JPS61211177A - Articulated leg mechanism having load reduction mechanism - Google Patents

Articulated leg mechanism having load reduction mechanism

Info

Publication number
JPS61211177A
JPS61211177A JP60052801A JP5280185A JPS61211177A JP S61211177 A JPS61211177 A JP S61211177A JP 60052801 A JP60052801 A JP 60052801A JP 5280185 A JP5280185 A JP 5280185A JP S61211177 A JPS61211177 A JP S61211177A
Authority
JP
Japan
Prior art keywords
robot
load
actuator
leg
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60052801A
Other languages
Japanese (ja)
Other versions
JPH0735030B2 (en
Inventor
Tomiji Yoshida
吉田 富治
Makoto Otsu
誠 大津
Yoshie Kitagawa
北川 淑江
Ichiro Kato
一郎 加藤
Atsuo Takanishi
淳夫 高西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Hitachi Ltd
Original Assignee
Waseda University
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Hitachi Ltd filed Critical Waseda University
Priority to JP60052801A priority Critical patent/JPH0735030B2/en
Publication of JPS61211177A publication Critical patent/JPS61211177A/en
Publication of JPH0735030B2 publication Critical patent/JPH0735030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members

Abstract

PURPOSE:To reduce the size and the weight of actuator, in an articulated leg mechanism of robot where the load to be applied onto the actuator at single swing side of each articulate within operating range will vary considerably, by providing a mechanism for reducing said load variation. CONSTITUTION:Two leg walking robot is comprised of the right/left ankle sections, the knee section, the waist section and the thigh section to be functioned independently through an actuator. Here, the shaft 25 supported on a rotary member 22 to be fixed with the robot leg is born rotatably on a collar 28 supported through a spring receiver 26 on a frame 23 integral with the robot drum section 13. One end 20A of a spring 20 wound over the collar 28 is stopped to a stopper pin 21 on the spring receiver 26 while the other end 20B is stopped through a bolt 29 to the rotary member 22 thus to constitute a required load reduction mechanism. Consequently, the size and the weight of actuator can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多関節脚式移動型ロボットの関節駆動アクチュ
エータ負荷軽減機構に係り、各関節に負荷軽減機構を設
けることによりロボットの小型化軽量化を図るものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a joint drive actuator load reduction mechanism for a multi-joint legged mobile robot, and provides a load reduction mechanism for each joint to reduce the size and weight of the robot. This is what we aim to do.

〔発明の背景〕[Background of the invention]

従来、多関節ロボットのアクチュエータの負荷を軽減す
る方法としては9例えば特開昭59−37079号公報
に示されるような、カンタバランスを取り付ける方式が
ある。しかし、この方法は、多関節ロボットがどのよう
な姿勢であっても一定の負荷を軽減するためのものであ
り、特定の姿勢の変化に対応したアクチュエータにかか
る負荷変動の軽減としては大きな効果が得られなかった
Conventionally, as a method of reducing the load on the actuator of an articulated robot, there is a method of attaching a canterbalance as shown in, for example, Japanese Patent Laid-Open No. 59-37079. However, this method is intended to reduce a constant load no matter what posture the articulated robot is in, and it is not very effective in reducing load fluctuations on the actuators in response to changes in specific postures. I couldn't get it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多関節脚機構において各関節の動作範
囲内の片振り側でアクチュエータにかかる負荷が大きく
変動する関節において、アクチュエータの負荷の変動幅
を低減し得る負荷軽減機構を提供することにより、アク
チュエータの小型軽量化及び本機構を適用するロボット
本体の小型軽量化を図ることにある。
An object of the present invention is to provide a load reduction mechanism that can reduce the fluctuation range of the load on the actuator in a joint in a multi-joint leg mechanism where the load on the actuator fluctuates greatly on the unilateral swing side within the range of motion of each joint. This aims to reduce the size and weight of the actuator and the robot body to which this mechanism is applied.

〔発明の概要〕[Summary of the invention]

多関節脚機構の適用例として歩行ロボット、特に2足歩
行ロボットを取り上げて説明する。
A walking robot, particularly a bipedal walking robot, will be explained as an application example of the multi-joint leg mechanism.

本発明の2足歩行ロボットの正面概念図として第1図を
右側面図として第2図を示す。本ロボットは人間の胴体
から下の下半身に相当するものである。
FIG. 1 is a front conceptual diagram of the bipedal walking robot of the present invention, and FIG. 2 is a right side view thereof. This robot corresponds to the lower body of a human being.

本ロボットでは、胴体部13の内部に各関節1〜12を
制御する制御装置14と各関節1〜12を駆動するため
の動力源15が塔載されている。
In this robot, a control device 14 for controlling each joint 1 to 12 and a power source 15 for driving each joint 1 to 12 are mounted inside a body portion 13.

また9脚部の構成は足首部A、B及び膝部C,Dと腰部
E、Fと大腿部G、Hとこれらの各部を結合する構造部
材からなる。
The nine leg parts are composed of ankle parts A, B, knee parts C, D, waist parts E, F, thigh parts G, H, and structural members connecting these parts.

右足首部Aは胴体部13を前後方向に動作させる関節1
と胴体部13を左右方向に動作させるための関節3とか
ら成る。また、右膝部Cは胴体部13を前後方向に動作
させる関節5からなる。さらに、右腰部Eは胴体部13
を前後方向に動作させるアクチュエータ7と胴体部13
を左右に振れさせるアクチュエータ9とから成る。加え
て、右大腿部Gは大腿部を軸として回動するアクチュエ
ータ11から成る。
The right ankle part A is the joint 1 that moves the torso part 13 in the front-back direction.
and a joint 3 for moving the body portion 13 in the left-right direction. Further, the right knee portion C includes a joint 5 that moves the body portion 13 in the front-back direction. Furthermore, the right waist E is the body part 13
The actuator 7 and the body part 13 that move the
and an actuator 9 that swings from side to side. In addition, the right thigh G includes an actuator 11 that rotates around the thigh.

左足についても右足と同様に左足首部Bはアクチュエー
タ2,4.左膝部りはアクチュエータ6゜左腰部Fはア
クチュエータ8,10.左大腿部Hはアクチュエータ1
2から成り、右足と同様に作動または回動する構造であ
る。
As for the left foot, the left ankle part B is connected to the actuators 2, 4, . The left knee part has actuator 6 degrees, and the left waist part F has actuators 8, 10 degrees. Left thigh H is actuator 1
It has a structure that operates or rotates in the same way as the right foot.

本ロボットの歩行形態の概念図を第3図に工〜Pで示す
A conceptual diagram of the walking form of this robot is shown in FIG.

第3図において歩行形態Iでは右足16でロボットの全
重量を支持している。すなわち、右足16の右足底面内
に重心軌跡を保持している状態である。
In FIG. 3, in walking mode I, the entire weight of the robot is supported by the right leg 16. In other words, the center of gravity is maintained within the sole surface of the right foot 16.

歩行形態J、に、L、Mでも9重心軌跡が右足底面内に
保持されている事は歩行形態Gと同様であり2本ロボッ
トは歩行形態I、J、に、Lの間に空中で支持されてい
る左足17を後方から前方に振り出す、さらに1歩行形
態Mは右足16から左足17に重心軌跡を移動するため
の歩行形態の第1段階であり、以下1歩行形態を歩行形
態N。
In walking forms J, L, and M, the 9 center of gravity locus is maintained within the right plantar surface, which is the same as walking form G, and the two robots are supported in the air between walking forms I, J, and L. Further, 1 gait form M in which the left leg 17 is swung out from behind to the front is the first step of a gait form for moving the center of gravity trajectory from the right foot 16 to the left foot 17.

○と進めて行く、この歩行形態M、N、Oの結果として
2重心軌跡が左足17に移動する。そして。
The double center of gravity locus moves to the left foot 17 as a result of the walking forms M, N, and O, which proceed as ○. and.

歩行形態Oから歩行形態Pに移り変わることによってロ
ボットの1歩分の歩行が終了したことになる。次の1歩
のについては右足16と左足17とが入替ったとして各
関節1〜12について、右足16に左足17の動作ステ
ップを、また、左足17には右足16の動作ステップを
置換することによって、左足17でロボットの全重量が
保持されている状態から右足16でロボットの全重量が
保持される状態に移行して歩行することができる。
The transition from walking form O to walking form P means that the robot has completed one step of walking. For the next step, the right foot 16 and left foot 17 are exchanged, and for each joint 1 to 12, the movement step of the left foot 17 is replaced with the right foot 16, and the movement step of the right foot 16 is replaced with the left foot 17. This allows the robot to walk while shifting from a state where the entire weight of the robot is held by the left leg 17 to a state where the entire weight of the robot is held by the right leg 16.

以上の動作を操返すことにより本ロボットは各関節が動
作して直線的な歩行を行なうことができる。この考え方
は例えばロボットの方向転換を行なう場合にも同様の考
え方が適用できる。
By repeating the above movements, each joint of this robot moves and it is able to walk in a straight line. The same way of thinking can be applied, for example, to changing the direction of a robot.

また、横方向に移動する場合についても同様である。The same applies to the case of moving in the lateral direction.

このような各関節の動作は、制御信号を制御装置から出
力しながら各関節に配置したアクチュエータを駆動させ
これにより各関節1〜12を作動させることになるが、
このとき1例えば関節9゜10に作用する負荷の変動を
概略図で表すと第4図に示すようになる。
The operation of each joint is performed by outputting a control signal from the control device and driving the actuator placed at each joint, thereby operating each joint 1 to 12.
At this time, the fluctuations in the load acting on the joints 1, 9 and 10, for example, are schematically expressed as shown in FIG.

第4図で縦軸は関節に作用する負荷(F)を。In Figure 4, the vertical axis represents the load (F) acting on the joint.

また横軸は関節角度(θ)を表している。ここで。Further, the horizontal axis represents the joint angle (θ). here.

θ=0の点はロボット直立状態の足の位置を示しており
、θ〉Oで関節9,10がロボットが内股になるよう足
を曲げる方向すなわち片足で立っている状態の接地側の
足、θくOでは関節9,10が外股になるように足を曲
げるようになる方向すなわち片足で立っている状態の空
間に上げた足とする。するとθ〉0では右足16または
左足17で胴体部13の負荷と他方の足を保持するため
の負荷力が作用する一方、θくOでは右足16.あるい
は左足17は自分自身の重量すなわち右足あるいは左足
自身の重量を保持するのみの負荷しか関節には作用しな
いことになる。これにより、各関節の負荷の変動特性は
第4図に示す如く9片振り側(θくOの範囲)は立上り
及び絶対値18が小さい。しかしながら、もう一方の片
振り(θ〉0の範囲)はその立上り及び絶対値19が非
常に大きくなり、関節に適用するアクチュエータの性能
はこの大きい側の負荷に対応する事がその基本的条件と
なる。
The point θ=0 indicates the position of the robot's foot when it is standing upright, and when θ〉O, the joints 9 and 10 are in the direction of bending the foot so that the robot is in the inner thigh, that is, the foot on the ground side when the robot is standing on one leg. At θkuO, the foot is bent in a direction such that the joints 9 and 10 are on the outside of the thigh, that is, the foot is raised into space as if standing on one foot. Then, when θ〉0, the load of the torso 13 and the load force for holding the other leg act on the right leg 16 or the left leg 17, while when θ〉O, the right leg 16. Alternatively, the left foot 17 will only have a load acting on its joints that is sufficient to hold its own weight, that is, the weight of the right foot or left foot. As a result, as shown in FIG. 4, the fluctuation characteristics of the load on each joint have a small rise and an absolute value 18 on the 9-sided swing side (the range between θ and 0). However, in the other side (range of θ〉0), its rise and absolute value 19 are very large, and the basic condition for the performance of the actuator applied to the joint is to support this large side load. Become.

その結果、大容量のアクチュエータが必要となり、各関
節及びロボット全体の大型化、大重量化に、さらには動
力源エネルギ大容量化につながる悪循環を繰返すことに
なる。
As a result, a large-capacity actuator is required, which leads to repeated vicious cycles that lead to larger and heavier joints and the robot as a whole, and further to larger capacity energy sources.

したがって、このような負荷を何らかの方法で軽減し、
小型のアクチュエータが適用できるように改善する必要
がある。
Therefore, to reduce such load in some way,
Improvements are needed so that small actuators can be applied.

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の一実施例を第4図から第7因により説明
する。
Two embodiments of the present invention will be described below with reference to FIGS. 4 to 7.

第4図に示すような負荷に対し、その負荷変動幅を軽減
するため第5図に示すような特性を有する負荷軽減機構
2例えば機械的バネを用いて補償することを発明した。
In order to reduce the load fluctuation range for the load as shown in FIG. 4, we have invented a load reduction mechanism 2 having characteristics as shown in FIG. 5, for example, using a mechanical spring to compensate.

これにより、各関節に作用する負荷、すなわちアクチュ
エータの出力は第6図に示すように平担化されて改善さ
れたことがわかる。この結果により、最大負荷が小さく
押えられるため小容量のアクチュエータの使用が可能と
なり、関節機構及びロボット本体の軽量化が可能となっ
た。
As a result, it can be seen that the load acting on each joint, that is, the output of the actuator, is leveled out and improved as shown in FIG. As a result, the maximum load can be kept small, making it possible to use a small-capacity actuator, and making it possible to reduce the weight of the joint mechanism and robot body.

上述のような負荷軽減機構を得ための一例として第7図
を説明する。第7図は、第2図の■−■矢視図である。
FIG. 7 will be described as an example for obtaining the load reduction mechanism as described above. FIG. 7 is a view taken along arrows -■ in FIG. 2.

脚27(第1図、及び第2図)が取付けられている回動
部材22に設けられた軸25は、カラー28に回転可能
に取付けられている。カラー28は、フレーム23に固
定されているバネ受け26に取付られている。ストッパ
ーピン21は、バネ受け26にネジにて固定されている
。フレーム23の内側に配置されたバネ20は。
A shaft 25 provided on the pivot member 22 to which the legs 27 (FIGS. 1 and 2) are attached is rotatably attached to the collar 28. The collar 28 is attached to a spring receiver 26 fixed to the frame 23. The stopper pin 21 is fixed to the spring receiver 26 with a screw. The spring 20 is placed inside the frame 23.

カラー28の周囲に設けられている。バネ20の端部2
0Aは、折り曲げられてストッパーピンに噛合っている
。また、バネ20端部20Bはボルト29にて回転部材
22に取付られている0回転部材22の他端にある軸3
0(第1図)、アクチュエータ9,10に連続されてい
る。アクチュエータ9,10は、軸25及び309回転
部材22を回転させる。
It is provided around the collar 28. End 2 of spring 20
0A is bent and engaged with the stopper pin. Further, the end portion 20B of the spring 20 is attached to the shaft 3 at the other end of the zero rotation member 22, which is attached to the rotation member 22 with a bolt 29.
0 (FIG. 1), connected to actuators 9 and 10. Actuators 9, 10 rotate shaft 25 and 309 rotating member 22.

回動部材22がR方向に回転した場合は、バネ20とス
トッパーピン21が結合されているので。
When the rotating member 22 rotates in the R direction, the spring 20 and the stopper pin 21 are connected.

バネ20に復元力が発生する。しかし2回動部22がS
方向に回転した場合は、バネ2oとストッパーピン21
とが分離し、バネ20の復元力は作用しない状態となる
。この結果より第5図に示したバネ特性を有した負荷軽
減機構となる。
A restoring force is generated in the spring 20. However, the second rotating part 22 is
If it rotates in the direction, the spring 2o and stopper pin 21
are separated, and the restoring force of the spring 20 is no longer applied. As a result, a load reduction mechanism having the spring characteristics shown in FIG. 5 is obtained.

この様に負荷軽減機構は比較的単純な機械的力を利用し
たバネ機構から、油圧、空圧等を利用したシリンダー機
構など各種の機構が考えられる。
As described above, various types of load reduction mechanisms can be considered, such as a spring mechanism that uses relatively simple mechanical force, and a cylinder mechanism that uses hydraulic pressure, pneumatic pressure, etc.

尚9本発明は回動機構のみならず、第3図の負荷特性を
有する伸縮機構にも適可能である。
It should be noted that the present invention is applicable not only to a rotating mechanism but also to a telescopic mechanism having the load characteristics shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明を採用することにより、アクチュエータの負荷を
軽減することができ、アクチュエータの小型化、軽量化
、省エネルギ化が図られる。これにより、さらに多関節
脚機構及びロボット本体の小型化、軽量化、高出力化が
可能となる。
By adopting the present invention, the load on the actuator can be reduced, and the actuator can be made smaller, lighter, and more energy efficient. This makes it possible to further reduce the size, weight, and output of the multi-joint leg mechanism and the robot body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多関節型2足歩行ロボットの正面図、
第2図は多関節型2足歩行ロボットの右側面図、第3図
は多関節型2足歩行ロボットの歩行形態概念図、第4図
は本発明を用いない場合の関節に作用する負荷と関節角
度の特性を示したものである。また、第5図は9本発明
で用いようとする負荷軽減機構の特性図、第6図は本発
明を用いた場合の関節に作用する負荷と関節角度の特性
を示す図である。さらに、第7図は負荷軽減機構の構造
を示したもので第7図の(A)は第2図の■−■矢視図
及び第7図の(B)は第7図(A)の■−断面図である
。 符号の説明 20・・・・・バ ネ   21・・・・・ストッパー
ピン22・・・・・回動部   23・・・・・フレー
ム第1図 第3図 ■ 第4N 第5図 箋60
FIG. 1 is a front view of the articulated bipedal walking robot of the present invention;
Fig. 2 is a right side view of an articulated bipedal robot, Fig. 3 is a conceptual diagram of the walking form of an articulated bipedal robot, and Fig. 4 shows the load acting on the joints when the present invention is not used. This shows the characteristics of joint angles. Further, FIG. 5 is a characteristic diagram of the load reduction mechanism to be used in the present invention, and FIG. 6 is a diagram showing the characteristics of the load acting on the joint and the joint angle when the present invention is used. Furthermore, Fig. 7 shows the structure of the load reduction mechanism, and Fig. 7 (A) is a view from the ■-■ arrow in Fig. 2, and Fig. 7 (B) is a view from Fig. 7 (A). ■-It is a sectional view. Explanation of symbols 20... Spring 21... Stopper pin 22... Rotating part 23... Frame Figure 1 Figure 3 ■ 4N 5th note 60

Claims (1)

【特許請求の範囲】[Claims] 1、ロボットの移動技術のひとつである多関節脚機構に
おいて、脚動作時に発生する片方向の負荷変動(増加)
に対応して直接関節を駆動するアクチュエータの負荷を
軽減する為の機械的負荷軽減機構を設け、この結果、ア
クチュエータの小型軽量化を可能とし、更に脚自体及び
ロボット本体の小型軽量化を可能とすることを特徴とし
た負荷軽減機構を有する多関節脚機構。
1. Unidirectional load fluctuation (increase) that occurs during leg movement in an articulated leg mechanism, which is one of the robot locomotion technologies.
In response to this, a mechanical load reduction mechanism has been installed to reduce the load on the actuators that directly drive the joints.As a result, the actuators can be made smaller and lighter, and the legs themselves and the robot body can also be made smaller and lighter. An articulated leg mechanism with a load-reducing mechanism.
JP60052801A 1985-03-15 1985-03-15 Articulated leg mechanism with load reduction mechanism Expired - Fee Related JPH0735030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052801A JPH0735030B2 (en) 1985-03-15 1985-03-15 Articulated leg mechanism with load reduction mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052801A JPH0735030B2 (en) 1985-03-15 1985-03-15 Articulated leg mechanism with load reduction mechanism

Publications (2)

Publication Number Publication Date
JPS61211177A true JPS61211177A (en) 1986-09-19
JPH0735030B2 JPH0735030B2 (en) 1995-04-19

Family

ID=12924944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052801A Expired - Fee Related JPH0735030B2 (en) 1985-03-15 1985-03-15 Articulated leg mechanism with load reduction mechanism

Country Status (1)

Country Link
JP (1) JPH0735030B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318290A (en) * 2013-07-08 2013-09-25 北京理工大学 Similar dual-A-arm suspended robot crotch lateral-deviation damping system
CN104228995A (en) * 2014-07-24 2014-12-24 北京航空航天大学 Blue sheep simulation mechanical foot
CN104890757A (en) * 2015-06-24 2015-09-09 长春工业大学 Traveling gear of humanoid robot
CN106240669A (en) * 2016-07-27 2016-12-21 江苏安格尔机器人有限公司 Robot walking device
CN106564539A (en) * 2016-11-18 2017-04-19 深圳市行者机器人技术有限公司 Biped semi-passive split upper body walking device
CN109572853A (en) * 2019-01-28 2019-04-05 厦门大学嘉庚学院 A kind of full landform carrier of foot wheel construction
CN110155204A (en) * 2019-05-05 2019-08-23 昆明理工大学 A kind of quadruped robot leg
CN112572633A (en) * 2020-12-30 2021-03-30 西安交通大学 Biped wall-climbing robot mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132475A (en) * 1982-01-28 1983-08-06 本田技研工業株式会社 Walking device
JPS58192788A (en) * 1982-04-28 1983-11-10 株式会社日本製鋼所 Balancer for articulated industrial robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132475A (en) * 1982-01-28 1983-08-06 本田技研工業株式会社 Walking device
JPS58192788A (en) * 1982-04-28 1983-11-10 株式会社日本製鋼所 Balancer for articulated industrial robot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318290A (en) * 2013-07-08 2013-09-25 北京理工大学 Similar dual-A-arm suspended robot crotch lateral-deviation damping system
CN103318290B (en) * 2013-07-08 2016-04-06 北京理工大学 Class two lateral-deviation robot crotch lateral deviation shock mitigation system
CN104228995A (en) * 2014-07-24 2014-12-24 北京航空航天大学 Blue sheep simulation mechanical foot
CN104890757A (en) * 2015-06-24 2015-09-09 长春工业大学 Traveling gear of humanoid robot
CN106240669A (en) * 2016-07-27 2016-12-21 江苏安格尔机器人有限公司 Robot walking device
CN106240669B (en) * 2016-07-27 2018-06-26 江苏安格尔机器人有限公司 Robot walking device
CN106564539A (en) * 2016-11-18 2017-04-19 深圳市行者机器人技术有限公司 Biped semi-passive split upper body walking device
CN109572853A (en) * 2019-01-28 2019-04-05 厦门大学嘉庚学院 A kind of full landform carrier of foot wheel construction
CN110155204A (en) * 2019-05-05 2019-08-23 昆明理工大学 A kind of quadruped robot leg
CN110155204B (en) * 2019-05-05 2021-05-07 昆明理工大学 Four-footed robot shank
CN112572633A (en) * 2020-12-30 2021-03-30 西安交通大学 Biped wall-climbing robot mechanism

Also Published As

Publication number Publication date
JPH0735030B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
JP7393407B2 (en) Clutch type joint module for robot system
JP3665013B2 (en) Leg joint assist device for legged mobile robot
KR100687461B1 (en) Robot And Knuckle Apparatus For Robot
JP2592340B2 (en) Joint structure of a legged walking robot
JP5976401B2 (en) Lower leg structure of legged robot and legged robot
CN107140052B (en) A kind of wheel leg type hexapod robot with suspension
JP4213310B2 (en) Biped legged mobile robot
US8042627B2 (en) Walking robot
KR101828256B1 (en) Robot for lower limb with multi-link type knee joint and method for controlling the same
US7503410B2 (en) Dynamic legged robot
WO2005025814A1 (en) Lower body module for two-legged walking robot
CN109436125B (en) Twelve-degree-of-freedom quadruped robot
US20210053208A1 (en) Exoskeleton device with improved actuation system
KR102067221B1 (en) An ankle structure for humanoid robot using two cylindrical linear series elastic actuator parallely
KR102126134B1 (en) Leg Unit And Multi Feet Robot Having The Same
JPS61211177A (en) Articulated leg mechanism having load reduction mechanism
JP2013119136A (en) Legged robot
JP4707372B2 (en) Biped robot and its walking control method
JP2009274142A (en) Walking robot
CN112660265A (en) Biped robot leg structure based on five connecting rods
JPS62241781A (en) Walking robot
JP2013111687A (en) Actuator, and jumping device using the same
KR102564087B1 (en) Apparatus of activation of leg of robot
CN217960664U (en) Rehabilitation robot
US11826907B1 (en) Robotic joint system with length adapter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees