JPH0254522B2 - - Google Patents

Info

Publication number
JPH0254522B2
JPH0254522B2 JP57119073A JP11907382A JPH0254522B2 JP H0254522 B2 JPH0254522 B2 JP H0254522B2 JP 57119073 A JP57119073 A JP 57119073A JP 11907382 A JP11907382 A JP 11907382A JP H0254522 B2 JPH0254522 B2 JP H0254522B2
Authority
JP
Japan
Prior art keywords
value
change
total value
focus
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119073A
Other languages
Japanese (ja)
Other versions
JPS599613A (en
Inventor
Akihiko Ooe
Masaki Fuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP57119073A priority Critical patent/JPS599613A/en
Priority to EP83303911A priority patent/EP0099229A3/en
Priority to CA000432024A priority patent/CA1196725A/en
Publication of JPS599613A publication Critical patent/JPS599613A/en
Publication of JPH0254522B2 publication Critical patent/JPH0254522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Description

【発明の詳細な説明】 本発明は光学機器の自動焦点調節方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic focusing method for an optical instrument.

従来、顕微鏡の自動焦点調節方法としては次の
ものが発表されている。
Conventionally, the following methods have been announced as automatic focus adjustment methods for microscopes.

(1) 画像信号の解析 TVカメラ、ラインスキヤン型固体撮像素子
など撮像装置の映像信号に含まれる高周波成分
のピーク値を山昇り法によつて求める方法であ
り特公昭42−12106号などで発表されている。
(1) Analysis of image signals This method uses the mountain-climbing method to find the peak value of high-frequency components contained in image signals from imaging devices such as TV cameras and line-scan solid-state image sensors, and was published in Japanese Patent Publication No. 12106/1973. has been done.

この方法は、生物顕微鏡に適した方法である
が、高周波成分の変化を検出するためには低周
波成分を除く必要があり焦点精度を高めようと
するとしや断周波数を高くとる必要がありそう
すると高周波成分の絶対値が小さくなつてノイ
ズの中にうもれてしまう。逆にしや断周波数を
低くすると精度が低下するという問題があり、
特に光量、コントラストが若干でも不足する
と、精度が相当低下するという欠点があつた。
前記特公昭42−12106号のように平行光を別に
照射して光量を上げようとしても上記欠点は解
決できているとはいえない。
This method is suitable for biological microscopes, but in order to detect changes in high-frequency components, it is necessary to remove low-frequency components, and in order to improve focus accuracy, it is necessary to increase the cutting frequency. The absolute value of the high frequency component becomes small and gets lost in the noise. On the other hand, there is a problem that the accuracy decreases when the cutting frequency is lowered.
Particularly, if the amount of light or contrast is even slightly insufficient, there is a drawback that the accuracy deteriorates considerably.
Even if an attempt is made to increase the amount of light by separately irradiating parallel light as in the above-mentioned Japanese Patent Publication No. 42-12106, it cannot be said that the above-mentioned drawbacks have been solved.

(2) エアーマイクロ 対物レンズにエアーノズルを設け、被写体に
向けてエアーを噴出させ、その背圧をチエツク
し、対物レンズと被写体間距離を一定に保つ方
法であり、日本自動制御(株)より発売されてい
る。
(2) Air Micro This is a method of installing an air nozzle on the objective lens and jetting air toward the subject, checking the back pressure to maintain a constant distance between the objective lens and the subject. From Japan Automatic Control Co., Ltd. It's on sale.

この方法はIC.LSIのマスク板、ウエーハ等金
属顕微鏡を用いた分野で利用されているがカバ
ーグラス付きのプレパラートのような内部に密
入された被写体などにはカバーグラスの厚みが
不均一の場合その分だけ焦点がずれるという欠
点がある。
This method is used in the field of metallurgical microscopes, such as IC.LSI mask plates and wafers, but the thickness of the cover glass may be uneven for objects that are tightly packed inside, such as slides with cover glasses. In this case, the disadvantage is that the focus shifts by that amount.

本発明は対物レンズと被写体間の移動方法を改
善することにより従来方法の問題点を解決したも
のである。
The present invention solves the problems of the conventional method by improving the method of moving between the objective lens and the subject.

すなわち、本発明は被写体を顕微鏡を通してラ
インスキヤン型固体撮像素子で撮像するにあた
り、焦点を調節するために被写体と対物レンズ間
の距離Dを任意の値Sに設定し、次いで正しい焦
点距離に近ずく方向に一定のきざみBで変化させ
つつ、各位置において撮像して出力された映像信
号のうち隣接する画素間の差分値の合計値を計算
し、Dの変化前の該合計値より変化後の該合計値
が小さくなるまで上記操作をくりかえし、次いで
Bの1ないし1.5倍Dの値をもどし、ついでBの
1/2〜1/10でありかつ顕微鏡の焦点深度の大きさ
の1〜1/4の一定のきざみCでBきざみでの変化
と同じ方向にDを変化させつつ変化前後の該合計
値の比較を行ない、最初に変化後の値が変化前の
値より小さくなつた時の変化前の値を示す位置を
合焦点位置とする自動焦点調節方法である。
That is, in the present invention, when an object is imaged through a microscope with a line-scan solid-state image pickup device, the distance D between the object and the objective lens is set to an arbitrary value S in order to adjust the focus, and then the distance D is set to an arbitrary value S, and then the distance approaches the correct focal length. Calculate the total value of the difference values between adjacent pixels among the video signals captured and output at each position while changing the direction in fixed increments B, and calculate the total value after the change from the total value before the change in D. Repeat the above operation until the total value becomes small, then return the value of D to 1 to 1.5 times B, and then increase the value to 1/2 to 1/10 of B and 1 to 1/1 of the depth of focus of the microscope. Compare the total value before and after the change while changing D in the same direction as the change in B increments by a constant step C of 4, and first change when the value after the change becomes smaller than the value before the change. This is an automatic focus adjustment method in which the position indicating the previous value is set as the in-focus position.

以下本発明を図面により詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の実施例を説明するための図、
第2図は本発明の自動焦点調節方法を説明するた
めの図である。
FIG. 1 is a diagram for explaining an embodiment of the present invention,
FIG. 2 is a diagram for explaining the automatic focus adjustment method of the present invention.

顕微鏡1の鏡筒に取り付けられたラインスキヤ
ン型固体撮像素子2の映像信号をA/Dコンバー
タ3を介してマイクロコンピユータ4へ入力し、
前記ラインスキヤン型固体撮像素子2で撮像した
映像信号のうち隣接する画素間の差分値の合計値
を求める。この操作を顕微鏡1の微動ダイヤルに
取り付けたパルスモータ5を駆動させながら行い
合焦点位置を求める。
A video signal from a line scan solid-state image sensor 2 attached to the lens barrel of the microscope 1 is input to a microcomputer 4 via an A/D converter 3.
The total value of the difference values between adjacent pixels of the video signals captured by the line scan type solid-state image sensor 2 is determined. This operation is performed while driving the pulse motor 5 attached to the fine movement dial of the microscope 1 to determine the focal point position.

次に第2図により本発明の自動焦点調節方法を
説明する。
Next, the automatic focus adjustment method of the present invention will be explained with reference to FIG.

第2図のX軸はパルスモータの駆動回数、Y軸
は対物レンズと被写体間距離Dを示す。自動焦点
装置を駆動させると、任意に設定したSの位置で
前記差分値の合計値を求める。次いでパルスモー
ター5を駆動させて、正しい焦点距離に近ずく方
向に距離BだけDを変化させ同様に差分値の合計
値を求める。パルスモータ5の駆動前後の値を比
較し、後者が前者より大きい場合、同様の操作を
後者が小になるまで繰り返す。ここで正しい焦点
距離に近ずく方向はパルスモーター5駆動前後で
の前記差分値の合計値の大きい方向と一致する。
したがつてあらかじめ正しい焦点距離に近ずく方
向が不明の場合は任意の方向にBだけDを変化さ
せ、その前後での前記差分値の合計値を比較して
移動方向をきめればよい。
In FIG. 2, the X-axis indicates the number of times the pulse motor is driven, and the Y-axis indicates the distance D between the objective lens and the subject. When the automatic focusing device is driven, the sum of the difference values is determined at an arbitrarily set position S. Next, the pulse motor 5 is driven to change D by a distance B in a direction that approaches the correct focal length, and the sum of the difference values is similarly determined. The values before and after driving the pulse motor 5 are compared, and if the latter is larger than the former, similar operations are repeated until the latter becomes smaller. Here, the direction in which the focal length approaches the correct focal length corresponds to the direction in which the total value of the difference values before and after the pulse motor 5 is driven is large.
Therefore, if the direction in which the focal length approaches the correct focal length is unknown in advance, the direction of movement can be determined by changing D by B in an arbitrary direction and comparing the sum of the difference values before and after the change.

後者が前者より小になつた場合はDをBの1な
いし1.5倍戻した位置からきざみ巾BをBよりも
小さい値Cとした他は前記と同じ操作の繰返しを
行ない、パルスモーター5の駆動後の前記合計値
が最初に駆動前の合計値より小さくなつた時の駆
動前の位置を合焦点とする。
If the latter becomes smaller than the former, repeat the same operation as above except that the step width B is set to a value C smaller than B from the position where D is returned by 1 to 1.5 times B, and the pulse motor 5 is driven. The position before driving when the later total value first becomes smaller than the total value before driving is set as the in-focus point.

ここで最初に設定する被写体と対物レンズ間の
距離Sは正しい焦点位置に充分近いことが望まし
いが、通常の方法で肉眼で粗くあわせた距離で充
分である。
Here, it is desirable that the distance S between the object and the objective lens initially set is sufficiently close to the correct focal position, but a distance roughly adjusted by the naked eye using a normal method is sufficient.

この距離は正しい焦点位置の時の距離より大き
くても小さくてもよいが、小さい場合にはカバー
グラス表面にゴミ等が付着していてもSの焦点位
置がスライドグラス内にあり、ゴミに焦点があう
前に被写体の合焦点位置に到達するため、誤つて
ゴミ等に焦点があうことがないため小さい場合の
方が好ましい。
This distance may be larger or smaller than the distance at the correct focal position, but if it is small, the S focal position will be within the slide glass even if dust etc. adheres to the surface of the cover glass, and the dust will be focused. Since the in-focus position of the subject is reached before the object is in focus, a smaller size is preferable because there is no possibility of focusing on dust or the like by mistake.

きざみBおよびCの値はBがCより大きければ
任意であるがCの値は使用した光学機器の焦点深
度の大きさないしその1/4であることが好ましく
さらには焦点深度の1/4なしい1/2が好ましい。B
の値はCの値の倍ないし10倍であることが好まし
く、さらにはCの値の3倍ないし6倍であること
が好ましい。
The values of the increments B and C are arbitrary as long as B is larger than C, but the value of C is preferably equal to or 1/4 of the depth of focus of the optical equipment used, and more preferably not 1/4 of the depth of focus. 1/2 is preferable. B
The value of is preferably from twice to 10 times the value of C, more preferably from 3 to 6 times the value of C.

BおよびCがこれらの値より大きい場合は最終
的に求められる合焦点の位置が充分に正しい焦点
距離に近くならず像がぼけるという欠点を有し、
BおよびCがこれ以上近くても像は充分に鮮明と
なるが焦点あわせに時間がかかるという欠点があ
る。
If B and C are larger than these values, there is a disadvantage that the position of the finally determined in-focus point will not be sufficiently close to the correct focal length, and the image will be blurred.
Even if B and C are closer than this, the image will be sufficiently clear, but there is a drawback that focusing will take time.

本発明はこのように2段階でパルスモーターを
駆動させることにより高速でしかも正確に自動焦
点調節ができるという特徴を有する。また画像信
号そのものを調節の目安として用いているので調
節後の画像にぼけが生ずる余地がないという特徴
を有する。
The present invention is characterized in that by driving the pulse motor in two stages as described above, automatic focus adjustment can be performed at high speed and accurately. Furthermore, since the image signal itself is used as a reference for adjustment, there is no room for blurring in the image after adjustment.

また本発明の方法においてはラインスキヤン型
撮像素子間の感度むら、照明むらにより、まつた
く均一な被写体を撮像しても前記差分値の合計値
を求めると0でないことが多い。したがつて前記
差分値の合計値がある一定の値(閾値)以上であ
る場合のみ大小比較を行なうことが実用上好まし
い。この閾値としては例えば被写体の入つていな
いスライドグラスを撮像して出力された映像信号
のうち隣接する画素間の差分値の合計値ないしは
その数倍の値を用いることができる。これにより
ノイズの影響をふせぐことができる。
Further, in the method of the present invention, due to sensitivity unevenness and illumination unevenness between line scan type image pickup elements, even if a perfectly uniform object is imaged, the sum of the difference values is often not 0. Therefore, it is practically preferable to perform the magnitude comparison only when the total value of the difference values is equal to or greater than a certain value (threshold value). As this threshold value, for example, the sum of the difference values between adjacent pixels of the video signal outputted by imaging a glass slide without a subject, or a value several times that value can be used. This makes it possible to suppress the influence of noise.

また、同一スライドグラス内で撮像される被写
体の位置をかえた時の焦点調節は焦点は大巾にず
れていないことが予想され、その時の対物レンズ
と被写体の距離Dを微小量たとえば20μ程度(第
2図のAに相当する)縮めた位置を初期の位置と
して本発明の方法で自動焦点調節できる。通常で
はこのような方法をとることにより初期の位置は
正しい焦点位置より被写体に近くなり、したがつ
てきざみ巾Bで移動する方向は被写体から離れる
方向になり、被写体、例えばスライドグラスと対
物レンズがぶつかつて破損する恐れがなくなると
いう効果がある。また、スライドグラスを交換し
た場合でもこれと同様に行ない、一定の距離たと
えば40μ程度の距離(最大作動距離)をきざみ巾
Bで移動させながら前記合計値をもとめ、この範
囲で合焦点位置が求められない場合目視あるいは
前記合計値のステツプモーター駆動前後の比較値
の傾向から適正なDの値Sにもどしても数秒から
十数秒の遅延しかもたらさず、もしこの範囲で合
焦点が得られれば手間の節約になるので好まし
い。このように合焦点位置が求められない場合無
駄に長い区間をさがすより一定の距離をすぎた後
は操作を停止し、操作者にアラームを出して、適
正なスタート位置を選ばせるのが実用上時間の節
約となる。また、被写体のコントラストが弱くて
閾値をこえる差分値の合計値が得られない場合こ
の最大作動距離の設定により早期にチエツクする
ことができる。
In addition, when adjusting the focus when changing the position of the subject to be imaged within the same slide glass, it is expected that the focus will not shift by a wide range, and the distance D between the objective lens and the subject at that time will be adjusted by a minute amount, for example, about 20μ ( Automatic focusing can be performed using the method of the present invention using the retracted position (corresponding to A in FIG. 2) as the initial position. Normally, by using this method, the initial position will be closer to the subject than the correct focal position, and therefore the direction of movement with the increment width B will be in the direction away from the subject, and the subject, for example the slide glass and objective lens, will be moved in the direction away from the subject. This has the effect of eliminating the risk of damage due to collision. In addition, even if the slide glass is replaced, carry out the same procedure as above, and obtain the above-mentioned total value while moving it a certain distance, for example, about 40μ (maximum working distance) in increments of width B, and find the focal point position within this range. If this is not possible, restoring the appropriate D value S by visual inspection or by comparing the above total values before and after driving the step motor will only result in a delay of several seconds to more than 10 seconds. This is preferable because it saves money. If the focal point position cannot be determined in this way, it is practical to stop the operation after a certain distance, issue an alarm to the operator, and have the operator select an appropriate starting position, rather than searching for an unnecessarily long distance. It's a time saver. Furthermore, if the contrast of the subject is weak and the total value of the difference values exceeding the threshold value cannot be obtained, this maximum working distance setting allows an early check.

本発明の方法では対物レンズの拡大率20倍の顕
微鏡を用い、スタート位置Sを正しい焦点距離よ
り20μ短かい位置からスタートさせ、Bを2μ、C
を0.5μとすることにより−20〜+10μまでの焦点
ずれを最大作動距離内で調節することができた。
In the method of the present invention, a microscope with an objective lens of 20x magnification is used, the start position S is started from a position 20μ shorter than the correct focal length, B is 2μ, and C is 2μ.
By setting 0.5μ, it was possible to adjust the focal shift from -20μ to +10μ within the maximum working distance.

また、これ以上焦点がずれていた場合でも、一
旦スタート位置を修正することにより容易に焦点
自動調節ができた。焦点調節時間は焦点ズレの程
度で異なるが、最大でも数秒であつた。
Furthermore, even if the focus was further out of focus, automatic focus adjustment was easily possible by once correcting the starting position. The focus adjustment time varied depending on the degree of defocus, but was several seconds at most.

さらに高速化を計る必要のある場合には高速
A/Dコンバータの採用等により処理スピードを
高めることにより容易に達成可能である。
If it is necessary to further increase the processing speed, it can be easily achieved by increasing the processing speed by employing a high-speed A/D converter or the like.

以上説明したように本発明は光学機器の自動焦
点調節方法として適したものであり、その効果は
多大である。
As explained above, the present invention is suitable as an automatic focusing method for optical equipment, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を説明するための
図、第2図は本発明の自動焦点調節方法を説明す
るための図である。 1は顕微鏡、2はラインスキヤン型固体撮像素
子、3はA/Dコンバータ、4はマイクロコンピ
ユータ、5はパルスモータ。Sはスタート位置、
B,Cはパルスモータの駆動単位、Dは対物レン
ズと被写体間距離。
FIG. 1 is a diagram for explaining an embodiment of the present invention, and FIG. 2 is a diagram for explaining an automatic focus adjustment method of the present invention. 1 is a microscope, 2 is a line scan type solid-state image sensor, 3 is an A/D converter, 4 is a microcomputer, and 5 is a pulse motor. S is the start position,
B and C are the drive units of the pulse motor, and D is the distance between the objective lens and the subject.

Claims (1)

【特許請求の範囲】 1 被写体を顕微鏡を通してラインスキヤン型固
体撮像素子で撮像して顕微鏡の自動焦点調節を行
う方法であつて、 (イ) 焦点を調節するために、被写体と対物レンズ
間の距離Dを任意の値に設定し、次いで、正し
い焦点距離に近づく方向に一定のきざみBで変
化させつつ、各位置において撮像して出力され
た映像信号のうち隣接する画像間の差分値の合
計値を計算し、Dの変化前の差分値の合計値よ
り変化後の該合計値が小さくなるまで上記操作
を繰り返し; (ロ) 次いで、Bの1〜1.5倍だけDの値を戻して、
Bの1/2〜1/10でありかつ顕微鏡の焦点深度の
大きさの1〜1/4の一定のきざみCで逆方向に
Dを変化させつつ変化前後の差分値の合計値の
比較を行い、最初に変化前の値より変化後の値
が小さくなつたときの変化前の値を示す位置を
合焦点位置とする自動焦点調節方法。
[Scope of Claims] 1. A method for automatic focus adjustment of a microscope by capturing an image of a subject through a microscope with a line-scan type solid-state imaging device, which method comprises: (a) adjusting the distance between the subject and the objective lens in order to adjust the focus; D is set to an arbitrary value, and then the total value of the difference values between adjacent images among the video signals captured and output at each position while changing in a fixed step B in the direction approaching the correct focal length. Calculate and repeat the above operation until the total value after the change is smaller than the total value of the difference values before the change in D; (b) Next, return the value of D by 1 to 1.5 times B,
Compare the total value of the difference before and after the change while changing D in the opposite direction at a constant step C that is 1/2 to 1/10 of B and 1 to 1/4 of the depth of focus of the microscope. An automatic focus adjustment method in which the focal point position is the position where the value before the change first becomes smaller than the value before the change.
JP57119073A 1982-07-08 1982-07-08 Automatically adjusting method of focal point Granted JPS599613A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57119073A JPS599613A (en) 1982-07-08 1982-07-08 Automatically adjusting method of focal point
EP83303911A EP0099229A3 (en) 1982-07-08 1983-07-05 Image measuring system
CA000432024A CA1196725A (en) 1982-07-08 1983-07-07 Image measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119073A JPS599613A (en) 1982-07-08 1982-07-08 Automatically adjusting method of focal point

Publications (2)

Publication Number Publication Date
JPS599613A JPS599613A (en) 1984-01-19
JPH0254522B2 true JPH0254522B2 (en) 1990-11-21

Family

ID=14752208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119073A Granted JPS599613A (en) 1982-07-08 1982-07-08 Automatically adjusting method of focal point

Country Status (1)

Country Link
JP (1) JPS599613A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135712U (en) * 1984-02-20 1985-09-09 三洋電機株式会社 auto focus camera
JPS6111714A (en) * 1984-06-26 1986-01-20 Matsushita Electric Ind Co Ltd Automatic focus adjuster of microscope
JPS63125910A (en) * 1986-11-17 1988-05-30 Sanyo Electric Co Ltd Automatic focusing circuit
JPH01183045A (en) * 1988-01-08 1989-07-20 Jeol Ltd Optimization automatic setting device for electron beam
CN108009491A (en) * 2017-11-29 2018-05-08 深圳火眼智能有限公司 A kind of object recognition methods solved in fast background movement and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535649A (en) * 1976-07-05 1978-01-19 Omron Tateisi Electronics Co Automatic focusing device
JPS54119232A (en) * 1978-02-23 1979-09-17 Asahi Optical Co Ltd Automatic focusing controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535649A (en) * 1976-07-05 1978-01-19 Omron Tateisi Electronics Co Automatic focusing device
JPS54119232A (en) * 1978-02-23 1979-09-17 Asahi Optical Co Ltd Automatic focusing controller

Also Published As

Publication number Publication date
JPS599613A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US7932950B2 (en) Automatic focusing apparatus and image pickup apparatus
CN1291261C (en) Image-taking apparatus and focus control program for image-taking apparatus
US8373789B2 (en) Auto focus system and auto focus method
JPH0736613B2 (en) Focus adjustment method for imaging device
JP3357210B2 (en) Automatic focus detection method
JPS62267713A (en) Focusing detecting device
JP3701353B2 (en) Image acquisition device
JP6432038B2 (en) Imaging device
KR100350091B1 (en) Method and apparatus for detecting in-focus state of microscope
JP3267984B2 (en) Automatic focusing apparatus and focus adjusting method in automatic focusing apparatus
JP2004294788A (en) Electronic endoscope device provided with automatic focusing function
JPH0254522B2 (en)
JPH09274129A (en) Automatic focusing device and camera
JP2756197B2 (en) Automatic focusing device
JP3093057B2 (en) Automatic focus detection device
US7538815B1 (en) Autofocus system and method using focus measure gradient
US9658444B2 (en) Autofocus system and autofocus method for focusing on a surface
JPS5924812A (en) Automatic focusing method
DE102011010252A1 (en) Automatic focusing device for optical apparatus, comprises image sensor and front lens which is arranged through center of lens running along lens axis, where image sensor is moved along lens axis
JPH07143388A (en) Video camera
JP2594715B2 (en) Automatic focusing method
JP2006227605A (en) Imaging apparatus, method of detecting focused position and recording medium readable by information processor
JP2810403B2 (en) Automatic focusing device
JP3226678B2 (en) Micro size measuring device
JPH0483478A (en) Image input/output device