JPS61209852A - Adaptive control device for machine tool - Google Patents

Adaptive control device for machine tool

Info

Publication number
JPS61209852A
JPS61209852A JP4942085A JP4942085A JPS61209852A JP S61209852 A JPS61209852 A JP S61209852A JP 4942085 A JP4942085 A JP 4942085A JP 4942085 A JP4942085 A JP 4942085A JP S61209852 A JPS61209852 A JP S61209852A
Authority
JP
Japan
Prior art keywords
tool
cutting
section
adaptive control
horsepower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4942085A
Other languages
Japanese (ja)
Inventor
Hiroshi Kunihara
國原 坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4942085A priority Critical patent/JPS61209852A/en
Publication of JPS61209852A publication Critical patent/JPS61209852A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To make the unattended continuous operation of a machine tool possible by controlling tool relief and its return to an original position to reduce a load according to output given by a detecting means of the case in which adaptive control becomes impossible and a tool position storage means. CONSTITUTION:The cutting horsepower 19 of a main motor 1 detected by a detector 2 is compared with a target horsepower 20 in a cutting speed computing section 11, and when it is reduced to a horsepower corresponding to the minimum set value of feed speed, but does not decrease to the target horsepower 20, adaptive control is detected as impossibility, and a tool relief and return control section 13 stops therefore the feed of a motor 15 through a tool position control section 18. At the same time, the information 22 of preset tool position indicated by a tool position detecting section 17 is keept in a machining position storage section 12. Nextly, the control section 13 controls a motor 16 to make the tool to clear a fixed distance alpha, and then causes the tool to cut a part being in front of the final point of the cleared distance alpha. When that cutting work has been completed, the tool is returned to the starting point of the cleared distance alpha kept in the strage section 12 to continue the last lap cutting as far as the distance alpha. Thus the unattended continuous operation of a machine tool can be easily realized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ドリル、フライス加工機等の工作機械におい
て加工物を加工する場合に過負荷を検出し最適の負荷値
で加工を継続させ得るようにした適応制御装置に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention can detect overload when machining a workpiece with a machine tool such as a drill or milling machine, and can continue machining at an optimal load value. The present invention relates to an adaptive control device.

〈従来の技術) 従来、工作機械の適応制御装置として、第4図に示すよ
うに、主電動機lの電流または電力を検出する検出器2
と、その検出出力が供給されると共に適応制御のための
目標値設定器3から設定値が与えられる切削速度演算部
4と、その出力に応じて送り電動I15の速度制御を行
なう速度制御部6を備えたものがある。加工物7を切削
加工する工A8は、その切削動力を主電動411から動
力伝達部9を介して受け、また送り電動機5によって駆
動軸10に連結された工具支持部が移動せしめられるこ
とにより矢印Sで示すように切削方向に移動する。 ゛ 加工物7の切削加工中、工具8による切削動力は、動力
伝達部9に連結された主電動1mlの電流または電力を
検出器2が検出することによって検知され、工具毎に目
標値設定器3で設定した最適の負荷値となるよう切削速
度が切削速度演算部4で計算され、これに基づいて送り
電動機5の速度制御が速度制御部6からの信号によって
行なわれるが、この場合、加工物7の形状によって切削
面積が多くなると最適の負荷値での切削を行なわせられ
ず、適応制御切削の継続が困難となる。すなわち、加工
物7の形状に凸部が多く、切削面積が極端に多い場合送
り速度が零近くとなり、また送り速度の下限を目標設定
器3で設定した場合は最適負荷値を越えて適用制御が不
能となってしまう。
<Prior Art> Conventionally, as an adaptive control device for a machine tool, as shown in FIG.
, a cutting speed calculation section 4 to which the detection output is supplied and a set value from the target value setting device 3 for adaptive control, and a speed control section 6 that controls the speed of the feed electric motor I15 according to the output. There are some that are equipped with. The machine A8 that cuts the workpiece 7 receives its cutting power from the main electric motor 411 via the power transmission section 9, and the tool support connected to the drive shaft 10 is moved by the feed motor 5, so that It moves in the cutting direction as shown by S.゛During the cutting process of the workpiece 7, the cutting power by the tool 8 is detected by the detector 2 detecting the current or power of 1ml of the main electric motor connected to the power transmission section 9, and a target value setting device is set for each tool. The cutting speed is calculated by the cutting speed calculation unit 4 so as to obtain the optimum load value set in step 3, and based on this, the speed of the feed motor 5 is controlled by a signal from the speed control unit 6. If the cutting area increases depending on the shape of the object 7, cutting cannot be performed at the optimum load value, making it difficult to continue adaptively controlled cutting. In other words, if the shape of the workpiece 7 has many convex parts and the cutting area is extremely large, the feed rate will be close to zero, and if the lower limit of the feed rate is set with the target setter 3, the applied control will exceed the optimum load value. becomes impossible.

〈発明が解決しようとする問題点〉 本発明は上述の点に鑑みてなされたもので、適応制御不
能となる場合が生じても、機械を停止させることなく加
工を継続させ、適応制御運転を可能にし得る工作機械の
適応制御装置を提供することを目的とする。
<Problems to be solved by the invention> The present invention has been made in view of the above-mentioned points, and it is possible to continue processing without stopping the machine and perform adaptive control operation even if adaptive control becomes impossible. The purpose of the present invention is to provide an adaptive control device for a machine tool that enables the following.

〈問題点を解決するための手段) 上記目的を達成するため1本発明に係る工作機械の適応
制御装置は、適応制御不能となった場合を検出する手段
と、工具位置を記憶する手段と、上記検出手段及び記憶
手段からの出力に応じて負荷を低減させるべく工具の逃
げ及び旧位置への戻しを制御する手段とを有することを
特徴とするものである。
<Means for Solving the Problems> In order to achieve the above object, an adaptive control device for a machine tool according to the present invention includes means for detecting when adaptive control becomes impossible, means for storing tool position, The present invention is characterized by comprising means for controlling escape and return of the tool to the old position in order to reduce the load in accordance with the outputs from the detection means and the storage means.

〈実施例〉 以下1本発明の一実施例を図面に基づいて説明する。<Example> An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る工作機械の適応制御及
び過負荷検出装置の構成を示すものであり、また第2図
及び第3図は適応制御不能となった際に自動的に負荷を
低減させ加工を継続させるための工具の動作及び移動経
過の具体例を示す。
FIG. 1 shows the configuration of an adaptive control and overload detection device for a machine tool according to an embodiment of the present invention, and FIGS. A specific example of tool operation and movement progress to reduce the load and continue machining will be shown.

なお、以下の説明においては、主電動機、送り電動機の
過負荷検出装置、主軸トルク検出装置等のいわゆる工作
機械の切削加工時における過負荷検出装置は適応制御中
の一機能であるので、これらを含めたものを適応制御装
置として説明する。
In the following explanation, overload detection devices used during cutting of machine tools, such as overload detection devices for main motors and feed motors, and spindle torque detection devices, are one of the functions of adaptive control, so these devices will not be used. What is included will be described as an adaptive control device.

第1図に示すように、本実施例装置は、主電動機lの電
流または電力を検出する電流(電力)検出器2.適応制
御目標値設定器3を備える他、適応制御不能となった場
合にそれを検出する手段としての切削速度演算部11と
、工具位置を記憶する手段としての加工位置記憶部12
と、工具の逃げ、戻しを制御する手段としての工具逃げ
戻し制御部13が付加されていると共に、送り電動機制
御部14、切削方向用の送り電動機15.切込方向用の
送り電動機16、工具位置検出部17及び工具位置制御
部18を備える構成となっている。
As shown in FIG. 1, the device of this embodiment includes a current (power) detector 2. In addition to being equipped with an adaptive control target value setting device 3, a cutting speed calculation section 11 serves as a means for detecting when adaptive control becomes impossible, and a machining position storage section 12 serves as a means for storing tool positions.
A tool retraction control section 13 is added as a means for controlling the retraction and return of the tool, and a feed motor control section 14, a feed motor 15 for the cutting direction. The structure includes a feed motor 16 for the cutting direction, a tool position detection section 17, and a tool position control section 18.

上記切削速度演算部11には、検出器2から切削馬力1
9に関する情報が与えられ、また適応制御目標値設定器
3から目標馬力20に関する情報が与えられ、そして切
削速度演算部11は速度指令21を送り電動機速度制御
部14へ与える。工具逃げ戻し制御部13は上記切削速
度演算部11と加工位置記憶部12からの信号に応じて
工具位置制御部18を介して送り電動機15.18を制
御する。後述のように、適応制御不能となった際に工具
を最適負荷値となる位置まで逃がすようにするが、工具
をどの程度逃がすかは予め上記工具逃げ戻し制御部13
に設定されている。また、上記加工位置記憶部12には
工具位置検出部17から工具の位置情報22が与えられ
るようになっている。
The cutting speed calculation unit 11 receives a cutting horsepower 1 from the detector 2.
9 is given, information about a target horsepower 20 is given from the adaptive control target value setter 3, and the cutting speed calculation section 11 gives a speed command 21 to the feed motor speed control section 14. The tool return control section 13 controls the feed motors 15 and 18 via the tool position control section 18 in response to signals from the cutting speed calculation section 11 and the machining position storage section 12. As will be described later, when the adaptive control becomes impossible, the tool is released to the position where the optimum load value is achieved, but the degree to which the tool is released is determined in advance by the tool escape return control unit 13.
is set to . Further, the machining position storage section 12 is provided with tool position information 22 from the tool position detection section 17.

適応制御不能の検出は切削速度演算部llで行なわれる
。第2図に示すように、工具8がA位置からB位置の方
向へ向って加工物7を切削する場合において、その切削
移動中B位置で送り速度の下限に達し、更に主軸の負荷
値が最適負荷値を越えるという適応制御不能が検出され
たときは、同図の如く、工A8を成る量αだけ逃がして
切削面積を減らし、常に工具毎に定めた最適の負荷値で
切削を行なわせるため、に述のような適応制御不能時に
まず工具8の送りを停止し、工具逃がし位置23におい
て工具8を逃げ位置24までピックし、ピックが終了す
ると、ピック前の送り位置まで送りを実行し、その送り
位置まで達するともう一度加工開始点まで戻り、工具8
をピック前の位置に戻し再度加工を始めるようにする。
Detection of the inability to adaptively control is performed by the cutting speed calculation unit 11. As shown in Fig. 2, when the tool 8 cuts the workpiece 7 from position A to position B, the lower limit of the feed rate is reached at position B during the cutting movement, and the load value of the spindle further increases. When it is detected that adaptive control is not possible due to exceeding the optimum load value, as shown in the figure, machining A8 is released by an amount α to reduce the cutting area, and cutting is always performed at the optimum load value determined for each tool. Therefore, when the adaptive control is not possible as described in , the feed of the tool 8 is first stopped, the tool 8 is picked at the tool release position 23 to the release position 24, and when the pick is completed, the feed is executed to the feed position before the pick. , when it reaches that feed position, it returns to the machining start point again, and the tool 8
Return to the position before picking and start machining again.

すなわち、適応制御中、切削馬力は主電動mlの電流ま
たは電力を検出器2によって検出することにより知るこ
とができるが、検出器2によって検出された切削馬力1
9は予め適応制御目標値設定器3で設定された目標馬力
20と切削速度演算部llで比較され、切削馬力19が
目標馬力20より多い場合は送り速度を減少させるべく
、また切削馬力18が目標馬力20より少ない場合は送
り速度を上げるべく送り速度指令を演算し、速度制御部
14へ速度指令21を与え、これにより送り電動機15
の速度を変える。このようにして、適応制御を行なう。
That is, during adaptive control, the cutting horsepower can be known by detecting the current or power of the main electric motor ml with the detector 2, but the cutting horsepower 1 detected by the detector 2
9 is compared with the target horsepower 20 set in advance by the adaptive control target value setter 3 in the cutting speed calculation unit 11, and if the cutting horsepower 19 is higher than the target horsepower 20, the cutting horsepower 18 is increased in order to reduce the feed rate. If the horsepower is less than the target horsepower 20, a feed speed command is calculated to increase the feed speed, and a speed command 21 is given to the speed control unit 14, thereby increasing the feed motor 15.
change the speed of In this way, adaptive control is performed.

このような制御を行ないながら切削中、切削馬力18が
送り速度を適応制御目標値設定器3で設定した送り速度
最小値まで下げても目標馬力20とならない場合、これ
を切削速度演算部11で検出し、その信号を工具逃げ戻
し制御部13へ送る。工具逃げ戻し制御部13では、上
述のような場合、切削速度演算部11からの検出信号が
加えられると、まず工具位置制御部18へ伴出信号を送
り、送り電動機15の送りを停止させる。すなわち、既
述したように、適応制御不能時、工具8を逃げ位置24
までピックするため、まず工具8の送りを停止させるの
である。また、同時に工具位置検出部17で検出される
現在加工中の工具8の位置情報22(加工開始位置、加
工終了位置)は加工位置記憶部12に記憶される。
During cutting while performing such control, if the cutting horsepower 18 does not reach the target horsepower 20 even if the feed rate is lowered to the minimum feed rate set by the adaptive control target value setter 3, this is calculated by the cutting speed calculation unit 11. It is detected and the signal is sent to the tool escape return control section 13. In the above-described case, when the tool retraction control section 13 receives the detection signal from the cutting speed calculation section 11, it first sends an escort signal to the tool position control section 18 to stop the feeding of the feed motor 15. That is, as described above, when adaptive control is impossible, the tool 8 is moved to the escape position 24.
In order to pick until the point, the feed of the tool 8 is first stopped. At the same time, position information 22 (machining start position, machining end position) of the tool 8 currently being machined detected by the tool position detection section 17 is stored in the machining position storage section 12 .

このように、工具8の送りを停止させ、工具8の位置を
加工位置記憶部12へ記憶した後、工具逃げ戻し制御部
13では、第2図に示す如く工具8を距離αだけ逃がし
、これにより切込み量を減少させ負荷を低減させるよう
にする。αの値は予め工JLAげ戻し制御部13に設定
されているから、上述の逃がし動作はこれに基づいて工
具位置制御部18を通して送り電動機1Bを制御するこ
とによって行なう、このような工具8の移動の経路を第
3図で説明すると、工具8は加工開始位置25から経路
2Bを通して工具逃がし位置23に至った後、更に経路
27を通って工具逃げ位置24に至ることになる。
In this way, after stopping the feed of the tool 8 and storing the position of the tool 8 in the machining position storage section 12, the tool escape return control section 13 causes the tool 8 to escape by a distance α as shown in FIG. This reduces the depth of cut and reduces the load. Since the value of α is set in advance in the machine JLA return control unit 13, the above-mentioned release operation is performed by controlling the feed motor 1B through the tool position control unit 18 based on the value of the tool 8. Explaining the path of movement with reference to FIG. 3, the tool 8 travels from the machining start position 25 through the path 2B to the tool escape position 23, and then further through the path 27 to reach the tool escape position 24.

その後、工JiL8は、逃げ位置24から第2図に示す
切削方向S前方部分を切削し、その切削終了後は逃げ位
置24の工具位置に戻され、そして次いで工具8を切込
方向に距離αだけ追込み加工を継続する。すなわち、第
3図で説明すれば、上記経路27を経た後、経路28.
経路29.経路30そして経路31という工具逃げ戻し
動作の順序で加工終了位置32に至ることになる。
Thereafter, the tool JiL8 cuts the front part in the cutting direction S shown in FIG. Continue machining only. That is, to explain with reference to FIG. 3, after passing through the route 27, the route 28.
Route 29. The machining end position 32 is reached in the order of the tool escape return operation, path 30 and path 31.

このようにして、上記実施例装置によれば、送り速度が
成る設定値以下になると、第2図に示す如く、工具8を
成る量αだけ逃がすことにより切削面積を減らし、常に
工具毎に定めた最適の負荷値で加工物7の切削を行なう
ことができる。加工すべき加工物としては、凸部が多く
切削面積が極端に多くなるような形状を有するようなも
のもあるわけであるが、そのような加工物の切削加工中
においてたとえ適応制御不能となった場合が生じても、
上述のように自動的に切込み量を減少させることにより
負荷を低減させ加工を継続させることができ、工作機械
の適応制御装置において、工具8の切込み量を自動的に
減らし適応制御切削を継続することができる。また、工
作機械を停止させることなくこれを行なうことができる
。すなわち、適応制御不能となった際に工JL8を最適
負荷値となる位置まで逃がす機能、工具8の旧位置を記
憶する機能及び工具8を逃がした位置より旧位置へ戻す
機能を付与することにより、機械を停止させることなく
適応制御運転を行なわせることが可能となり、従って無
人連続運転を容易に実現し得、適応制御の機能の向上が
図れ、一層使い易いものにすることができる。
In this way, according to the apparatus of the embodiment, when the feed rate falls below the set value, the cutting area is reduced by releasing the tool 8 by the amount α, as shown in FIG. The workpiece 7 can be cut with the optimum load value. Some workpieces have shapes that have many convex parts and an extremely large cutting area, but even if adaptive control is not possible during cutting of such workpieces, Even if a situation arises,
As described above, by automatically reducing the depth of cut, it is possible to reduce the load and continue machining, and in the adaptive control device of the machine tool, the depth of cut of the tool 8 is automatically reduced to continue adaptive control cutting. be able to. Moreover, this can be done without stopping the machine tool. That is, by providing a function to release the tool JL8 to the position where the optimum load value is obtained when adaptive control becomes impossible, a function to memorize the old position of the tool 8, and a function to return the tool 8 to the previous position from the position from which it was released. , it becomes possible to perform adaptive control operation without stopping the machine, and therefore unmanned continuous operation can be easily realized, the function of adaptive control can be improved, and it can be made easier to use.

なお1本発明は既述したドリル、フライス加工機を初め
、旋削機、型彫機その他の工作機械において適用するこ
とができる。
Note that the present invention can be applied not only to the drills and milling machines described above, but also to turning machines, die engraving machines, and other machine tools.

〈発明の効果〉 以上のように、本発明に係る工作機械の適応制御運転に
よれば、適応制御不能となった際に自動的に負荷を低減
させ常に所定の負荷値で継続的に加工を行なわせること
ができるので1機械を停止させることなく適応制御運転
を行なうことができ、無人連続運転も容易に実現可能と
なる等の効果を奏する。
<Effects of the Invention> As described above, according to the adaptive control operation of a machine tool according to the present invention, when adaptive control becomes impossible, the load is automatically reduced and machining can be performed continuously at a predetermined load value. Therefore, adaptive control operation can be performed without stopping one machine, and unmanned continuous operation can be easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る工作機械の適用制御装
置の構成を示すブロック図、第2図は同装置による工具
の動作の一例を示す説明図、第3図は同じく工具逃げ戻
し動作の順序を示す説明図、第4図は従来の工作機械の
適応制御装置を示す構成図である。 図  面  中、 l・・・主電動機。 2・・・電流(電力)検出器、 3・・・適応制御目標値設定器。 7・・・加工物、 8・・・工具、 +1・・・切削速度演算部、 12・・・加工位置記憶部。 13・・・工具逃げ戻し制御部、 15、18・・・送り電動機、 18・・・工具位置制御部、 24・・・工具逃げ位置である。
FIG. 1 is a block diagram showing the configuration of a control device for a machine tool according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of the operation of a tool by the same device, and FIG. An explanatory diagram showing the order of operations, FIG. 4 is a configuration diagram showing a conventional adaptive control device for a machine tool. In the drawing, l...main electric motor. 2... Current (power) detector, 3... Adaptive control target value setter. 7... Workpiece, 8... Tool, +1... Cutting speed calculation section, 12... Machining position storage section. 13... Tool escape return control unit, 15, 18... Feeding motor, 18... Tool position control unit, 24... Tool escape position.

Claims (1)

【特許請求の範囲】[Claims] 工作機械の適応制御装置において、適応制御不能となっ
た場合を検出する手段と、工具位置を記憶する手段と、
上記検出手段及び記憶手段からの出力に応じて負荷を低
減させるべく工具の逃げ及び旧位置への戻しを制御する
手段とを有することを特徴とする適応制御装置。
In an adaptive control device for a machine tool, a means for detecting a case where adaptive control becomes impossible, a means for storing a tool position,
An adaptive control device comprising means for controlling escape and return of the tool to its old position in order to reduce the load in accordance with the outputs from the detection means and storage means.
JP4942085A 1985-03-14 1985-03-14 Adaptive control device for machine tool Pending JPS61209852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4942085A JPS61209852A (en) 1985-03-14 1985-03-14 Adaptive control device for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4942085A JPS61209852A (en) 1985-03-14 1985-03-14 Adaptive control device for machine tool

Publications (1)

Publication Number Publication Date
JPS61209852A true JPS61209852A (en) 1986-09-18

Family

ID=12830582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4942085A Pending JPS61209852A (en) 1985-03-14 1985-03-14 Adaptive control device for machine tool

Country Status (1)

Country Link
JP (1) JPS61209852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003515A (en) * 2010-06-17 2012-01-05 Jtekt Corp Control method and controller for machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003515A (en) * 2010-06-17 2012-01-05 Jtekt Corp Control method and controller for machine tool

Similar Documents

Publication Publication Date Title
US5466909A (en) Laser robot with approach time from origin to a starting position minimized
EP0103198A3 (en) A method for interrupting machine operation in a cnc system
US3715938A (en) Method of controlling a cycle of operations for machining a rotary workpiece
JPH11221707A (en) Drilling robot
US6111382A (en) Device for controlling tapping device provided with composite tool having boring and tapping sections
US11106194B2 (en) Numerical controller for continuous cutting control
US4698573A (en) Numerically controlled working process
JPS61209852A (en) Adaptive control device for machine tool
JPH11327624A (en) Numerical controller with feed speed controlling function
JPS6317561B2 (en)
JPH0453649A (en) Irregular revolution speed cutting method
JPH0313020B2 (en)
JPS63150137A (en) Adaptive controller
JPH0386461A (en) Control method for robot of grinder work
JP2553227B2 (en) Tool damage detection method for machine tools
JPH0258053B2 (en)
JP2707983B2 (en) Collision torque control device
JP2654228B2 (en) Numerical control unit
JP2686286B2 (en) Three-dimensional laser controller
KR100337381B1 (en) A method for preventing to be damaged the byte of a lathe
JPS58224091A (en) Profiling device of laser processing machine
JPS63106808A (en) Numerical control machine tool
JPS6294248A (en) Numerical control device
JP3300384B2 (en) Grinding machine control method
JP2847762B2 (en) Machine tool feed speed control method