(1) In the above formula (1), η is the viscosity (cP) of the polymer solution at 20° C., and Dp is the average degree of polymerization of the polymer compound.

高分子溶液の粘度が同じである場合には、平均重合度D
pが低い方が、超微粒子生成の収率が高くなる傾向があ
る。平均重合度Dpは500以下であることが望まし麿
If the viscosity of the polymer solution is the same, the average degree of polymerization D
The lower p is, the higher the yield of ultrafine particle production tends to be. It is desirable that the average degree of polymerization Dp is 500 or less.

高分子溶液の粘度を規定するもう1つの要素は、高分子
溶液中の高分子化合物の濃度である。2次粒子が互いに
衝突する確率を減らすためには、粒子存在密度を下げる
のが有効である。高分子溶液中の高分子化合物濃度が5
.0重量%以下の場合には、分散粒子の存在確率が急激
に高まる。しかし、超微粒子の生成効率(単位溶液中か
ら回収される超微粒子の重量)を高めるためには、前記
の濃度が0.1重量−以上であることが望ましい、また
Another factor that defines the viscosity of a polymer solution is the concentration of the polymer compound in the polymer solution. In order to reduce the probability that secondary particles collide with each other, it is effective to lower the particle density. The concentration of the polymer compound in the polymer solution is 5
.. When the amount is 0% by weight or less, the probability of existence of dispersed particles increases rapidly. However, in order to increase the production efficiency of ultrafine particles (the weight of ultrafine particles recovered from a unit solution), it is desirable that the concentration is 0.1 weight or more.

当然、前記の濃度の下限値は、ミクロ相分離を生起する
濃度以上であることが必要である。
Naturally, the lower limit of the concentration needs to be at least a concentration that causes microphase separation.

また1分散した粒子の凝集を防ぐためには、非溶媒添加
によるミクロ相分離方法全実施するのが好ましい。さら
に高分子溶液中あるいは非溶媒中に界面活性剤を添加す
るとさらに効果的である。
In order to prevent agglomeration of dispersed particles, it is preferable to carry out the entire microphase separation method by adding a non-solvent. Furthermore, it is even more effective to add a surfactant to the polymer solution or non-solvent.

乾燥状態の単分散超微粒子を得るためには、凍結乾燥法
、スプレードライ法、臨界点乾燥法等が有効である。ス
プレードライ法は、超微粒子分散液中の超微粒子濃度と
、スプレーされる液滴の大きさと全調節することにより
、単分散超微粒子の大きさから超微粒子が複数凝集した
超微粒子凝集体の大きさまでの任意の大きさの乾燥微粒
子を得ることができる方法である。ひとつの超微粒子の
平均粒径は最高1.0μmまでであるが、スプレードラ
イ法により平均粒径が10μm程度までの超微粒子凝集
体を製造することができる。
In order to obtain monodisperse ultrafine particles in a dry state, freeze drying, spray drying, critical point drying, etc. are effective. The spray drying method changes the size of ultrafine particle aggregates, which are made by agglomerating multiple ultrafine particles, from the size of monodisperse ultrafine particles by fully adjusting the ultrafine particle concentration in the ultrafine particle dispersion and the size of the sprayed droplets. This method allows dry fine particles of any size to be obtained. Although the average particle size of one ultrafine particle is up to 1.0 μm at most, ultrafine particle aggregates with an average particle size of up to about 10 μm can be produced by spray drying.

本明細書において、粘度、粒径および粒径分布の数値は
以下の測定方法によって測定したものである。
In this specification, the numerical values of viscosity, particle size, and particle size distribution are measured by the following measurement methods.

(a)  粘度 高分子溶液の粘度測定は、東京計器製造新製B型粘度計
BBL型によシ、20℃で行った。
(a) Viscosity The viscosity of the polymer solution was measured at 20° C. using a B-type viscometer model BBL manufactured by Tokyo Keiki Seisakusho.

(b)  粒径および粒径分布 走査型電子顕微鏡〔日本電子■JSM−35CF型〕お
よび透過型電子顕微鏡〔日本電子■JEM−1200E
X型〕により撮影した写真から求めた。粒径が0.1 
μm以下の領域で、電子顕微鏡法によっては明瞭に粒径
全測定できない場合には、光重弾性光散乱法(コールタ
−社製サブミクロン粒子アナライデーModel N 
4 )によシ求めた値を併用し友。
(b) Particle size and particle size distribution Scanning electron microscope [JEOL JSM-35CF model] and transmission electron microscope [JEOL JEM-1200E]
It was determined from a photograph taken with the X type. Particle size is 0.1
If the total particle size cannot be clearly measured by electron microscopy in the μm or less region, photogravielastic light scattering method (Submicron Particle Analyzer Model N manufactured by Coulter Co., Ltd.) is used.
4) Use the obtained values together.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、どのような高分子化合物であっても、
溶媒に溶解させることのできるものであれば、ミクロ相
分離状態を生起させることにより、原理的には超微粒子
を製造することができる。
According to the present invention, no matter what kind of polymer compound,
As long as it can be dissolved in a solvent, ultrafine particles can be produced in principle by causing a state of microphase separation.

ま九、高分子溶液の粘度、高分子化合物の濃度と重合度
、溶媒の種類と濃度、ミクロ相分離の発現方法等を選択
することにより、超微粒子の平均粒径、粒径分布を容易
に調節することができる。
Finally, by selecting the viscosity of the polymer solution, the concentration and degree of polymerization of the polymer compound, the type and concentration of the solvent, the method for expressing microphase separation, etc., the average particle size and particle size distribution of ultrafine particles can be easily adjusted. Can be adjusted.

特に真球状に近い粒子で、粒径分布の幅が狭い粒子を製
造することができる画期的な方法である。
This is an innovative method that can produce particles that are particularly spherical and have a narrow particle size distribution.

〔実施例〕〔Example〕

以下、実施例によって本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 公知の方法で調興し九銅アンモニア溶液中にセルロース
リンター(粘度平均分子量2.4X10  )を10重
量%の濃度で溶解し、セルロース銅アンモニア溶液原液
とした。
Example 1 Cellulose linter (viscosity average molecular weight: 2.4 x 10 ) was dissolved in a cupric ammonia solution prepared by a known method at a concentration of 10% by weight to obtain a stock solution of a cellulose cupric ammonia solution.

この原液を28%アンモニア水溶液で稀訳し、8重量%
、5重量%、2重量%、1重量%、0.5重量%および
0.1重量%のセルロース銅アンモニア溶液とした。こ
れらのセルロース銅アンモニア溶液25m1’Fr:5
ON量チアセトン水溶液500m1中に20℃で、ピペ
ットによシ添加し、ミクロ相分離が生起したことを確認
して、ただちに濃硫酸を加えてセルロースの凝固・再生
を行ない、東洋5Aの戸紙により粗大な浮遊物を除いた
。p液中の超微粒子? 10.00 Orpmで30分
間の遠心分離で集め、純水中に再び懸濁させる操作を5
回縁シ返し1.超微粒子を水洗した。
This stock solution was diluted with 28% ammonia aqueous solution, and 8% by weight
, 5% by weight, 2% by weight, 1% by weight, 0.5% by weight and 0.1% by weight of cellulose cupric ammonia solutions. These cellulose copper ammonia solutions 25ml 1'Fr: 5
Add ON amount to 500 ml of thiacetone aqueous solution at 20℃ using a pipette. After confirming that microphase separation has occurred, immediately add concentrated sulfuric acid to coagulate and regenerate cellulose. Remove coarse floating matter. Ultrafine particles in p liquid? Collect by centrifugation for 30 minutes at 10.00 Orpm and resuspend in pure water for 5 minutes.
Circumcision 1. The ultrafine particles were washed with water.

各稀釈セルロース銅アンモニア溶液よシ再生されたセル
ロースの重合度は、5.0重量%のセルロース銅アンモ
ニア溶液より再生されたセルロース粗大浮遊物を水洗し
、乾燥し、カドキセンに溶解した溶液の粘度より求めた
セルロースの重合度に等しいものと考えられる。
The degree of polymerization of the cellulose regenerated from each diluted cellulose cuprammonium solution is determined from the viscosity of the solution obtained by washing the coarse cellulose suspended matter regenerated from the 5.0% by weight cellulose cuprammonium solution with water, drying it, and dissolving it in cadoxene. This is considered to be equivalent to the determined degree of polymerization of cellulose.

表    1 表1に示すように、20℃における高分子溶液の粘度η
が10cP以下である場合に超微粒子が生成される。
Table 1 As shown in Table 1, the viscosity η of the polymer solution at 20°C
is 10 cP or less, ultrafine particles are produced.

実施例2゜ 実施例1と同様に調製した10重量%のセルロース銅ア
ンモニア溶液を28%アンモニア水で稀釈し、1.2重
量%、2.4重量%、6.0重量%の各稀釈セルロース
銅アンモニア溶液とした。これらの稀釈セルロース銅ア
ンモニア溶液10(1/に0.5%〜5%の過酸化水素
水20rnlt−添加し、セルロースの重合度を下げる
とともに、各稀釈セルロース銅アンモニア溶液のセルロ
ースa度を各々1.0重量%、2.0重量%、5.0重
量%とした。室温(20℃〜25℃)に1時間以上放置
した後、実施例1と同様の方法で50重量%アセトン水
溶液中へ添加し、ミクロ相分離後に凝固・再生させて、
水洗を行なった。
Example 2 A 10% by weight cellulose copper ammonia solution prepared in the same manner as in Example 1 was diluted with 28% aqueous ammonia to obtain diluted cellulose of 1.2% by weight, 2.4% by weight, and 6.0% by weight. It was made into a copper ammonia solution. Add 20 rnlt of 0.5% to 5% hydrogen peroxide solution to these diluted cellulose cuprammonium solutions (1/1) to lower the degree of polymerization of cellulose, and increase the cellulose a degree of each diluted cellulose cuprammonium solution by 1 0% by weight, 2.0% by weight, and 5.0% by weight. After being left at room temperature (20°C to 25°C) for more than 1 hour, the mixture was poured into a 50% by weight acetone aqueous solution in the same manner as in Example 1. Added, solidified and regenerated after micro phase separation,
I washed it with water.

セルロース重合度は、カドキセン溶液の粘度より求めた
。結果全表2に示す。
The degree of cellulose polymerization was determined from the viscosity of the cadoxene solution. The complete results are shown in Table 2.

以下余白 表    2 実施例3゜ 実施例1と同様にして調製した10重量−のセルロース
鋼アンモニアg液原液t−28%アンモニア水で稀釈し
、5重量−の濃度にした。この5重量%溶液t−ポリエ
チレン製密閉容器中に室温(5℃〜25℃)で保存し、
溶液の20℃における粘度が4 cPとなったとき、さ
らに28チアンモニア水で稀釈し、1重量%とした。こ
の1重量%溶液50rnlt−50重量%アセトン水溶
液500rnl中にピペットで投入し、ミクロ相分離を
生起させ、ただちに濃硫酸で凝固・再生させ、実施例1
と同様に水洗した。この超微粒子の粒径分布をコールタ
−社製サブミクロン粒子アナライザーで測定したところ
、平均粒径0.3μm、最小粒径0.04μm、最大粒
径1.0μmであった。
Below is a blank table. 2 Example 3 A 10% cellulose steel ammonia g solution stock solution prepared in the same manner as in Example 1 was diluted with 28% ammonia water to a concentration of 5% by weight. This 5% by weight solution was stored in a sealed T-polyethylene container at room temperature (5°C to 25°C),
When the viscosity of the solution at 20° C. reached 4 cP, it was further diluted with 28 thiammonium water to give a concentration of 1% by weight. Example 1
Washed with water in the same way. When the particle size distribution of the ultrafine particles was measured using a submicron particle analyzer manufactured by Coulter, the average particle size was 0.3 μm, the minimum particle size was 0.04 μm, and the maximum particle size was 1.0 μm.

実施例4゜ 実施例3で得られた超微粒子の水中への懸濁液の濃度を
0.2重量%、0.5重量%、1重量%、3重量%に調
整し、ヤマト科学製・母ルビスミニベッ)’GA−21
型によシスプレードライ法で乾燥した。得られた乾燥粒
体は、超微粒子の凝集体であシ、平均粒径は1.0μm
、1.9μm、2.6μm、4.9μmの順であった。
Example 4 The concentration of the suspension of ultrafine particles obtained in Example 3 in water was adjusted to 0.2% by weight, 0.5% by weight, 1% by weight, and 3% by weight. Mother Rubis minivet)'GA-21
The mold was dried using the sysspray drying method. The obtained dry granules are aggregates of ultrafine particles, and the average particle size is 1.0 μm.
, 1.9 μm, 2.6 μm, and 4.9 μm in that order.

 ′ 実施例5゜ 公知の方法で合成したセルロースジアセテート(置換度
2.46)INをアセトン100Iに溶解後、未溶解物
全グラスフィルターで除去し、セルロースジアセテート
のアセトン均−−相i液(25℃における粘度0.6c
P)’i調製し次。この溶液10m1メタノール/Ca
Ct2・2H20の混合液(重量比100:30)10
0m7中に投入し、ミクロ相分離を生起させ超微粒子?
生成させた。実施例1と同様に遠心処理と水への懸濁と
を繰シ返して水洗を行なった。
' Example 5 Cellulose diacetate (substitution degree 2.46) IN synthesized by a known method was dissolved in 100 I of acetone, and all undissolved matter was removed with a glass filter to form an acetone-equalized phase I solution of cellulose diacetate. (Viscosity 0.6c at 25℃
P)'i prepared as follows. 10ml of this solution 1 methanol/Ca
Mixed liquid of Ct2/2H20 (weight ratio 100:30) 10
0m7 to cause micro phase separation and form ultrafine particles?
generated. As in Example 1, centrifugation and suspension in water were repeated to perform water washing.

得られた超微粒子の平均粒径は約0.9μmであった。The average particle size of the obtained ultrafine particles was about 0.9 μm.

実施例6゜ 公知の方法で合成したポリアクリロニトリル(重量平均
分子量15万)をジメチルホルムアミドに溶解して1重
量%均一−相溶液とした。この溶液]01dを50重量
%ジメチルホルムアミド水溶液10011Ll中に投入
し、ミクロ相分離全生起させポリアクリロニトリル超微
粒子を生成させ、実施例1と同様の方法で水洗した。得
られた超微粒子の平均粒径は0.3μmであった。
Example 6 Polyacrylonitrile (weight average molecular weight: 150,000) synthesized by a known method was dissolved in dimethylformamide to form a 1% by weight homogeneous phase solution. This solution] 01d was poured into 10,011 Ll of a 50% by weight aqueous dimethylformamide solution to cause complete microphase separation to produce ultrafine polyacrylonitrile particles, which were washed with water in the same manner as in Example 1. The average particle size of the obtained ultrafine particles was 0.3 μm.

Claims (1)

【特許請求の範囲】 1、高分子化合物とその良溶媒とからなり、20℃にお
ける粘度ηが10cP以下である高分子溶液を調製し、
その高分子溶液を冷却するか、もしくは、その高分子溶
液から前記良溶媒を蒸発させるか、もしくは、その高分
子溶液と前記高分子化合物の非溶媒とを混合するか、の
いずれかの方法によって、または、それらの方法の任意
の組合せによって、無定形の高分子濃厚相粒子と高分子
稀薄相分散媒体とにミクロ相分離させ、前記の高分子濃
厚相粒子を分散状態のままで分離し回収して、平均粒径
0.02μm以上1.0μm以下の高分子超微粒子を製
造する、高分子超微粒子の製法。 2、高分子溶液の20℃における粘度ηと高分子化合物
の平均重合度Dpとが、後記式(1)を満たすものであ
る特許請求の範囲第1項記載の方法。 Dp≦(750/log2)(1−logη)(1)式
中、ηは20℃における高分子溶液の粘度(cP)であ
り、Dpは高分子化合物の平均重合度である。 3、高分子化合物の平均重合度Dpが500以下である
特許請求の範囲第1項または第2項記載の方法。 4、高分子溶液の濃度が0.1重量%以上である特許請
求の範囲第1項〜第3項のいずれか一項に記載の方法。 5、高分子溶液に非溶媒を混合するに際し、高分子溶液
中あるいは非溶媒中に界面活性剤を添加する特許請求の
範囲第1項〜第4項のいずれか一項に記載の方法。 6、スプレードライ法により超微粒子を乾燥する特許請
求の範囲第1項〜第5項のいずれか一項に記載の方法。
[Claims] 1. Prepare a polymer solution consisting of a polymer compound and its good solvent and having a viscosity η of 10 cP or less at 20°C,
Either by cooling the polymer solution, evaporating the good solvent from the polymer solution, or mixing the polymer solution with a non-solvent for the polymer compound. , or by any combination of these methods, microphase separation is performed into amorphous polymeric concentrated phase particles and a polymeric diluted phase dispersion medium, and the polymeric concentrated phase particles are separated and recovered in a dispersed state. A method for producing ultrafine polymer particles, which produces ultrafine polymer particles having an average particle diameter of 0.02 μm or more and 1.0 μm or less. 2. The method according to claim 1, wherein the viscosity η of the polymer solution at 20° C. and the average degree of polymerization Dp of the polymer compound satisfy the following formula (1). Dp≦(750/log2)(1-logη) (1) In the formula, η is the viscosity (cP) of the polymer solution at 20°C, and Dp is the average degree of polymerization of the polymer compound. 3. The method according to claim 1 or 2, wherein the polymer compound has an average degree of polymerization Dp of 500 or less. 4. The method according to any one of claims 1 to 3, wherein the concentration of the polymer solution is 0.1% by weight or more. 5. The method according to any one of claims 1 to 4, wherein a surfactant is added to the polymer solution or the nonsolvent when mixing the nonsolvent to the polymer solution. 6. The method according to any one of claims 1 to 5, wherein the ultrafine particles are dried by a spray drying method.
JP5065185A 1985-03-15 1985-03-15 Production of ultrafine high-molecular material particle Pending JPS61211342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065185A JPS61211342A (en) 1985-03-15 1985-03-15 Production of ultrafine high-molecular material particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065185A JPS61211342A (en) 1985-03-15 1985-03-15 Production of ultrafine high-molecular material particle

Publications (1)

Publication Number Publication Date
JPS61211342A true JPS61211342A (en) 1986-09-19

Family

ID=12864840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065185A Pending JPS61211342A (en) 1985-03-15 1985-03-15 Production of ultrafine high-molecular material particle

Country Status (1)

Country Link
JP (1) JPS61211342A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240936A (en) * 1986-12-31 1988-10-06 センター・ナショナル・ド・ラ・リセルシェ・サイエンティフィク Manufacturing method of dispersed colloid system of ultrafine particulate matter
JP2003073417A (en) * 2001-08-31 2003-03-12 Asahi Glass Co Ltd Recovery device and recovery method for fluorine- containing polymer
WO2005013938A1 (en) * 2003-08-06 2005-02-17 Eisai Co., Ltd. Process for producing drug ultramicroparticle and apparatus therefor
WO2008084854A1 (en) 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
WO2009123148A1 (en) * 2008-03-31 2009-10-08 旭化成せんい株式会社 Cellulose derivative fine particles, fluid dispersions of the same, solid dispersions thereof, and diagnostic drugs
WO2010044340A1 (en) * 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
WO2012033223A1 (en) * 2010-09-10 2012-03-15 株式会社カネカ Method for producing porous particles, porous particles, adsorbent body, and method for purifying protein
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder
WO2019156116A1 (en) * 2018-02-07 2019-08-15 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and cellulose acetate particle production method
JP6694559B1 (en) * 2019-03-18 2020-05-13 株式会社ダイセル Particles containing cellulose acetate, cosmetic composition, and method for producing particles containing cellulose acetate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674130A (en) * 1979-11-22 1981-06-19 Nippi:Kk Production of fine spherular particle of water-soluble high polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674130A (en) * 1979-11-22 1981-06-19 Nippi:Kk Production of fine spherular particle of water-soluble high polymer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240936A (en) * 1986-12-31 1988-10-06 センター・ナショナル・ド・ラ・リセルシェ・サイエンティフィク Manufacturing method of dispersed colloid system of ultrafine particulate matter
JP2003073417A (en) * 2001-08-31 2003-03-12 Asahi Glass Co Ltd Recovery device and recovery method for fluorine- containing polymer
WO2005013938A1 (en) * 2003-08-06 2005-02-17 Eisai Co., Ltd. Process for producing drug ultramicroparticle and apparatus therefor
WO2008084854A1 (en) 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
US8629187B2 (en) 2007-01-12 2014-01-14 Asahi Kasei Fibers Corporation Cellulose fine particles, and liquid or solid dispersion thereof
JP5390193B2 (en) * 2007-01-12 2014-01-15 旭化成せんい株式会社 Cellulose microparticles and dispersions and dispersions thereof
US9096690B2 (en) 2008-03-31 2015-08-04 Asahi Kasei Fibers Corporation Cellulose derivative fine particle, dispersion liquid thereof, dispersion body thereof and diagnostic reagent
WO2009123148A1 (en) * 2008-03-31 2009-10-08 旭化成せんい株式会社 Cellulose derivative fine particles, fluid dispersions of the same, solid dispersions thereof, and diagnostic drugs
JP5952522B2 (en) * 2008-03-31 2016-07-13 旭化成株式会社 Cellulose derivative fine particles, dispersion thereof, dispersion thereof and diagnostic agent
US9341622B2 (en) 2008-03-31 2016-05-17 Asahi Kasei Fibers Corporation Cellulose derivative fine particle, dispersion liquid thereof, dispersion body thereof and diagnostic reagent
JP2015083696A (en) * 2008-03-31 2015-04-30 旭化成せんい株式会社 Cellulose derivative fine particle, liquid dispersion and dispersoid thereof, and diagnostic
WO2010044340A1 (en) * 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
CN102977382A (en) * 2008-10-16 2013-03-20 宇部兴产株式会社 Method and apparatus for producing polymer particles
WO2012033223A1 (en) * 2010-09-10 2012-03-15 株式会社カネカ Method for producing porous particles, porous particles, adsorbent body, and method for purifying protein
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder
JPWO2016024493A1 (en) * 2014-08-12 2017-04-27 旭化成株式会社 Fine cellulose powder
US10016367B2 (en) 2014-08-12 2018-07-10 Asahi Kasei Kabushiki Kaisha Cellulose micropowder
WO2019156116A1 (en) * 2018-02-07 2019-08-15 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and cellulose acetate particle production method
US11628134B2 (en) 2018-02-07 2023-04-18 Daicel Corporation Cellulose acetate particles, cosmetic composition, and method of producing cellulose acetate particles
JP6694559B1 (en) * 2019-03-18 2020-05-13 株式会社ダイセル Particles containing cellulose acetate, cosmetic composition, and method for producing particles containing cellulose acetate
WO2020188698A1 (en) * 2019-03-18 2020-09-24 株式会社ダイセル Cellulose acetate-containing particles, cosmetic composition, and method for producing cellulose acetate-containing particles

Similar Documents

Publication Publication Date Title
US9371572B2 (en) Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
US4035317A (en) Rapidly dissolving, water-soluble polymers and spray drying method for their production
RU2394668C1 (en) Method of preparing nanostructured metal particles
US20120041150A1 (en) Inorganic - organic hybrid particle and method for producing the same
JPS61211342A (en) Production of ultrafine high-molecular material particle
Kim et al. Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets
US4767803A (en) Method of producing coagulated colloidal particles
Zhang et al. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization
US2809960A (en) Preparation of water-soluble sulfonation products of polymeric ar-vinyltoluenes
JP2012177010A (en) Method for producing dispersion of polyphenylene sulfide resin micro-particles
JPS6390501A (en) Porous fine cellulose particle and production thereof
JPH1160230A (en) Amorphous silica-based composite particle and its use
JPH0576496B2 (en)
JPS61163963A (en) Production of easily soluble gelatin
US3592801A (en) Free-flowing fused beads of thermoplastic polymers
JPS6048923A (en) Production of fine particles
JP5321937B2 (en) Process for producing macaroni-like calcium carbonate
JP2020169395A (en) Silver nanoparticle colloid, silver nanoparticle, method for producing silver nanoparticle colloid, and method for producing silver nanoparticle
JPH0564964B2 (en)
JP4079862B2 (en) Method for producing spherical polymer particles
Disanayaka et al. Polymer colloid morphology studied by freeze-fracture electron microscopy
CN111499655B (en) Three-liquid emulsion solvent diffusion method for preparing spherical crystal
JPH0718008A (en) Production of fine spherical resin particles
KR101220961B1 (en) Manufacturing target sized spherical polymer particles through controlled quenching rate
Liu et al. Solvent-Induced Assembly of One-Patch Silica Nanoparticles into Robust Clusters, Wormlike Chains and Bilayers. Nanomaterials 2022, 12, 100