JPS61210171A - Wear-resistant treatment of metallic material - Google Patents

Wear-resistant treatment of metallic material

Info

Publication number
JPS61210171A
JPS61210171A JP4988085A JP4988085A JPS61210171A JP S61210171 A JPS61210171 A JP S61210171A JP 4988085 A JP4988085 A JP 4988085A JP 4988085 A JP4988085 A JP 4988085A JP S61210171 A JPS61210171 A JP S61210171A
Authority
JP
Japan
Prior art keywords
sprayed layer
carbide
metal
wear resistance
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4988085A
Other languages
Japanese (ja)
Other versions
JPH0713291B2 (en
Inventor
Yuji Fukuda
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60049880A priority Critical patent/JPH0713291B2/en
Publication of JPS61210171A publication Critical patent/JPS61210171A/en
Publication of JPH0713291B2 publication Critical patent/JPH0713291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a treated layer having excellent wear resistance on a metallic material by coating or impregnating liquids contg. carbon on or in a thermally sprayed layer formed on the surface of the metallic material by using a thermally spraying material contg. a metal then subjecting the material to a heat treatment in an inert atmosphere. CONSTITUTION:The thermally sprayed layer is formed by the thermally spraying material contg. the metal on the surface of the metallic material. After >=1 kinds of the liquids contg. inorg. carbon or inorg. compd. contg. carbon or org. material are coated on or impregnated in the thermally sprayed layer, the material is subjected to the heat treatment in the inert atmosphere. The carbide having high hardness is thus formed in the pores in the thermally sprayed layer, by which the density of the thermally sprayed layer is increased and the wear resistance of the metallic material is improved. The above- mentioned thermal spraying is executed dividedly at least twice so that the porosity of the finally sprayed layer is preferably made 10-30%. The cermet powder consisting of the alloy contg. carbide and the elements constituting the carbide or the alloy powder, etc., contg. the carbide forming elements are preferable as the thermally spraying material.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属材料の耐摩耗処理方法に係り、特に金属材
料の表面に溶射層を形成して耐摩耗性を向上させる処理
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for treating metal materials for wear resistance, and more particularly to an improvement in a treatment method for improving wear resistance by forming a sprayed layer on the surface of a metal material.

〔発明の費景〕[Cost of invention]

石炭又は重油と石炭との混合物を燃料として利用するボ
イラでは、石炭中の灰分がフライアッシュとなってボイ
ラ内を燃焼ガスの流れに従って飛散する際に、ボイラ伝
熱管の管群に衝突し、管外面を摩耗・減肉させる現象、
すなわちアッシュエロージョンが生じることが知られて
いる。このアッシュエロージョンは第4図に示すように
、主に一次過熱器(−次週熱器上段バンク8、−次週熱
器中断バンク9および一次過熱器下段バンクlO)や節
炭器11のボイラ壁面付近の燃焼ガス流が集中したり、
あるいは燃焼ガスが偏流しガス流速が高くなる部位(特
に第4図中、符号17で示す位置)で問題となっている
In boilers that use coal or a mixture of heavy oil and coal as fuel, when the ash in the coal turns into fly ash and scatters in the boiler along with the flow of combustion gas, it collides with the tube group of the boiler heat exchanger tubes, causing the tubes to explode. A phenomenon that causes wear and thinning of the outer surface,
That is, it is known that ash erosion occurs. As shown in FIG. 4, this ash erosion mainly occurs near the boiler wall of the primary superheater (-next week's heater upper bank 8, -next week's heater interrupted bank 9, and primary superheater lower bank 10) and the energy saver 11. The combustion gas flow is concentrated,
Alternatively, the problem occurs at a location where the combustion gas drifts and the gas flow velocity becomes high (particularly at the location indicated by reference numeral 17 in FIG. 4).

アッシュエロージョンによる減肉の速度は、使用石炭の
性状(フライアッシュの形状、密度等)、メタル温度、
伝熱管の材質(通常は炭素鋼又は低合金鋼)及びガス流
速等によって異なるが、甚だしい場合、年間の減肉量が
数mmに達する例もあり、ボイラ運転上重要な問題とな
っている。
The rate of thinning due to ash erosion depends on the properties of the coal used (shape and density of fly ash, etc.), metal temperature,
Although it varies depending on the material of the heat transfer tube (usually carbon steel or low alloy steel) and the gas flow rate, in severe cases, the amount of thinning can reach several millimeters per year, which is an important problem in boiler operation.

このようなアッシュエロージョンによる伝熱管の減肉を
防止する一つの方法は、伝熱管の外側に耐摩耗性に優れ
た材料からなるプロテクタを設置することである。この
方法の問題点としては、プロテクタと伝熱管との間に空
隙が生じ、伝熱管の熱吸収を著しく低下させる恐れが有
るということ等であり、更に伝熱管が広範囲に渡ってア
ッシュエロージョンを起こす場合にこの方法を適用する
には技術的にも経済的にも問題がある。
One way to prevent such thinning of the heat exchanger tube due to ash erosion is to install a protector made of a material with excellent wear resistance on the outside of the heat exchanger tube. The problem with this method is that a gap is created between the protector and the heat exchanger tube, which may significantly reduce the heat absorption of the heat exchanger tube, and furthermore, the heat exchanger tube may cause ash erosion over a wide area. There are technical and economical problems in applying this method in this case.

またアッシュエロージョンによる伝熱管の減肉を防止す
る別の方法として、外層を耐摩耗性の優れた金属材料と
し、内層を通常の伝熱管材料とした2重管の使用が考え
られている。しかし、2重管は非常に高価であり、多量
に使用する場合は全体に占める材料費が著しく高くなる
という問題がある。
Another method to prevent heat exchanger tube wall thinning due to ash erosion is to use a double-walled tube in which the outer layer is made of a metal material with excellent wear resistance and the inner layer is made of a normal heat exchanger tube material. However, double pipes are very expensive, and when used in large quantities, there is a problem in that the overall material cost increases significantly.

更にこのようなプロテクタ方式や2重管方式では高灰分
の低品位石炭を使用するボイラやガス流速が非常に速い
箇所においてはある程度の減肉速度の軽減はできるが、
恒久的対策とはなり得ない。
Furthermore, although the protector method and double pipe method can reduce the wall thinning rate to some extent in boilers that use low-grade coal with high ash content or in locations where the gas flow rate is extremely high,
It cannot be a permanent solution.

更にアッシュエロージョンによる伝熱管の減肉を防止す
る他の方法として、金属材料の表面にクロムやアルミニ
ウム等の金属を拡散浸透させて合金層を作る方法又は金
属材料の表層部を浸炭処理した後、クロム、バナジウム
等の金属を拡散させ、金属材料の表面に炭化物層を作る
方法がある。
Furthermore, as another method to prevent thinning of heat exchanger tubes due to ash erosion, there is a method of creating an alloy layer by diffusing and penetrating metals such as chromium or aluminum into the surface of the metal material, or after carburizing the surface layer of the metal material. There is a method of diffusing metals such as chromium and vanadium to create a carbide layer on the surface of the metal material.

前者の場合は処理層の硬さは最高で400 H。In the former case, the hardness of the treated layer is at most 400H.

程度であり、処理層の厚さも最高で100μm程度であ
ることから、摩耗が激しい部位ではあまり耐摩耗性の向
上は期待できない。一方、後者の場合、処理層の硬さは
1000Hv以上あり耐摩耗性は非常に優れているが、
処理が複雑であるため多量に使用する場合は材料費が著
しく高くなる。
Since the thickness of the treated layer is approximately 100 μm at maximum, it is not expected that the wear resistance will improve much in areas where wear is severe. On the other hand, in the case of the latter, the hardness of the treated layer is over 1000Hv and the wear resistance is very good.
Since the processing is complicated, the material cost increases significantly when used in large quantities.

更に、後者の方法は被処理材に浸炭処理を行うため、被
処理材が脆化する危険性があり、高強度を必要とするボ
イラ伝熱管にこの方法を適用することは困難である。
Furthermore, since the latter method involves carburizing the material to be treated, there is a risk that the material to be treated will become brittle, making it difficult to apply this method to boiler heat exchanger tubes that require high strength.

上記した方法に比べ、比較的安価で確実にアッシュエロ
ージョンを防止する方法としては伝熱管の外面に耐摩耗
性の優れた材料を溶射する方法がある。
Compared to the above-mentioned methods, a relatively inexpensive and reliable method for preventing ash erosion is a method of thermally spraying a material with excellent wear resistance on the outer surface of the heat transfer tube.

溶射材料を大別すると、(1)金属系(例えば、Fe−
Cr系、Ni−Cr系等)(2)サーメット系(炭化物
と金属の混合溶射で生成される、クロム炭化物系、タン
グステン炭化物系など)(3)純セラミックス系(アル
ミナ、ジルコニア等)に分けられる。耐摩耗性に影響を
及ぼす溶射層の特性としては溶射層の硬さ、緻密さく気
孔率)及び粒子間の結合力が重要である。
Thermal spray materials can be roughly divided into: (1) metal-based materials (for example, Fe-
(Cr-based, Ni-Cr-based, etc.) (2) Cermet-based (chromium carbide, tungsten carbide, etc. produced by mixed spraying of carbide and metal) (3) Pure ceramic-based (alumina, zirconia, etc.) . The properties of the sprayed layer that affect wear resistance include its hardness, dense porosity), and bonding strength between particles.

上記した溶射材料のうち、純セラミックス系は溶射材料
そのものの硬さは非常に高いが、通常の溶射では気孔が
多数生成し、また溶射層の粒子間結合力が弱いという欠
点がある。また、金属系の場合は溶射層の気孔率、粒子
間結合力は良好であるが、硬さが低いという欠点を有し
ている。一方、サーメット系の場合は、硬さは3種類の
中で最も高いが炭化物と金属の結合力が金属系のものに
比べて弱いという欠点を存している。
Among the above-mentioned thermal spray materials, pure ceramic materials have extremely high hardness, but they have the drawbacks that a large number of pores are generated in normal thermal spraying and that the bonding force between particles in the thermal spray layer is weak. Furthermore, in the case of metal-based materials, the porosity and interparticle bonding force of the sprayed layer are good, but they have the disadvantage of low hardness. On the other hand, cermet-based materials have the highest hardness among the three types, but have the disadvantage that the bonding force between carbide and metal is weaker than that of metal-based materials.

これらの溶射材料を実機に適用した場合、比較的ガス流
速の低い部位では優れた耐摩耗性を示す。
When these thermal spray materials are applied to actual equipment, they exhibit excellent wear resistance in areas where the gas flow rate is relatively low.

しかし、ガス流速が速くアッシュの衝突力が強い部位に
おいては、純セラミックス系及びサーノ・7ト系は粒子
間の結合力が弱く、一方金属系の場合は硬さが低いため
にいずれも短時間で摩耗が進行し所期の目的を達成でき
ないという問題がある。
However, in areas where the gas flow rate is high and the collision force of ash is strong, the bonding force between particles of the pure ceramic type and the Sarno-7 type is weak, while the hardness of the metal type is low, so both can be used for a short time. The problem is that wear progresses and the intended purpose cannot be achieved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の問題点を解消し、
金属材料表面に形成される溶射層の耐摩耗性を向上させ
た金属材料の耐摩耗処理方法を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a method for treating a metal material with improved wear resistance by improving the wear resistance of a sprayed layer formed on the surface of the metal material.

〔発明の概要〕[Summary of the invention]

本発明はアッシュエロージョン対策として、溶射層を採
用する場合、溶射層の硬さ向上、粒子間の結合力向上及
び気孔率の減少という課題を克服することを探究した結
果、到達されたものであって、金属材料表面に金属を含
む溶射材料を溶射した後、無機炭素又は炭素を含む無機
化合物若しくは有機物を含む液を溶射層の気孔中に介在
させ、次いで不活性雰囲気中で熱処理を行い、溶射層中
の気孔内に炭化物を形成させることによって溶射層を緻
密化したものである。
The present invention was achieved as a result of research into overcoming the problems of improving the hardness of the sprayed layer, improving the bonding force between particles, and reducing the porosity when a sprayed layer is employed as a countermeasure against ash erosion. After spraying a thermal spray material containing metal onto the surface of the metal material, a liquid containing inorganic carbon, an inorganic compound containing carbon, or an organic substance is interposed in the pores of the sprayed layer, and then heat treatment is performed in an inert atmosphere to complete the thermal spraying process. The sprayed layer is made denser by forming carbides in the pores in the layer.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明になる表面処理を実施した状態を示す模
式図、第2図は(A)、(B)は第1図の最終溶射層3
における本発明方法を段階的に示す拡大説明図である。
FIG. 1 is a schematic diagram showing the state in which the surface treatment according to the present invention has been carried out, FIG.
FIG. 3 is an enlarged explanatory diagram showing step-by-step the method of the present invention in FIG.

粗面加工を施した被処理金属1の表面に内層溶射層2と
最終溶射層3が設けられている。溶射後無機炭素又は炭
素を骨格とする有機物を含むコーテイング液を塗布又は
含浸させて、最終溶射層3の気孔内に介在させ、その後
不活性雰囲気中において、900〜1200℃で数時間
程度加熱し、第2図(B)に示すように最終溶射層3の
溶射材4内に形成される気孔5中に炭化物6(例えばク
ロム炭化物)を形成させ緻密な溶射層としている。
An inner sprayed layer 2 and a final sprayed layer 3 are provided on the surface of the metal to be processed 1 which has been roughened. After thermal spraying, a coating liquid containing inorganic carbon or an organic substance having a carbon skeleton is applied or impregnated to be interposed in the pores of the final thermal sprayed layer 3, and then heated at 900 to 1200°C for several hours in an inert atmosphere. As shown in FIG. 2(B), carbides 6 (for example, chromium carbide) are formed in the pores 5 formed in the sprayed material 4 of the final sprayed layer 3 to form a dense sprayed layer.

溶射方法としては、2回に分けて溶射を行っており、内
層溶射層2の気孔率は5%以下で、最終溶射層3の気孔
率は10〜30%としている。内層溶射層2の気孔率を
5%以下としたのは、被処理金属と内層溶射層2との結
合力を強くするとともに内層溶射層2の熱伝導性の低下
を防止するためである。気孔率を5%とするのは、プラ
ズマ溶射であれば非常に容易であり、施工上特に問題は
ない。一方、最終溶射層3の気孔率を10〜30%とし
たのは、気孔率が小さい場合、コーテイング液を最終溶
射層3の内部まで十分に浸透させるのが困難で、気孔の
封孔処理が不十分となるためである。
As for the thermal spraying method, thermal spraying is performed in two steps, and the porosity of the inner thermal sprayed layer 2 is 5% or less, and the porosity of the final thermal sprayed layer 3 is 10 to 30%. The reason why the porosity of the inner sprayed layer 2 is set to 5% or less is to strengthen the bonding force between the metal to be treated and the inner sprayed layer 2 and to prevent a decrease in thermal conductivity of the inner sprayed layer 2. Setting the porosity to 5% is very easy if plasma spraying is used, and there is no particular problem in construction. On the other hand, the reason why the porosity of the final thermal sprayed layer 3 is set to 10 to 30% is that if the porosity is small, it will be difficult for the coating liquid to sufficiently penetrate into the final thermal sprayed layer 3, making it difficult to seal the pores. This is because it will be insufficient.

すなわち、溶射層における各気孔が連続的に結びつき始
める状態、したがってコーテイング液が気孔内に浸透す
るに必要な程度の気孔が存在する状態がほぼ気孔率10
%に相当する。また溶射層における各粒子が点接触にな
り始める状態がほぼ気孔率30%に相当する。
In other words, the porosity is approximately 10 when the pores in the sprayed layer begin to connect continuously, and where there are enough pores for the coating liquid to penetrate into the pores.
Corresponds to %. Further, the state in which particles in the sprayed layer begin to come into point contact corresponds to approximately 30% porosity.

通常の溶射法で気孔率を制御するには、溶着量を制御す
ればよい。実際には溶射の溶着速度が非常に速いために
精度よく気孔率をコントロールすることは困難であるが
、10〜30%の範囲では気孔率の制御は容易である。
In order to control the porosity using a normal thermal spraying method, it is sufficient to control the amount of welding. In reality, since the welding speed of thermal spraying is very fast, it is difficult to accurately control the porosity, but it is easy to control the porosity in the range of 10 to 30%.

なお、溶射層の厚さは耐はく離性、熱伝導性及び経済性
を考慮すると、内層溶射層2、最終溶射層3とともに1
00〜200μmとし全体の溶射層で300μm前後と
するのが良いが、本発明では特に限定しない。また、本
実施例では2回に分けて溶射を行っているが、必要に応
じて多層溶射としてもよい。また多層の溶射層とした場
合、被処理金属側の溶射層から外側の溶射層となるにつ
れて気孔率を大きくなるように調整することが望ましい
In addition, considering peeling resistance, thermal conductivity, and economic efficiency, the thickness of the thermal sprayed layer is 1.
00 to 200 .mu.m, preferably around 300 .mu.m for the entire sprayed layer, but this is not particularly limited in the present invention. Further, in this embodiment, thermal spraying is performed in two steps, but multilayer thermal spraying may be performed if necessary. Further, in the case of a multi-layer thermal sprayed layer, it is desirable to adjust the porosity so that it increases from the thermal sprayed layer on the side of the metal to be treated to the outer thermal sprayed layer.

溶射材料としては、後述する封孔処理によって気孔内に
形成する炭化物とのぬれ性が良く強固に結びつく金属系
又はサーメット系が好適である。
The thermal spraying material is preferably a metal or cermet material that has good wettability and is firmly bonded to the carbide formed in the pores by the pore sealing treatment described below.

金属系の溶射材料としてはクロム、タングステン、ボロ
ン等の炭化物形成元素を含む合金粉末が適している。一
方、サーメット系の溶射材料としては、クロム、タング
ステン、ボロン等の炭化物と上記金属系溶射材料の混合
物が適している。
An alloy powder containing carbide-forming elements such as chromium, tungsten, and boron is suitable as the metallic thermal spray material. On the other hand, as the cermet-based thermal spray material, a mixture of carbides such as chromium, tungsten, boron, etc. and the above-mentioned metal-based thermal spray materials is suitable.

次に溶射後に行う封孔処理について説明する。Next, the sealing treatment performed after thermal spraying will be explained.

封孔処理として、カーボンなどの無機炭素又は炭化物の
ような炭素を含む物質の微粉末を水又はエチルエルコー
ル等の有機溶剤に混合、懸濁させたコロイド液、あるい
は炭素を骨格とする液状有機化合物(例えばオイル等)
や炭素を骨格とする有機化合物のエマルジョン、サスペ
ンシヨン等を溶耐層の表面に塗布又は含浸させた後、不
活性雰囲気中で熱処理する方法が採用される。
As a sealing treatment, a colloidal solution prepared by mixing and suspending fine powder of inorganic carbon such as carbon or carbon-containing substances such as carbide in water or an organic solvent such as ethyl alcohol, or a liquid organic material with carbon as a skeleton is used. Compounds (e.g. oil, etc.)
A method is adopted in which the surface of the melt-resistant layer is coated with or impregnated with an emulsion, suspension, etc. of an organic compound having a carbon skeleton, and then heat-treated in an inert atmosphere.

この封孔処理は最終溶射層3の気孔5中に含浸させた炭
素又は熱処理によって生成した炭素と溶射層中の炭化物
形成元素との間で生じる炭化物生成反応を利用し、気孔
5内を炭化物で充填するととともに、この気孔5内の炭
化物を介して溶射層中の粒子間の結合を強固なものとし
、溶射層の耐摩耗性を向上させるものである。
This pore sealing process utilizes the carbide-forming reaction that occurs between the carbon impregnated into the pores 5 of the final sprayed layer 3 or the carbon generated by heat treatment and the carbide-forming elements in the sprayed layer. At the same time, the carbide in the pores 5 strengthens the bonds between the particles in the sprayed layer, thereby improving the wear resistance of the sprayed layer.

この場合、熱処理温度が高いほど炭化物の生成反応は短
時間で進行するが、経済性の観点からは低いほうが有利
である。また、熱処理時にN”d4C1等の反応促進剤
をコーテイング液中に添加することによって900〜1
200℃の比較的低い温度で加熱することによって熱処
理を行うことができる。熱処理の加熱温度と加熱時間は
、熱力学的に決定されうるちのであるから、本発明にお
いて特に限定されるものではない。
In this case, the higher the heat treatment temperature is, the faster the carbide production reaction will proceed, but from the economic point of view, a lower heat treatment temperature is more advantageous. In addition, by adding a reaction accelerator such as N''d4C1 to the coating liquid during heat treatment,
Heat treatment can be performed by heating at a relatively low temperature of 200°C. Since the heating temperature and heating time of the heat treatment can be determined thermodynamically, they are not particularly limited in the present invention.

熱処理時の雰囲気は、アルゴン、窒素等の不活性雰囲気
とすることが必要である。熱処理を大気中で行うと、コ
ーテイング液の熱処理に伴い炭化物とともに酸化物も生
成するため、溶射層中の粒子間結合力が不十分となる。
The atmosphere during the heat treatment must be an inert atmosphere such as argon or nitrogen. If the heat treatment is performed in the atmosphere, oxides are generated along with carbides as the coating liquid is heat treated, resulting in insufficient interparticle bonding force in the sprayed layer.

コーテイング液中の炭素、又は熱処理によって生成する
炭素は、熱処理を継続することによって溶射層中のクロ
ム、タングステン又はボロン等の炭化物形成元素との炭
化物生成反応により炭化物を生成するが、コーテイング
液中にクロム、タングステン、ポロン等の炭化物形成金
属を添加することによって気孔中に生成する炭化物の量
を多くして気孔の封孔効果をより高めることができる。
Carbon in the coating liquid or carbon generated by heat treatment produces carbides through a carbide-forming reaction with carbide-forming elements such as chromium, tungsten, or boron in the sprayed layer as the heat treatment continues. By adding carbide-forming metals such as chromium, tungsten, and poron, it is possible to increase the amount of carbide generated in the pores and further enhance the pore sealing effect.

この場合、溶射層の表面に塗布又は含浸させるコーテイ
ング液中にその溶射層中に含まれる炭化物形成元素と同
じ炭化物形成金属を添加することによって、溶射層の粒
子間結合力の向上をより有効なものとすることができる
In this case, by adding a carbide-forming metal that is the same as the carbide-forming element contained in the sprayed layer to the coating liquid that is applied or impregnated onto the surface of the sprayed layer, it is possible to more effectively improve the interparticle bonding force of the sprayed layer. can be taken as a thing.

次に、以上の本発明の処理を施した被膜と、比較のため
にN 1−Cr合金粉末溶射、クロム炭化物−(Ni−
Cr )のサーメット系溶射及び炭素鋼の4種類の試験
片について耐摩耗性を調べた。なお、摩耗試験は約10
0μm前後の粒度ををする5iO1を20 m / s
ecの噴射空気中に添加し、試験片に2時間吹き付けて
行った。その結果を第3図に示すが、本発明の処理を施
したものは他の溶射材の約10倍の耐摩耗性を有してい
る。
Next, for comparison, a coating treated with the above-described treatment of the present invention, a N1-Cr alloy powder sprayed coating, a chromium carbide-(Ni-
The wear resistance of four types of test pieces made of cermet sprayed Cr) and carbon steel was investigated. In addition, the wear test is approximately 10
5iO1 with particle size around 0 μm at 20 m/s
It was added to the ejected air of EC and sprayed onto the test piece for 2 hours. The results are shown in FIG. 3, and the material treated according to the present invention has about 10 times the wear resistance of other thermal sprayed materials.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来の溶射層に比べ、溶
射層が緻密で、表層部の硬さは非常に高くなっており、
格段に優れた耐摩耗性を有する処理層が得ることができ
る。さらに本発明方法は被処理金属に脆化等の悪影響を
及ぼすことなく良好な処理層を形成することができ、本
発明方法を実機に適用すれば、金属材料の寿命を著しく
延長することができ、その工業的価値は極めて大きい。
As described above, according to the present invention, the sprayed layer is denser than the conventional sprayed layer, and the hardness of the surface layer is extremely high.
A treated layer having significantly superior wear resistance can be obtained. Furthermore, the method of the present invention can form a good treated layer without adverse effects such as embrittlement on the metal to be treated, and if the method of the present invention is applied to actual equipment, the life of the metal material can be significantly extended. , its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる実施例を示す模式図、第2図(A
)、(B)は第1図の外側溶射層における本発明になる
実施例を処理段階的に示す模式図、第3図は本発明なる
実施例及び比較材の摩耗試験結果を示すグラフ、第4図
はアッシュエロージエンの発生箇所を示すためのボイラ
の概略要部図である。 !・・・・・・被処理金属、2・・・・・・内層溶射層
、3・・・・・・最終(外層)溶射層、4・・・・・・
溶射材、5・・・・・・気孔、6・・・・・・炭化物、
7・・・・・・再熱器、8・・・・・・1次過熱器上段
バンク、9・・・・・・1次過熱器中段バンク、10・
・・・・引火過熱器下段バンク、11・・・・・・節炭
器、12・・・・・・ケージ前壁、13・・・・・・ケ
ージ後壁、14・・・・・・1次過熱器入口管寄せ、1
5・・・・・・節炭器出口管寄せ、16・・・・・・節
炭器入口管寄せ、17・・・・・・エロージョン発生位
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 (A
), (B) are schematic diagrams showing the processing steps of the embodiment of the present invention in the outer thermal sprayed layer of FIG. 1, and FIG. Figure 4 is a schematic diagram of the main parts of the boiler to show the locations where ash erosion occurs. ! ...Metal to be treated, 2...Inner sprayed layer, 3...Final (outer) sprayed layer, 4...
Thermal spray material, 5...pores, 6...carbide,
7... Reheater, 8... Primary superheater upper bank, 9... Primary superheater middle bank, 10.
... Flammable superheater lower bank, 11 ... Energy saver, 12 ... Cage front wall, 13 ... Cage rear wall, 14 ... Primary superheater inlet header, 1
5... Economizer outlet header, 16... Economizer inlet header, 17... Erosion occurrence position

Claims (6)

【特許請求の範囲】[Claims] (1)金属を含む溶射材により金属材料の表面に溶射層
を形成し、金属材料の耐摩耗性を向上させるものにおい
て、該溶射層に無機炭素又は炭素を含む無機化合物若し
くは有機物を含む液の1種又は2種以上を塗布又は含浸
させた後、不活性雰囲気中で熱処理することを特徴とす
る金属材料の耐摩耗処理方法。
(1) A sprayed layer is formed on the surface of a metal material using a thermal spray material containing metal to improve the wear resistance of the metal material, and the sprayed layer is coated with a liquid containing inorganic carbon, an inorganic compound containing carbon, or an organic substance. 1. A method for treating metal materials with wear resistance, which comprises applying or impregnating one or more kinds of materials and then heat-treating the material in an inert atmosphere.
(2)溶射を少なくとも2回に分けて行い、その最終溶
射層の気孔率を10〜30%とする特許請求の範囲第1
項記載の金属材料の耐摩耗処理方法
(2) Thermal spraying is carried out in at least two parts, and the porosity of the final sprayed layer is 10 to 30%.
Wear-resistant treatment method for metal materials described in section
(3)溶射材料が、炭化物とその炭化物を構成する元素
を含む合金からなるサーメット系粉末である特許請求の
範囲第1項記載の金属材料の耐摩耗処理方法。
(3) The method for treating metal materials with wear resistance according to claim 1, wherein the thermal spraying material is a cermet-based powder made of a carbide and an alloy containing an element constituting the carbide.
(4)溶射材料が炭化物形成元素を含む合金粉末である
特許請求の範囲第1項記載の金属材料の耐摩耗処理方法
(4) The method for treating metal materials for wear resistance according to claim 1, wherein the thermal spray material is an alloy powder containing a carbide-forming element.
(5)溶射層に塗布又は含浸される液に、その溶射層に
含まれる炭化物形成元素からなる金属と同じ金属の微粉
末を添加した特許請求の範囲第1項記載の金属材料の耐
摩耗処理方法。
(5) Wear-resistant treatment of the metal material according to claim 1, in which a fine powder of the same metal as the carbide-forming element contained in the sprayed layer is added to the liquid applied to or impregnated into the sprayed layer. Method.
(6)炭化物形成元素が、クロム、タングステン、及び
ボロンからなる群から選ばれる特許請求の範囲第3項乃
至第5項のいずれかに記載の金属材料の耐摩耗処理方法
(6) The method for anti-wear treatment of metal materials according to any one of claims 3 to 5, wherein the carbide-forming element is selected from the group consisting of chromium, tungsten, and boron.
JP60049880A 1985-03-13 1985-03-13 Abrasion resistance treatment method for metallic materials Expired - Fee Related JPH0713291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049880A JPH0713291B2 (en) 1985-03-13 1985-03-13 Abrasion resistance treatment method for metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049880A JPH0713291B2 (en) 1985-03-13 1985-03-13 Abrasion resistance treatment method for metallic materials

Publications (2)

Publication Number Publication Date
JPS61210171A true JPS61210171A (en) 1986-09-18
JPH0713291B2 JPH0713291B2 (en) 1995-02-15

Family

ID=12843355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049880A Expired - Fee Related JPH0713291B2 (en) 1985-03-13 1985-03-13 Abrasion resistance treatment method for metallic materials

Country Status (1)

Country Link
JP (1) JPH0713291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
WO1998037253A1 (en) * 1997-02-21 1998-08-27 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the samme
US6604572B2 (en) * 1999-04-14 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Pipeline device and method for its production, and heat exchanger
JP2009542455A (en) * 2006-04-06 2009-12-03 シーメンス アクチエンゲゼルシヤフト Layered insulation layer and component with high porosity
JP2017226865A (en) * 2016-06-20 2017-12-28 新日鉄住金マテリアルズ株式会社 Base material with spray coating film
JP2021147697A (en) * 2020-03-23 2021-09-27 大阪富士工業株式会社 Sealing agent, thermal sprayed product and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563672A (en) * 1979-06-21 1981-01-14 Mitsubishi Heavy Ind Ltd Forming method of corrosion-resistant protective coating
JPS6021369A (en) * 1983-07-12 1985-02-02 Yoshikawa Kogyo Kk Formation of sprayed film with high adhesive strength and high strength
JPS60114562A (en) * 1983-11-24 1985-06-21 Kawasaki Steel Corp Production of thermally sprayed film having excellent resistance to wear and seizure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563672A (en) * 1979-06-21 1981-01-14 Mitsubishi Heavy Ind Ltd Forming method of corrosion-resistant protective coating
JPS6021369A (en) * 1983-07-12 1985-02-02 Yoshikawa Kogyo Kk Formation of sprayed film with high adhesive strength and high strength
JPS60114562A (en) * 1983-11-24 1985-06-21 Kawasaki Steel Corp Production of thermally sprayed film having excellent resistance to wear and seizure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
WO1998037253A1 (en) * 1997-02-21 1998-08-27 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the samme
US6082444A (en) * 1997-02-21 2000-07-04 Tocalo Co., Ltd. Heating tube for boilers and method of manufacturing the same
US6604572B2 (en) * 1999-04-14 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Pipeline device and method for its production, and heat exchanger
JP2009542455A (en) * 2006-04-06 2009-12-03 シーメンス アクチエンゲゼルシヤフト Layered insulation layer and component with high porosity
JP2017226865A (en) * 2016-06-20 2017-12-28 新日鉄住金マテリアルズ株式会社 Base material with spray coating film
JP2021147697A (en) * 2020-03-23 2021-09-27 大阪富士工業株式会社 Sealing agent, thermal sprayed product and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0713291B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US6082444A (en) Heating tube for boilers and method of manufacturing the same
Levy The erosion-corrosion behavior of protective coatings
US3907708A (en) Multi-layer supported catalysts of the platinoid family
EP3008317A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer
JP2007308737A (en) Corrosion protection method for welded part
EP0254324B1 (en) A thermal spray wire
CN107236331B (en) High-temperature corrosion resistance coating and preparation method thereof and high-temperature corrosion resistance coating and preparation method thereof
JPS61210171A (en) Wear-resistant treatment of metallic material
CA1228266A (en) Treatment of boiler tubes
GB2109811A (en) Flame spray powder
JPH07830B2 (en) Surface coating method for metallic materials
Longa et al. Laser processing of high-chromium nickel-chromium coatings deposited by various thermal spraying methods
Wang Elevated temperature erosion resistance of several experimental amorphous thermal spray coatings
Student et al. Effect of high-temperature corrosion on the gas-abrasive resistance of electric-arc coatings
JPH0261051A (en) Method for coating surface of material and thermal spraying material used in the same method
CN103952656B (en) The method of the online pressure sealing of blast-furnace tuyere coal gas and the leak stopping layer of formation
CN109023009A (en) A kind of thermal spraying alloy of high temperature oxidation resisting and its preparation method and application
CN109304561B (en) Cermet type arc spraying flux-cored wire
Vuoristo et al. High-performance laser coatings for manufacturing and maintenance of industrial components and equipment
JP3286770B2 (en) Manufacturing method of corrosion and wear resistant coating
Malik et al. High temperature corrosion behaviour of ceramic‐based coatings on mild steel
AU et al. Influence of carbon on the hot corrosion behaviour of Fe-base alloys
Kryukov et al. Study of the operating in conditions of abrasive wear deposited layer obtained with the use of new flux-cored wires
Johnson Tribological coatings for liquid metal and irradiation environments
Reddy ENGINEERING AND MANAGEMENT (IJRREM)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees