JPS61210310A - Auto-focusing device - Google Patents

Auto-focusing device

Info

Publication number
JPS61210310A
JPS61210310A JP60050527A JP5052785A JPS61210310A JP S61210310 A JPS61210310 A JP S61210310A JP 60050527 A JP60050527 A JP 60050527A JP 5052785 A JP5052785 A JP 5052785A JP S61210310 A JPS61210310 A JP S61210310A
Authority
JP
Japan
Prior art keywords
standard deviation
photoelectric conversion
optical system
signal
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60050527A
Other languages
Japanese (ja)
Other versions
JPH0226206B2 (en
Inventor
Hidekazu Makabe
英一 真壁
Mitsuaki Uesugi
上杉 満昭
Masakazu Inomata
雅一 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60050527A priority Critical patent/JPS61210310A/en
Publication of JPS61210310A publication Critical patent/JPS61210310A/en
Publication of JPH0226206B2 publication Critical patent/JPH0226206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Abstract

PURPOSE:To focus an optical system with a high reliability by detecting a position, where two-stage difference signals of the variance of a luminance standard deviation are most symmetrical, as the focus position. CONSTITUTION:A photoelectric converting means like an ITV camera is used for the optical system to obtain the luminance signal of the image of an object, and the luminance standard deviation is obtained from this signal. The luminance standard deviation of an image obtained in each position is obtained while moving the position of the stage of a microscope or the lens of a camera used as the optical system at a certain pitch in steps. The position where two- stage difference signals of the variance of the luminance standard deviation are most symmetrical is detected as the focus position. Since many samples can be photographed automatically, the inspection for quality control or the like is performed very efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として、金属の熔解、精錬、圧延。[Detailed description of the invention] [Industrial application field] The present invention mainly relates to melting, refining, and rolling of metals.

加工、熱処理及び超LSI 、半導体、微生物等の検査
等の分野において1画像による品質管理、検査観察等を
能率的に実施するための自動焦点合せ装置Iこ関するも
のである。
This invention relates to an automatic focusing device I for efficiently carrying out quality control, inspection observation, etc. using a single image in the fields of processing, heat treatment, and inspection of ultra-LSIs, semiconductors, microorganisms, etc.

〔従来の技術〕[Conventional technology]

自動焦点合せ装置については、従来いくつかの方法が提
案されており、大別すると1次のようになる。
Regarding automatic focusing devices, several methods have been proposed in the past, and they can be roughly divided into the following methods.

(1)影像対象面とレンズ間の距離を機械的に測定する
方法(例:特開昭51−107825号公報)t。
(1) A method of mechanically measuring the distance between the image target surface and the lens (eg, Japanese Patent Application Laid-Open No. 107825/1982).

(2)影像対象面1こ焦点合せ用の光を当て1合焦位置
を検出する方法(例:特開昭58・−196509号公
報ふ(3)入射光そのものの情報から合焦位置を検出す
る方法(例:特開昭51−5662柵公報)。
(2) A method of applying focusing light to one image target surface and detecting the in-focus position (e.g., Japanese Patent Application Laid-open No. 1965-1965) (3) Detecting the in-focus position from information on the incident light itself (Example: Japanese Unexamined Patent Publication No. 51-5662).

しかし、上記(1)の方法は、顕微鏡の焦点合せに用い
る場合、油浸顕微鏡fこは使えなし)とを)う問題があ
る。又既存の顕微鏡及びITVカメラ等の光学系に対し
て自動焦点機能等を新たに付加する事は非常に困難であ
る。
However, the method (1) above has the problem that when used for focusing a microscope, an oil immersion microscope cannot be used. Furthermore, it is extremely difficult to add a new autofocus function to the optical systems of existing microscopes, ITV cameras, and the like.

又上記(2)の方法は、三角測量の原理を用いており、
投光手段と受光手段と撮影レンズが分離した配置であり
、油浸顕微鏡には使えないことは上記(1)の方法と同
様な問題を有するほか、特開昭58−1965[19号
公報による発明は、該光学系について、開ループ制御で
あるから、部品加工の誤差等は吸収出来ず、又、輝度標
準偏差が左右非対称なる場合の対策がない。
In addition, method (2) above uses the principle of triangulation,
The light projecting means, the light receiving means, and the photographing lens are arranged separately, and this method cannot be used for oil immersion microscopes, which has the same problem as method (1) above. Since the invention uses open-loop control for the optical system, errors in component processing cannot be absorbed, and there is no countermeasure against left-right asymmetric brightness standard deviation.

従って、上記(1) # (2)の方法よりも(3)の
方法の方が有利である。
Therefore, the method (3) is more advantageous than the methods (1) and (2) above.

一方(3)の方式としては、 (A1画像の輝度標準偏差の最大値から合焦位置を求め
る方法(例:特開昭51−56628号公睡)と。
On the other hand, as the method (3), there is a method of determining the focus position from the maximum value of the luminance standard deviation of the A1 image (eg, Japanese Patent Laid-Open No. 56628/1983).

(B1画像の高調波パワーの最大値から合焦位置を求め
る方法(例:特開昭54−40633号公報)が知られ
ている。上記(At 、 (Blの方法は、共に「画像
は光学系が合焦した時にそのコントラストが最大となる
」という事を前提条件としており、その評価は、光電変
換手段釜こよって光を電気信号に変換し、その信号レベ
ルのばらつき又は高調波成分のパワーによって行ってい
る。
(A method of determining the focus position from the maximum value of the harmonic power of the B1 image (e.g., Japanese Patent Application Laid-Open No. 1983-40633) is known. The prerequisite is that the contrast is maximum when the system is in focus, and this evaluation is based on the fact that the photoelectric conversion means converts light into an electrical signal, and the variation in the signal level or the power of the harmonic component is evaluated. This is done by

一般には、第2図に示すように、合焦位置において、バ
ラツキ(輝度標準偏差)又は、高調波成分のパワーが最
大値をとり、この最大値から合焦位置が求められる。
Generally, as shown in FIG. 2, at the focus position, the variation (luminance standard deviation) or the power of the harmonic component takes a maximum value, and the focus position is determined from this maximum value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術において、光電変換手段として、  ITVカ
メラ等を用いて、前述の輝度標準偏差の変化を調べ、焦
点合せを行うと、次のような問題が生ずる。
In the prior art, when an ITV camera or the like is used as a photoelectric conversion means to examine changes in the luminance standard deviation and perform focusing, the following problem occurs.

(ml光電変換手段のダイナミックレンジを越える光量
が受光素子に入射した場合、出力信号が飽和してしまう
。そのため、第3図(atのA A’線で示される部分
の出力信号レベルは、第3図(blに示すように、本来
輝度に対応して得られるべき信号レペルムより低いB8
となる。
(If the amount of light that exceeds the dynamic range of the photoelectric conversion means is incident on the light receiving element, the output signal will be saturated. Therefore, the output signal level of the part shown by the line AA' in Figure 3 (at) Figure 3 (as shown in bl, B8 is lower than the signal replum that should be obtained corresponding to the brightness)
becomes.

第3図(alの画像がボケた場合には、!4図(alに
示す様になり、第4図(alのB −8’ライン上の出
力信号は、第3図(blの場合と同様にL!のレベルで
飽和を起す。ただし第4図(al上でhのレベルの信号
が出力される範囲は、像のボケのために第3図(alよ
り広くなる。その結果第3図(a)及び第4図(alが
多数の画素から構成されていると考えた時、出力信号の
度数分布は各々第3図(cl及び第4図(clに示され
る様になり、輝度標準偏差の値は第5図に示すように像
がボケた時の方が大きくなる。
If the image in Figure 3 (al) is blurred, the output signal on the B-8' line of Figure 4 (al) will be as shown in Figure 4 (al). Similarly, saturation occurs at the L! level. However, the range in which the h level signal is output on the When considering that Figures (a) and 4 (al) are composed of a large number of pixels, the frequency distribution of the output signal becomes as shown in Figure 3 (cl) and Figure 4 (cl), respectively, and the luminance As shown in FIG. 5, the standard deviation value becomes larger when the image is blurred.

(bl第6図(alに示すように1合焦位置lこおける
画像が光電変換面外にあって、第6図(blに示すよう
にボケ時の画像はボケ点像分布関数の広がり幅分だけ広
がるために、合焦時に光電変換面外にあった物体像Aが
ボケ時にはにとなり光電変換面内に入いる。そのために
第6図の例では第7図に示す様に輝度標準偏差σは合焦
位置からずれる程大きくなり、輝度標準偏差は合焦位置
で最大値をとらない・ (c)光学系として、顕微鏡を用いた場合の像のボケ方
は、対象が合焦位置から手前にずれた時と遠くにずれた
場合とで必ずしも対称性を示さず、輝度標準偏差σの変
化が第8図に示すようになる時がある。(ただし、第8
図でσの変曲点は合焦位置と一致している)、又、前記
(al * (blの現象が同時に生じた場合には、第
9図に示す様に輝度標準偏差はより複雑な変化を示し、
これ等の場合には。
(As shown in Fig. 6 (al), the image at one in-focus position l is outside the photoelectric conversion plane, and as shown in Fig. 6 (bl), the image at the time of blur is the spread width of the blurred point spread function. As a result, the object image A, which was outside the photoelectric conversion surface when in focus, turns into a blur and enters the photoelectric conversion surface when it is blurred.Therefore, in the example of FIG. 6, the luminance standard deviation is as shown in FIG. σ increases as the distance from the in-focus position increases, and the brightness standard deviation does not reach its maximum value at the in-focus position. (c) When using a microscope as an optical system, the blurring of the image is due to the fact that the object moves away from the in-focus position. Symmetry is not necessarily exhibited between when it is shifted toward the front and when it is shifted far away, and there are cases where the luminance standard deviation σ changes as shown in Figure 8.
In the figure, the inflection point of σ coincides with the in-focus position), and if the phenomenon of (al * (bl) occurs simultaneously, the luminance standard deviation becomes more complicated as shown in Figure 9. showing change,
In such cases.

輝度標準偏差は合焦位置で必ずしも最大値゛を示さない
The brightness standard deviation does not necessarily show the maximum value at the in-focus position.

(dl顕微鏡ステージの移動時の振動による画面の振れ
や、ビデオ信号tこ重畳するノイズは、演算した輝度標
準偏差の変化tこノイズとして重畳するため、輝度標準
偏差が最大値をとる位置はこれらのノイズによって変動
しやすい。
(Screen shake due to vibration during movement of the microscope stage and noise superimposed on the video signal are superimposed as noise on changes in the calculated luminance standard deviation, so the positions where the luminance standard deviation takes the maximum value are tends to fluctuate due to noise.

土泥(al 、 (bl 、 (cl 、 (diの問
題は、輝度標準偏差から合焦位置−を求める場合に限ら
ず、高調波パワーから合焦位置を求める時にも生ずる問
題であって。
The problem of earth mud (al, (bl, (cl, di)) occurs not only when determining the focus position from the luminance standard deviation, but also when determining the focus position from harmonic power.

画像によって焦点位置を検出する時における本質的な問
題である。
This is an essential problem when detecting the focal position using an image.

従って、従来提起されている画像の合焦方式は、高級な
合焦を必要とする場合にはそのまN実用にならない場合
がある。
Therefore, conventional image focusing methods may not be of practical use when high-quality focusing is required.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前述の問題に鑑みてなされたものであり、
光電変換装置の飽和、視野の外の物体像の影響、ボケの
合焦位置に対する非対称性等がある場合にも、光電変換
装置と対称との距離を変化させつ\得られる画像の輝度
標準偏差の変化の2階差分信号が常に合焦位置に対して
対称であるという性質に着目し、輝度標準偏差の変化の
2階差分信号の最も対称性の高い位置を合焦位置とじて
検出することiこより、高い信頼性で合焦を行うもので
ある。
This invention was made in view of the above-mentioned problem,
Even in cases where there is saturation of the photoelectric conversion device, the influence of object images outside the field of view, asymmetry of blur with respect to the focal position, etc., the brightness standard deviation of the image obtained by changing the distance between the photoelectric conversion device and the object Focusing on the property that the second-order difference signal of a change in brightness is always symmetrical with respect to the focus position, the position where the second-order difference signal of a change in luminance standard deviation has the highest degree of symmetry is detected as the focus position. This allows for highly reliable focusing.

この発明は、例えば顕微鏡の様な光学系に対しでITV
カメラ等の充電変換手段を用いて被写体の像の輝度信号
を得、この信号から輝度標準偏差を求め1次Eこ光学系
として顕微鏡を用いておればステージの位置を、又カメ
ラの様な光学系であればレンズの位置を、一定のピッチ
でステップ的に移動させながら各位置において得られる
画像の輝度標準偏差σを求める。輝度標準偏差は、一般
には、合焦位置にて最大値を示す量であり、これは次の
様に証明される。
This invention provides ITV for optical systems such as microscopes.
Obtain the luminance signal of the image of the subject using a charge conversion means such as a camera, and calculate the luminance standard deviation from this signal. In the case of a system, the brightness standard deviation σ of the image obtained at each position is determined while moving the position of the lens in steps at a constant pitch. The brightness standard deviation is generally the amount that shows the maximum value at the in-focus position, and this can be proven as follows.

合焦位置lζおける画像の輝度分布:f(x−y)焦点
の外れ位置における画像の輝度分布:g(x−y)焦点
外れ時のボケ点像分布関数: h(x−y)(ただし、
h(x−y)は合焦位置からのずれ量によって変化する
) とお(と、ボケ画像の輝度分布Iは、h及びfの関数と
して〔1〕式の様に表わせる。
Brightness distribution of the image at the in-focus position lζ: f(x-y) Brightness distribution of the image at the out-of-focus position: g(x-y) Blurred point spread function at the out-of-focus position: h(x-y) (where ,
h(x-y) changes depending on the amount of deviation from the in-focus position) and the brightness distribution I of the blurred image can be expressed as a function of h and f as in equation [1].

この時、焦点外れ時の画!H’(x−y)の輝度分布の
標準偏差の2乗σiと1合焦位置における画像の輝度分
布の標準偏差の2乗σ2との差は、(2)式の条件下I
こ(4)式で示され、(5)式の条件下に、非負の値と
なる。
At this time, the image is out of focus! The difference between σi, the square of the standard deviation of the brightness distribution of H'(x-y), and σ2, the square of the standard deviation of the brightness distribution of the image at one focusing position, is calculated by I under the condition of equation (2).
This is expressed by equation (4) and becomes a non-negative value under the condition of equation (5).

〔条件1〕 ここで〔2式は、焦点外れ時の光電変換面への全入射光
量が合焦時の全入射光量と変らないという条件を示して
おり、■式はボケが空間的なローパスフィルターである
ことを示している曇 これらの条件は、一般的には、顕微鏡その他の光学系l
こおいて成立するものであり、従って%(4)式に示す
様に、画像の輝度標準偏差σは合焦時において最大とな
るものであるが、現実には、先に述べたように、以下の
ケースの場合にその関係が成立しなくなる。
[Condition 1] Here, [Equation 2] indicates the condition that the total amount of incident light to the photoelectric conversion surface when out of focus is the same as the total amount of incident light when in focus, and Equation (2) indicates that the blur is a spatial low-pass These conditions generally indicate that the filter is cloudy and that other optical systems such as microscopes
Therefore, as shown in formula (4), the brightness standard deviation σ of the image is maximum at the time of focus, but in reality, as mentioned earlier, The relationship does not hold in the following cases.

(1)光電変換装置のサチュレーション:(4]式の導
出tζあたって、 fcx−y)及び1x−y)は入射
光量の値に比例して0−(1)の値をとりうるものとし
て計算しているが、現実の光電変換装置ではダイナミッ
クレンジが有限であるため、サチュレーシキラζ以上の
値は全で掩として評価される。従って、サチュレーショ
ンが起った場合には、〔4式の関係が必ずしも成立しな
い。
(1) Saturation of the photoelectric conversion device: In deriving tζ of equation (4), calculate fcx-y) and 1x-y) as values that can take the value 0-(1) in proportion to the value of the amount of incident light. However, since the dynamic range of an actual photoelectric conversion device is finite, all values greater than or equal to the saturation shikila ζ are evaluated as an obscuration. Therefore, when saturation occurs, the relationship in equation 4 does not necessarily hold.

(2)視野の外の物体像の影響:〔り式の導出lこあた
って、光電変換装置の視野x、yは<o−wの範囲をと
りつるものとして計算しているが、現実の光電変換装置
では、視野が有限である。従って、焦点外れ時の輝度標
準偏差演算時に、視野内の画像の視野外にボケた成分が
無視されるとともに、視野外の画像が視野内にボケ込ん
だ成分が加味されるため、(4)式の関係が成立しない
場合がおこりつる。
(2) Influence of object images outside the field of view: [For the derivation of the equation, the fields of view x and y of the photoelectric conversion device are calculated as encompassing the range <ow, but A photoelectric conversion device has a finite field of view. Therefore, when calculating the brightness standard deviation when out of focus, the component of the image that is blurred outside the field of view is ignored, and the component that is blurred within the field of view of the image that is outside the field of view is taken into account, so (4) There are cases where the relationship in the formula does not hold true.

(3)ボケの合焦位置に対する非対称性:焦点外れ時の
光電変換面への全入射光量は、合焦時の全入射光量とは
、厳密には一致せず、かつ合焦位置に対して手前にボケ
だ場合と、遠方にボケだ場合とで異なる。従って、(2
)式の前提は厳密には成立せず(4)式の関係が成立た
ない場合がある。
(3) Asymmetry of bokeh with respect to the in-focus position: The total amount of light incident on the photoelectric conversion surface when out of focus does not exactly match the total amount of light incident on the photoelectric conversion surface when in focus, and with respect to the in-focus position. There is a difference between when the image is blurred in the foreground and when it is blurred in the distance. Therefore, (2
) does not hold strictly true, and the relationship in formula (4) may not hold.

これ等の問題を背景として、発明者らは1種々の実験を
繰返した結果、第10図に比較対照して示す様に、これ
等の外乱要因があった場合にも輝度標準偏差の変化の2
階差分値が合焦位置に対して対称となることを見出した
。そして、輝度標準偏差の変化の2階差分値において、
最も対称となる位置を合焦位置として見出すべく、以下
に示す新たな評価関数U (zlを導入した。
With these problems as a background, the inventors repeated various experiments, and as a result of comparing and contrasting them in FIG. 2
We found that the floor difference value is symmetrical with respect to the in-focus position. Then, in the second difference value of the change in luminance standard deviation,
In order to find the most symmetrical position as the in-focus position, a new evaluation function U (zl) shown below was introduced.

−iQ ’ a微鏡ステージ又は光学系レンズ走査範囲
この評価関数U (zlは、σ旬がz EC関して最も
線対称となる位置において常に最大値をとるので。
-iQ'a Microscope stage or optical system lens scanning range This evaluation function U (zl always takes the maximum value at the position where σ is most line symmetrical with respect to zEC.

1月21が最大となる位置として合焦位置を求めること
ができる([Jz)はσ′(2)とσ#(へ)との相互
相関関数を意味しでいる)6なおU(zlは輝度標準偏
差の2階差分値の対称性を評価しつる関数であればよく
The focusing position can be found as the position where January 21 is the maximum ([Jz) means the cross-correlation function between σ'(2) and σ#(to))6 Note that U(zl is It may be a vine function that evaluates the symmetry of the second-order difference value of the luminance standard deviation.

■式に限定するものではない。■It is not limited to formulas.

〔作用〕[Effect]

前掛の手段によって顕微鏡、 ITVカメラなどの合焦
をすることにより、正しくかつ速やかに未熟練者でも合
焦作業をすることが出来るばかりか。
By focusing a microscope, ITV camera, etc. using an apron, even an unskilled person can do the focusing work correctly and quickly.

製造、検査工程中の多数の試料を自動的lこ撮影出来る
ようになるので1品質管理のための検査などを極めて能
率的に行なうことが出来る。
Since it becomes possible to automatically photograph a large number of samples during manufacturing and inspection processes, inspections for quality control, etc. can be carried out extremely efficiently.

〔実施例〕〔Example〕

前述の方式に基づいた、具体的な実施例について、以下
に述べる。
A specific example based on the above-described method will be described below.

第1図は本装置を顕微鏡に実施した時のブロックダイヤ
グラムである。図において、(1)は顕微鏡であり、(
2)は試料である。試料(2)は顕微鏡ステージ(3)
上に固定されており、焦点合せは、W4微鏡ステージ(
3)を顕微鏡の光軸方向(2軸方向)に上下する事によ
って行なわれる。又試料(2)は、投光手段(4) 、
 (5)によって投光される0本実施例においては、落
射照明を用いているが、顕微鏡の投光手段は1本実施例
に限定されるべき性質のものではない。(4)は光源で
あり、(5)は光源(4)の光路を変えるために使用さ
れるハーフミラ−←又はプリズムである。
FIG. 1 is a block diagram when this device is implemented in a microscope. In the figure, (1) is a microscope, and (
2) is a sample. Sample (2) is on the microscope stage (3)
The W4 microscopic stage (
3) by moving it up and down in the optical axis direction (two-axis direction) of the microscope. In addition, the sample (2) is exposed to the light projecting means (4),
(5) Although epi-illumination is used in this embodiment, the light projection means of the microscope is not limited to the one in this embodiment. (4) is a light source, and (5) is a half mirror or prism used to change the optical path of the light source (4).

顕微鏡ステージ(3)は、Zステージモータコントロー
ラ(6)及びXYYステージータプントローラ(7)E
こよって、Zステージ移動用モータ(8)及びXYステ
ージ移移動用−タ(9)を駆動する事により、一定距離
を正確に顕微鏡光軸方向(Z軸方向)及びステージの面
方向(XY方向)に移動させることが出来る。2ステー
ジモータコントロー’j(6)及UXYステージモータ
コントローラ(7)は、設定された移動距離信号を移動
用モータ(8) 、 (9)を駆動する信号に変換し、
設定値分だけモータを駆動させるための回路である。
The microscope stage (3) is equipped with a Z stage motor controller (6) and an XYY stage tap roller (7).
Therefore, by driving the Z stage movement motor (8) and the ). The 2-stage motor controller (6) and the UXY stage motor controller (7) convert the set moving distance signal into a signal that drives the moving motors (8) and (9).
This is a circuit for driving the motor by a set value.

alは顕微鏡(1)の結像面に設置された光電変換手段
で、多数個の光電変換素子から形成されて詔へ試料(2
)の像の輝度に対応した電気出力がアナログの時系列信
号として出力されるものであって、ITVカメラ等がこ
れに相当する。 (11)は同期信号分離回路であり、
光電変換手段α呻より得られる輝度の時系列信号より同
期信号を分離し、合焦制御回路(Iりに同期信号を供給
するための手段である。
al is a photoelectric conversion means installed on the imaging plane of the microscope (1), which is formed from a large number of photoelectric conversion elements and transfers it to the sample (2).
) is output as an analog time-series signal, and an ITV camera or the like corresponds to this. (11) is a synchronization signal separation circuit,
This is a means for separating a synchronization signal from the luminance time series signal obtained from the photoelectric conversion means α and supplying the synchronization signal to the focusing control circuit (I).

@は同期信号分離回路αυより得られる同期信号に従い
、顕微鏡ステージ(3)の位置を上方又は下方に一定ピ
ッチで移動させるための信号をZステージモータコント
ローラ(6)に与えると共に、合焦判定回路α騰に演算
指令信号を発し、かつ、合焦判定回路(13によって合
焦位置が検出された後に、合焦判定回路α騰によって検
出された合焦位置信号の位置(3)を合焦位置に設定し
、焦点合せを行うと共に必要であれば、顕微鏡ステージ
(3)のXY方向の位置を任意に制御し、試料(2)の
任意の位置にて合焦を行う機能を持つ合焦制御回路であ
る。
@ gives a signal to the Z stage motor controller (6) to move the position of the microscope stage (3) upward or downward at a constant pitch according to the synchronization signal obtained from the synchronization signal separation circuit αυ, and also controls the focus judgment circuit. After the in-focus position is detected by the focus determination circuit (13), the position (3) of the focus position signal detected by the focus determination circuit (13) is set to the in-focus position. Focusing control that has the function of setting and focusing, and if necessary, arbitrarily controlling the position of the microscope stage (3) in the X and Y directions to focus at any position on the sample (2). It is a circuit.

なお、同期信号は充電変換手段Qlの同期信号を同期信
号分離回路(11)によって分離して得る方法に限定さ
れるものではなく、別途に同期信号発生回路を設け、こ
の信号により光電変換手段α1及び合焦制御回路@を駆
動する方法もあり、この場合には前記の同期信号発生回
路住υは不必要となる。
Note that the synchronization signal is not limited to the method of obtaining the synchronization signal of the charging conversion means Ql by separating it by the synchronization signal separation circuit (11), but a synchronization signal generation circuit is provided separately, and this signal is used to obtain the synchronization signal of the photoelectric conversion means α1. There is also a method of driving the focus control circuit @, and in this case, the above-mentioned synchronization signal generation circuit υ is unnecessary.

a3は合焦判定回路で、I、α9.αQ、αη、(L8
.(11,(イ)優こ示す回路によって構成されており
、光電変換手段alによって得られる各ステージ位置Z
iにおける信号から合焦位置を判定し、合焦位置信号を
合焦制御回路(Lりに発するものであって、具体的な回
路構成は以下に示されるようになっている。
a3 is a focus determination circuit, I, α9. αQ, αη, (L8
.. (11, (a) It is constructed by the circuit shown in FIG. 1, and each stage position Z obtained by the photoelectric conversion means
The focus position is determined from the signal at i, and the focus position signal is sent to the focus control circuit (L), the specific circuit configuration of which is shown below.

住4はアナログ/ディジタル変換回路であり、光電変換
手段(至)から得られる多量の輝度信号を正確にす速く
演算するために、光電変換されたアナログ出力量をデジ
タル量に変換する。収りは輝度標準偏差演算回路で、光
電変換された時点での各ステージ位置りにおける輝度標
準偏差σ(Zl )を計算する為の回路であり、輝度標
準偏差σは周知の計算式 但し、771:光電変換素子部を区別する為の番号1m
 : FIL番目の光電変換素子の光電変換出力のディ
ジタル値 M:光電変換素子の総数 によって求められる。
Numeral 4 is an analog/digital conversion circuit, which converts the photoelectrically converted analog output amount into a digital amount in order to accurately and quickly calculate a large amount of luminance signals obtained from the photoelectric conversion means. The luminance standard deviation calculation circuit is a circuit for calculating the luminance standard deviation σ (Zl) at each stage position at the time of photoelectric conversion, and the luminance standard deviation σ is calculated using a well-known formula. : Number 1m to distinguish the photoelectric conversion element part
: Digital value of the photoelectric conversion output of the FIL-th photoelectric conversion element M: Obtained from the total number of photoelectric conversion elements.

αeは合焦制御回路aりによって合焦測定範囲(ステー
ジ移動範囲) −N b 14;= Zi 4 NΔZ(ix−N、・
・・、0.・・・、N)・・・・・・の但し aZ :
 Z方向のスキャニングピッチの各位置において輝度標
準偏差σ(Zi )を求めた後。
αe is the focus measurement range (stage movement range) −N b 14;=Zi 4 NΔZ(ix−N,・
..., 0. ..., N)... with the proviso aZ:
After determining the brightness standard deviation σ(Zi) at each position of the scanning pitch in the Z direction.

輝度標準偏差の2階差分値σ“(Zi )を計算する時
の精度を向上させるためのノイズ除去回路である。
This is a noise removal circuit for improving the accuracy when calculating the second-order difference value σ'' (Zi) of the luminance standard deviation.

ノイズ要因としては、ステージ移動時のステージ振動等
があり、これらの要因によるσの変動の影響を低減する
為にノイズ除去回路αeはσ(Zi)に対して移動平均
をかける。住ηはノイズ除去回路αQによって得られた
σ(Zl )に対して2階差分を施し。
Noise factors include stage vibration during stage movement, and in order to reduce the influence of fluctuations in σ due to these factors, the noise removal circuit αe applies a moving average to σ(Zi). Sumi η performs second-order difference on σ(Zl) obtained by the noise removal circuit αQ.

輝度標準偏差の2階差分値σ’(Zl )を求める輝度
標準偏差2階差分演算回路である。(Lυはσ“(Zl
)の左右の線対称性を判定する為の回路であり、左右の
対称度は0式に基づいて計算される。但しZiは離散値
をとり、 ζn= n ” 7!IZ (n=−N、・−,0,−
・−、N) ”” ”” ”” (aとすれば図式の対
称度合の評価関数U(3)は、(7)。
This is a luminance standard deviation second-order difference calculation circuit that calculates a second-order difference value σ' (Zl) of the luminance standard deviation. (Lυ is σ”(Zl
) is a circuit for determining the left and right line symmetry, and the left and right degree of symmetry is calculated based on the formula 0. However, Zi takes a discrete value, and ζn= n '' 7!IZ (n=-N, ・-, 0,-
・-, N) """""" (If a is the evaluation function U(3) of the symmetry degree of the diagram, then (7).

〔8〕式より、例えば で表わされる。■式は第11rIA)に示すように、各
ステージ位置ζn(n=−Nj−’−go、−、N)s
こ詔けるσ′(ζn)(n”−Ns””s Os””a
N)に対して、 Zlだけづらした第11図(b)のσ
′(ζn+Zi)と、第11図(c)の第11rIA(
a)をζn5w0にて左右折返しの関数をΔだけづらし
たσ“(−ζn−Zl)の積をとったものであり、2!
lを1についr 1−−N、−、O,、、、、N t 
テffi 化g セタ時(7)値U(Zl) ハ第11
図(dlに示されるようになり、σ′(ζn)とσ#シ
〕の相互相関が求められる。ただし図式の相関演算方法
は、■式のみに限定されるものではなく、高速フーリエ
変換(FF’r)によっても演算可能なものである。
From formula [8], it can be expressed as, for example. ■As shown in equation 11rIA), each stage position ζn (n=-Nj-'-go, -, N)s
σ′(ζn)(n”-Ns””s Os””a
N), σ in Figure 11(b) is shifted by Zl.
'(ζn+Zi) and 11rIA(
It is the product of σ" (-ζn-Zl), which is obtained by shifting the left-right folding function by Δ in a) with ζn5w0, and 2!
l for 1 r 1--N,-,O,,,,N t
Teffi conversion g Seta time (7) value U (Zl) C 11th
As shown in the figure (dl), the cross-correlation between σ'(ζn) and σ#shi] is calculated. However, the correlation calculation method in the diagram is not limited to the formula (■), and the fast Fourier transform ( FF'r) can also be calculated.

第1図のalは第11図−こ示されるようにU(Zi)
の演算データはIZi IがNt= Zに近づ、くに従
い演算データ数が少な(なり、その結果U(Zi)の値
の信頼性が低下するために信頼性の重み関数W(Zl)
を乗するウィンドウ演算回路である。
al in Figure 1 is U(Zi) as shown in Figure 11.
The calculated data of
This is a window calculation circuit that multiplies .

このW(Zl)は演算データ数の減少と共に単調減少す
る関数であればよく、例えばcosine関数W(Zi
)4s(π・i/2N)”・・・・・(10)(1=−
N、・・・、0.・・・、N)が用し1られる。重み関
数W(Zi)を乗じられた結果左右対称性の評価関数U
(Zl)は、 ”ff(zt)=rI(zt)−w(zi)・−・・−
・−(11)となる、(イ)は〔11試で示される左右
対称性の評価関数TfC2l〕が最大値をとるステージ
位置、即ち、顕微鏡(1)が合焦する合焦位置Zfを求
める合焦位置検出回路であり、又Zf′の位置信号を合
焦制御回路α2ヘフイードバフクする事により顕微鏡ス
テージ(3)を合焦位置へ移動させる。
This W(Zl) may be a function that monotonically decreases as the number of calculation data decreases, for example, a cosine function W(Zi
)4s(π・i/2N)"...(10)(1=-
N,...,0. ..., N) is used and set to 1. As a result of being multiplied by the weighting function W (Zi), the left-right symmetry evaluation function U
(Zl) is “ff(zt)=rI(zt)−w(zi)・−・・−
・-(11). (a) Finds the stage position where the [left-right symmetry evaluation function TfC2l shown in 11 trials] takes the maximum value, that is, the focus position Zf where the microscope (1) focuses. The focus position detection circuit moves the microscope stage (3) to the focus position by feeding the position signal of Zf' to the focus control circuit α2.

なお、この発明は1合焦パラメータとして、画像の輝度
標準偏差σの2階差分を用いた場合のみならず例えば、
画像の高調波成分のパワーを用いた場合等にも一般的に
適用可能である。
Note that this invention is applicable not only to the case where the second-order difference of the luminance standard deviation σ of the image is used as one focusing parameter, but also to the case where, for example,
It is also generally applicable to cases where the power of harmonic components of an image is used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、以下蚤こ示すような顕著な効果が得
られる。
According to this invention, remarkable effects as shown below can be obtained.

(1)画像の輝度標準偏差の最大値から合焦位置を求め
る方法に比べ、光電変換手段の信号の飽和。
(1) Compared to the method of determining the focus position from the maximum value of the luminance standard deviation of the image, the signal of the photoelectric conversion means is saturated.

光電変換面を逸脱した像の影響、ボケの非対称性等の外
乱要因を受ける事なく合焦が可能であり、又相互相関関
数という統計量を用いて評価しているため、ステージの
振動等によるノイズの影響を受けに(い。
It is possible to focus without being affected by disturbance factors such as the influence of images that deviate from the photoelectric conversion surface or the asymmetry of blur, and since the evaluation is performed using a statistic called a cross-correlation function, it is possible to focus without being affected by disturbances such as the influence of images that deviate from the photoelectric conversion surface, and the asymmetry of blur. Not affected by noise.

(2)光電変換手段と、光学的な距離移動手段(顕微鏡
ステージ移動機構等)及び信号処理手段が明確に分離さ
れており、かつ、既存の光学系に自動焦点合せ専用の光
学系を組込む必要がなく、構成が簡単である。
(2) The photoelectric conversion means, optical distance moving means (microscope stage moving mechanism, etc.) and signal processing means must be clearly separated, and an optical system dedicated to automatic focusing must be incorporated into the existing optical system. It is easy to configure.

【図面の簡単な説明】[Brief explanation of the drawing]

lX1図はこの発明の一実施例を示すブロック図。 第2図は顕微鏡、 ITVカメラ等の焦点距離と輝度標
準偏差との関係を示す線図、第3図(al、(b)、(
α1は、は光電変換素子がサチュレーションした時の標
準偏差の線図、第6図(al、(blは合焦時とボケ時
の画像を示す模式図、第7図は光電変換面外の物体像の
影響を示す線図、第8図はボケが非対称なσの線図、第
9図はボケが非対称なσの特異な線図、第10図は輝度
標準偏差σの変化と、その2階差分σ′の変化の線図の
対照図、第11図は評価関数■式などの線図。 図において、(1)は顕微鏡、(2)は試料、(3)は
顕微鏡ステージ、(4)は光源、(5)はハーフミラ−
1(6)は2ステージモータコントローラ、(71はX
Yステージモータコントローラ、 (8)は2ステージ
移動用モータ、(9)はXYステージ移動用モータ、(
IIは光電変換手段、Iは同期信号分離回路、(lりは
合焦制御回路、峙は合焦判定回路、 a4はアナログ/
デジタル変換回路、(IGは輝度標準偏差演算回路、(
Leはノイズ除去回路、顛は輝度標準偏差2階差分演算
回路、(2)は対称性判定回路、復傷はウィンドウ演算
回路、翰は合焦位置検出回路。 代理人 弁理士 木 村 三 朗 第 2rl!J 率 得 第3図 社ηイg平しベ1し 第4図 第5図 第8rlA 第9図 4晶、 +1rxz″′峰を 第+0111
FIG. 1X1 is a block diagram showing an embodiment of the present invention. Figure 2 is a diagram showing the relationship between focal length and luminance standard deviation of microscopes, ITV cameras, etc., and Figures 3 (al, (b), (
α1 is a diagram of the standard deviation when the photoelectric conversion element is saturated, Figure 6 (al, (bl) is a schematic diagram showing images in focus and blur, Figure 7 is an object outside the photoelectric conversion surface Diagrams showing the influence of images, Figure 8 is a diagram of σ with asymmetric blur, Figure 9 is a unique diagram of σ with asymmetric blur, and Figure 10 shows changes in luminance standard deviation σ and its 2 Figure 11 is a comparison diagram of the diagram of changes in the floor difference σ', and Figure 11 is a diagram of the evaluation function ■ formula.In the diagram, (1) is the microscope, (2) is the sample, (3) is the microscope stage, and (4) ) is a light source, (5) is a half mirror
1 (6) is a two-stage motor controller, (71 is
Y stage motor controller, (8) is the motor for moving the 2 stages, (9) is the motor for moving the XY stage, (
II is a photoelectric conversion means, I is a synchronization signal separation circuit, (l is a focus control circuit, opposite is a focus judgment circuit, and a4 is an analog/
Digital conversion circuit, (IG is luminance standard deviation calculation circuit, (
Le is a noise removal circuit, 2 is a brightness standard deviation second-order difference calculation circuit, (2) is a symmetry judgment circuit, restoration is a window calculation circuit, and 翺 is a focus position detection circuit. Agent Patent Attorney Sanro Kimura 2rl! J Rate Figure 3 Company η Ig flat plate 1 Figure 4 Figure 5 Figure 8 rlA Figure 9 4 crystal, +1rxz''' peak +0111

Claims (3)

【特許請求の範囲】[Claims] (1)光電変換手段と、この光電変換手段上に物体像を
結像させるための光学系と、前記光電変換手段と光学系
との距離をステップ的に変化させる光学系駆動手段と、
各光学系距離において光電変換された信号の標準変差を
求める輝度標準偏差演算手段と、この輝度標準偏差演算
手段によつて求められた各光学距離における輝度標準偏
差の変化の2階差分値を求める輝度標準偏差2階差分手
段と、この輝度標準偏差2階差分手段の出力信号の線対
称性を判定する線対称性判定手段と、光学系駆動手段に
より最も線対称と判定された位置に光学距離を設定する
合焦手段とを備えたことを特徴とする自動焦点合せ装置
(1) a photoelectric conversion means, an optical system for forming an object image on the photoelectric conversion means, and an optical system driving means for changing the distance between the photoelectric conversion means and the optical system in steps;
A brightness standard deviation calculation means for calculating the standard deviation of the photoelectrically converted signal at each optical system distance, and a second-order difference value of the change in the brightness standard deviation at each optical distance calculated by the brightness standard deviation calculation means. A luminance standard deviation second-order difference means to seek, a line-symmetry determination means for determining the line symmetry of the output signal of the luminance standard deviation second-order difference means, and an optical system driving means that moves the optical system to the position determined to be most line-symmetric. An automatic focusing device comprising: a focusing means for setting a distance.
(2)輝度標準偏差2階差分手段の出力信号の線対称性
を判定する評価関数として、 U(z)=∫^(z_0−|z|)_(−z_0+|z
|)σ″(z+ζ)σ″(z+ζ)dζただしσ″:輝
度標準偏差の2階差分信号 −z〜z_0:光学距離走査範囲 を用いて、U(z)が最大値をとる位置に光学距離を設
定することを特徴とする特許請求の範囲第1項記載の自
動焦点合せ装置。
(2) As an evaluation function for determining the line symmetry of the output signal of the luminance standard deviation second-order difference means, U(z)=∫^(z_0−|z|)_(−z_0+|z
|)σ″(z+ζ)σ″(z+ζ)dζwhere σ″: Second-order difference signal of luminance standard deviation -z~z_0: Optical distance Using the scanning range, optical The automatic focusing device according to claim 1, characterized in that a distance is set.
(3)光電変換手段によつて得られる信号に対して、空
間的な高域通過フィルタを施し、その出力信号を求めた
後に各光学距離における出力信号の変化の2階差分信号
の線対称性を判定し、最も線対称となる位置に光学距離
を設定することを特徴とする特許請求の範囲第1項記載
の自動焦点合せ装置。
(3) Line symmetry of the second-order difference signal of the change in the output signal at each optical distance after applying a spatial high-pass filter to the signal obtained by the photoelectric conversion means and obtaining the output signal. 2. The automatic focusing device according to claim 1, wherein the optical distance is set at a position that is most line symmetrical.
JP60050527A 1985-03-15 1985-03-15 Auto-focusing device Granted JPS61210310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050527A JPS61210310A (en) 1985-03-15 1985-03-15 Auto-focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050527A JPS61210310A (en) 1985-03-15 1985-03-15 Auto-focusing device

Publications (2)

Publication Number Publication Date
JPS61210310A true JPS61210310A (en) 1986-09-18
JPH0226206B2 JPH0226206B2 (en) 1990-06-08

Family

ID=12861456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050527A Granted JPS61210310A (en) 1985-03-15 1985-03-15 Auto-focusing device

Country Status (1)

Country Link
JP (1) JPS61210310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305609A (en) * 1991-04-03 1992-10-28 Sharp Corp Autofocusing device
KR20030019142A (en) * 2001-08-28 2003-03-06 닛본 덴기 가부시끼가이샤 Reticle inspection apparatus
JP2007101623A (en) * 2005-09-30 2007-04-19 Sysmex Corp Automatic microscope and analyzing apparatus equipped with the same
GB2475983A (en) * 2009-12-07 2011-06-08 Hiok Nam Tay Reflection symmetry of gradient profile associated with an edge
JP2013072801A (en) * 2011-09-28 2013-04-22 Nippon Reliance Kk Adjustment device for outputting data for adjusting surface inspection device, adjustment data outputting method, and program
US9065999B2 (en) 2011-03-24 2015-06-23 Hiok Nam Tay Method and apparatus for evaluating sharpness of image

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305609A (en) * 1991-04-03 1992-10-28 Sharp Corp Autofocusing device
KR20030019142A (en) * 2001-08-28 2003-03-06 닛본 덴기 가부시끼가이샤 Reticle inspection apparatus
JP2007101623A (en) * 2005-09-30 2007-04-19 Sysmex Corp Automatic microscope and analyzing apparatus equipped with the same
JP4708143B2 (en) * 2005-09-30 2011-06-22 シスメックス株式会社 Automatic microscope and analyzer equipped with the same
GB2475983A (en) * 2009-12-07 2011-06-08 Hiok Nam Tay Reflection symmetry of gradient profile associated with an edge
GB2475983B (en) * 2009-12-07 2013-03-13 Hiok Nam Tay Auto-focus image system
US9251571B2 (en) 2009-12-07 2016-02-02 Hiok Nam Tay Auto-focus image system
US9734562B2 (en) 2009-12-07 2017-08-15 Hiok Nam Tay Auto-focus image system
US9065999B2 (en) 2011-03-24 2015-06-23 Hiok Nam Tay Method and apparatus for evaluating sharpness of image
JP2013072801A (en) * 2011-09-28 2013-04-22 Nippon Reliance Kk Adjustment device for outputting data for adjusting surface inspection device, adjustment data outputting method, and program

Also Published As

Publication number Publication date
JPH0226206B2 (en) 1990-06-08

Similar Documents

Publication Publication Date Title
US6094223A (en) Automatic focus sensing device
US7593053B2 (en) Autofocus device method
US7536096B2 (en) Autofocus device and method
JPH04274405A (en) Focusing detection device
US8855479B2 (en) Imaging apparatus and method for controlling same
US5396336A (en) In-focus detecting device
US11080863B2 (en) Imaging apparatus, image processing device, and control method
CN105430277B (en) Autofocus control method and device
JP2012053315A (en) Automatic focus adjustment device and imaging apparatus
JPH0918768A (en) Automatic focus controller and its method
US10594938B2 (en) Image processing apparatus, imaging apparatus, and method for controlling image processing apparatus
JPS61210310A (en) Auto-focusing device
JP2001249267A (en) Automatic focusing device, digital camera, portable information inputting device, focal position detecting method, and recording medium which can be read by computer
US20020012063A1 (en) Apparatus for automatically detecting focus and camera equipped with automatic focus detecting apparatus
US7538815B1 (en) Autofocus system and method using focus measure gradient
JP2605004B2 (en) Automatic tracking device in camera
JPS6359274A (en) Automatic focusing device
JP2832029B2 (en) Automatic focusing device
JPH07143388A (en) Video camera
US5432332A (en) Method of auto-focussing and system therefor
US7161127B2 (en) Automatic focusing apparatus and automatic focusing method using an index value based on background color information
JPH0614245A (en) Video camera
JPS59111479A (en) Automatic focusing device
JPH0254522B2 (en)
JP2810403B2 (en) Automatic focusing device