JPS61210104A - Method for sintering metallic powder - Google Patents

Method for sintering metallic powder

Info

Publication number
JPS61210104A
JPS61210104A JP4922885A JP4922885A JPS61210104A JP S61210104 A JPS61210104 A JP S61210104A JP 4922885 A JP4922885 A JP 4922885A JP 4922885 A JP4922885 A JP 4922885A JP S61210104 A JPS61210104 A JP S61210104A
Authority
JP
Japan
Prior art keywords
alloy
metal
sintering
powder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4922885A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yamazaki
山崎 勝広
Masaru Ogata
小形 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4922885A priority Critical patent/JPS61210104A/en
Publication of JPS61210104A publication Critical patent/JPS61210104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered body having a fine structure by sintering metallic powder at a specified temp. under a specified pressure. CONSTITUTION:Metallic (alloy) powder is heated to a temp. >=0.4 time the m.p. of the metal (alloy) represented by absolute temp. under >=10,000atm. pressure. Since sintering proceeds at such a low temp., the coarsening and growth of grains and a precipitate are inhibited, forming a fine structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、合金を含む金属粉末の焼結方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for sintering metal powders containing alloys.

従来の技術 高強度金属材料の製造方法として近年、粉末冶金法が注
目されている。高強度金属材料の素材として該金属(合
金)の粉末を用いる場合のひとつの利点は、粉末の製造
時に金属(合金)が溶融状態から急速に冷却されるため
にその金属組織(結晶粒や析出物)が著しく微細となり
、その材料の塑性加工が容易になると同時に、機械的性
質が改善されることである。
BACKGROUND OF THE INVENTION Powder metallurgy has attracted attention in recent years as a method for producing high-strength metal materials. One advantage of using powder of the metal (alloy) as a material for high-strength metal materials is that the metal (alloy) is rapidly cooled from a molten state during powder production, so that its metal structure (crystal grains and precipitation) The material becomes extremely fine, making it easier to plastically process the material, and at the same time improving its mechanical properties.

一方粉末冶金材料には気孔が残留しゃすく、この残留気
孔は材料の機械的性質、特に靭性を著しく劣化させる。
On the other hand, pores remain in powder metallurgy materials, and these residual pores significantly deteriorate the mechanical properties of the material, particularly the toughness.

これを解決するために従来は予備成形した粉末材料を加
熱あるいは加熱と同時に加圧して残留気孔を消滅させる
操作が行なわれている。
To solve this problem, conventionally, the preformed powder material is heated or simultaneously heated and pressurized to eliminate residual pores.

発明が解決しようとする問題点 し・かし、粉末材料を加熱して(いわゆる焼結)残留気
孔を無くすためには、金属(合金)の一部あるいは一部
の成分を溶融させる温度が必要であり、また、加熱と同
時に加圧する方法(いわゆる熱間プレス焼結法、熱間静
水圧焼結法)においても絶対温度で表わし六該金属(合
金)の融点りの0.8倍以上の温度が必要である。この
様な高温下においては金属(合金)の結晶粒や析出物は
成長、粗大化し前記した粉末冶金法の利点を減じること
になる。
Problems that the invention aims to solve: However, in order to eliminate residual pores by heating the powder material (so-called sintering), a temperature that melts some of the metal (alloy) or some components is required. Also, in the method of applying pressure at the same time as heating (so-called hot press sintering method, hot isostatic pressure sintering method), the melting point of the metal (alloy) expressed in absolute temperature is 0.8 times or more. Temperature is required. Under such high temperatures, metal (alloy) crystal grains and precipitates grow and become coarse, reducing the advantages of the powder metallurgy method described above.

問題点を解決するための手段及び作用 金R(合金)粉末を10,000気圧以上の圧力のもと
で、絶対温度で表わした該金属(合金)の融点の0.4
倍以上の温度に加熱することで、金属(合金)の結晶粒
や析出物が成長粗大化しないように焼結できるようにし
たものである。
Means and action for solving the problem Metal R (alloy) powder is heated to 0.4 of the melting point of the metal (alloy) expressed in absolute temperature under a pressure of 10,000 atmospheres or more.
By heating the metal (alloy) to a temperature that is more than double that, it is possible to sinter the metal (alloy) so that crystal grains and precipitates do not grow and become coarse.

すなわち、発明者らは金M(合金)の結晶粒や析出物が
粗大化を起こさない様な充分に低い温度で当該金属(合
金)の粉末を焼結を行なう方法を研究したところ、+0
.000気圧以上の圧力のもとて金属(合金)を加熱す
れば低温でも焼結が進行するばかシではなく、従来法の
様な高温での結晶粒や析出物の粗大化成長が抑制されて
微細組織が得られ粉末冶金法の利点を減じることがない
ことを見い出し虎。
That is, the inventors researched a method of sintering powder of the metal (alloy) at a temperature low enough to prevent the crystal grains and precipitates of gold M (alloy) from becoming coarse.
.. If the metal (alloy) is heated under a pressure of 1,000 atmospheres or more, sintering will not progress even at low temperatures, but the coarse growth of crystal grains and precipitates at high temperatures, as in conventional methods, will be suppressed. It was discovered that fine microstructures could be obtained without diminishing the advantages of powder metallurgy.

実施例 実施例I ′重量比で18−のCrおよび2%のNoを含み、残部
F−からなる合金粉末をベルト型超高圧装置を用いて1
0,000気圧の圧力を加えた状態で絶対温度で表わし
六当該金属の融点の0゜4倍の温度に加熱し、30分間
保持した。この試料の密度を測定したところ密度比98
俤以上でめった。同一組成の合金粉末を常圧および2 
、000気圧で焼結したときの密度と比較して第1図に
示す。
Examples Example I' An alloy powder containing 18-18% Cr and 2% No by weight, with the balance F-1
With a pressure of 0,000 atmospheres applied, it was heated to a temperature that is 0.4 times the melting point of the metal expressed in absolute temperature and held for 30 minutes. When the density of this sample was measured, the density ratio was 98.
It was more than ryu. Alloy powder of the same composition was heated at normal pressure and
A comparison with the density when sintered at ,000 atmospheres is shown in FIG.

密度比とは相対密度を表わし、焼結体の密度を理論密度
で除算したものである。
The density ratio represents relative density, and is obtained by dividing the density of the sintered body by the theoretical density.

第一図で頭が本発明によるもの、(すが熱間静水圧焼結
(2,000気圧)によるもの、?)が常圧(1気圧)
焼結によるものである。
In Figure 1, the head is the one made by the present invention, (the one made by hot isostatic pressure sintering (2,000 atm)?) is normal pressure (1 atm).
This is due to sintering.

このことによ、9,10,000気圧以上の圧力のもと
で加熱すれば、その金属(合金)の絶対温度で表わし六
融点の0.4倍以上の温度に加熱すれば十分なる密度比
が得られることが判明する。
This means that if the metal (alloy) is heated under a pressure of 9,10,000 atmospheres or more, the density ratio will be sufficient if it is heated to a temperature that is 0.4 times or more the six melting points of the metal (alloy) expressed in absolute temperature. It turns out that it can be obtained.

実施例2 電解鉄を粉砕して微粉末を得、この微粉末をベルト型超
高圧発生装置を用いて20,000気圧の圧力を加え次
状態で800°Cに加熱し、30分間保持した。この試
料を切断し金属組織を調べたところ下記表1に示す結果
を得な。比較例として2,000気圧で8006CIC
加熱したもの、l気圧で800°Cに加熱し念ものの金
属組織をも調で表1に示した。
Example 2 Electrolytic iron was pulverized to obtain a fine powder, and the fine powder was heated to 800° C. using a belt-type ultra-high pressure generator and heated to 800° C. for 30 minutes. When this sample was cut and the metallographic structure was examined, the results shown in Table 1 below were obtained. As a comparative example, 8006CIC at 2,000 atm.
Table 1 shows the metallographic structure of the sample heated to 800°C at 1 atm.

表   I で加熱すれば結晶粒径を著しく小径として粗大化を抑制
できることが判る。
Table I shows that heating can significantly reduce the crystal grain size and suppress coarsening.

発明の効果 以上水した様に、本発明に係る焼結方法によれば、粉末
冶金法の利点を減じることなく微細組織を有する焼結体
を得ることができる。
As described above, according to the sintering method of the present invention, a sintered body having a fine structure can be obtained without reducing the advantages of powder metallurgy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結体密度と焼結圧力、焼結圧力との関係を示
す図である。 第1図
FIG. 1 is a diagram showing the relationship between sintered body density, sintering pressure, and sintering pressure. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 金属(合金)粉末を10,000気圧以上の圧力のもと
で、絶対温度で表わした該金属(合金)の融点の0.4
倍以上の温度に加熱することを特徴とする金属粉末の焼
結方法。
0.4 of the melting point of the metal (alloy) expressed in absolute temperature under a pressure of 10,000 atmospheres or more
A method for sintering metal powder, which is characterized by heating to a temperature that is twice as high or higher.
JP4922885A 1985-03-14 1985-03-14 Method for sintering metallic powder Pending JPS61210104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4922885A JPS61210104A (en) 1985-03-14 1985-03-14 Method for sintering metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4922885A JPS61210104A (en) 1985-03-14 1985-03-14 Method for sintering metallic powder

Publications (1)

Publication Number Publication Date
JPS61210104A true JPS61210104A (en) 1986-09-18

Family

ID=12825054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4922885A Pending JPS61210104A (en) 1985-03-14 1985-03-14 Method for sintering metallic powder

Country Status (1)

Country Link
JP (1) JPS61210104A (en)

Similar Documents

Publication Publication Date Title
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
CN104674038A (en) Alloy material with high strength as well as ductility and semi-solid state sintering preparation method and application of alloy material
JPS6362584B2 (en)
CN110343887B (en) Method for preparing high-density fine-grain titanium alloy through powder extrusion
JPS61104002A (en) Sintering method
US4591482A (en) Pressure assisted sinter process
US3929424A (en) Infiltration of refractory metal base materials
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH02197535A (en) Manufacture of intermetallic compound
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US3700434A (en) Titanium-nickel alloy manufacturing methods
US4428778A (en) Process for producing metallic chromium plates and sheets
US3522020A (en) Stainless steels
US2228600A (en) Powder metallurgy
JPS62196306A (en) Production of double layer tungsten alloy
JPS61210104A (en) Method for sintering metallic powder
JP2822643B2 (en) Hot forging of sintered titanium alloy
US4321091A (en) Method for producing hot forged material from powder
Kim Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPS624804A (en) Production of titanium alloy by element powder mixing method
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder
JPH07100629A (en) Production of high-density material