JPS61208904A - Helical antenna system - Google Patents
Helical antenna systemInfo
- Publication number
- JPS61208904A JPS61208904A JP5078985A JP5078985A JPS61208904A JP S61208904 A JPS61208904 A JP S61208904A JP 5078985 A JP5078985 A JP 5078985A JP 5078985 A JP5078985 A JP 5078985A JP S61208904 A JPS61208904 A JP S61208904A
- Authority
- JP
- Japan
- Prior art keywords
- helical
- cylinder
- center axis
- conductor
- reflecting plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明はヘリカルアンテナ装置に係り、特に放射指向特
性を可変にしたヘリカルアンテナ装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a helical antenna device, and more particularly to a helical antenna device with variable radiation directivity characteristics.
〈従来技術〉
円偏波特性が得られる線状アンテナとしては、ヘリカル
アンテナ、スパイラルアンテナ、クロスダイポールアン
テナ等が良く知られている。利得の比較的高い円偏波ア
ンテナのひとつとして、上述のヘリカルアンテナが使用
される。<Prior Art> Helical antennas, spiral antennas, cross dipole antennas, and the like are well known as linear antennas that can obtain circularly polarized wave characteristics. The above-mentioned helical antenna is used as one of the circularly polarized antennas with relatively high gain.
主軸方向に主放射方向を有する放射を軸モード放射とい
うが、軸モード放射を行うヘリカルアンテナの放射指向
特性を、従来はヘリカル素子の巻き数、ピッチ、周囲長
等により制御していた。放射指向特性を表す数値として
重要なものに電力半値幅がある。この電力半値幅βは、
ヘリカル素子の巻き数をn、ピッチをS9周囲長をC1
波長をλとすると、近似的に次式で表されることが知ら
れている。Radiation having a main radiation direction in the direction of the main axis is called axial mode radiation, and the radiation directivity characteristics of a helical antenna that emits axial mode has conventionally been controlled by the number of turns, pitch, circumference, etc. of the helical element. An important value representing the radiation directivity characteristic is the power half width. This power half width β is
The number of turns of the helical element is n, the pitch is S9, the peripheral length is C1
It is known that when the wavelength is λ, it can be approximately expressed by the following equation.
しかしながら、これはあくまでも近似式であり、また、
ヘリカル素子は解析が難しく、したがって、具体的な放
射指向特性は、実際にヘリカル素子を製作して測定しな
ければならない。この場合、ヘリカル素子の巻き数、ピ
ッチ、周囲長等はヘリカル素子の製作後では変えること
が困難であり、放射指向特性をヘリカル素子の製作後に
変化させることができなかった。このため、ヘリカルア
ンテナを組み立てた後で、所望の放射指向特性が得られ
ない場合が生じるという問題があった。However, this is only an approximation, and
Helical elements are difficult to analyze, and therefore, specific radiation directivity characteristics must be measured by actually manufacturing a helical element. In this case, it is difficult to change the number of turns, pitch, circumference, etc. of the helical element after the helical element is manufactured, and the radiation directivity characteristics cannot be changed after the helical element is manufactured. For this reason, there is a problem in that a desired radiation directivity characteristic may not be obtained after the helical antenna is assembled.
さらに、従来では、このヘリカル素子をパラボラアンテ
ナ等の反射鏡アンテナの1次放射器として使用した場合
、大きさの異なる反射鏡で同一の1次放射器を用いると
、この1次放射器の指向特性が固定されているため、反
射鏡の曲面形状を変えなくてはならず、また、焦点距離
等も変化するため、アンテナ全体の設計に手間取るとと
もに部品の共通化が困難であった。Furthermore, conventionally, when this helical element is used as the primary radiator of a reflector antenna such as a parabolic antenna, if the same primary radiator is used with reflectors of different sizes, the directivity of this primary radiator Since the characteristics are fixed, the curved shape of the reflector must be changed, and the focal length etc. also change, making it time-consuming to design the entire antenna and making it difficult to standardize parts.
〈発明の目的〉
本発明は上記事情に鑑みてなされたものでありその目的
は、放射指向特性を可変にしたヘリカルアンテナ装置を
提供することである。<Objective of the Invention> The present invention has been made in view of the above circumstances, and its object is to provide a helical antenna device with variable radiation directivity characteristics.
〈発明の構成〉
本発明においては、主軸方向に主放射方向を有するヘリ
カル素子と、金属導体の反射板と、導体の円筒とを備え
、上記反射板はヘリカル中心軸と中心軸が共通の円板で
あり、上記円筒はへリカル中心軸と中心軸が共通に上記
反射板の外周に設けられ且つヘリカル中心軸と平行な方
向に移動可能であり、上記円筒を移動させることにより
放射指向特性を変化させるように構成したことを特徴と
する。<Structure of the Invention> The present invention includes a helical element having a main radiation direction in the direction of the main axis, a reflecting plate made of a metal conductor, and a cylinder made of a conductor. The cylinder is a plate, and the cylinder has a helical center axis and a center axis common to the outer periphery of the reflector, and is movable in a direction parallel to the helical center axis, and by moving the cylinder, the radiation directivity characteristics can be changed. It is characterized by being configured to change.
〈発明の原理〉
本発明は、ヘリカルアンテナ装置において、ヘリカル素
子の反射板の形状が例えば円板状の場合、この円板上に
あるいは円板の外周に円環状の金属板を設置する(空洞
状にする)と放射指向特性や利得が変化することに着目
し、反射板の外周に導体の円筒を取り付け、ヘリカル中
心軸に平行な方向にこの円筒を移動させることにより、
放射指向特性を変化させ、所望のビーム幅、利得、サイ
ドローブレベル等を得ようとするものである。<Principle of the Invention> The present invention provides a helical antenna device in which, when the shape of the reflecting plate of the helical element is, for example, a disk, an annular metal plate is installed on the disk or on the outer periphery of the disk. By attaching a conductive cylinder to the outer periphery of the reflector and moving this cylinder in a direction parallel to the helical central axis,
The aim is to change the radiation directivity characteristics to obtain desired beam width, gain, sidelobe level, etc.
〈実施例〉 以下、本発明の一実施例について説明する。<Example> An embodiment of the present invention will be described below.
第1図は本発明実施例のヘリカルアンテナ装置の平面構
成を示し、第2図はその側面構成を示す。FIG. 1 shows a planar configuration of a helical antenna device according to an embodiment of the present invention, and FIG. 2 shows a side configuration thereof.
1は主軸方向に主放射方向を有するヘリカル素子であり
、2はこのヘリカル素子1の中心軸2と中心軸が共通の
金属導体の円板からなる反射板である。この反射板2の
軸心部に、ヘリカル素子1の下端部が固設される。3は
導体円筒であり、この導体円筒3は、ヘリカル中心軸Z
と中心軸が共通に反射板2の外周に設けられ、反射板2
に対してヘリカル中心軸Zと平行な方向に移動可能であ
る。Reference numeral 1 denotes a helical element having its main radiation direction in the direction of its main axis, and reference numeral 2 denotes a reflecting plate made of a circular plate of a metal conductor whose central axis is common to the central axis 2 of this helical element 1. The lower end of the helical element 1 is fixed to the axial center of the reflector 2. 3 is a conductor cylinder, and this conductor cylinder 3 has a helical center axis Z.
and a central axis are provided in common on the outer periphery of the reflector 2, and the reflector 2
It is movable in a direction parallel to the helical center axis Z.
第3図は反射板2と導体円筒3の断面構成を示す。反射
板2は、放射指向特性の対称性をくずさないように円形
に形成され、この反射板2の外周部には、直径の小さい
ネジ穴6が複数箇所に設けられる。導体円筒3には、第
、2図に示すように、ヘリカル中心軸Zと同方向の長穴
4が複数箇所に設けられ、この長穴4を貫通するネジ5
が反射板2のネジ穴6に嵌合する。ネジ5が長穴4を貫
通した状態で、導体円筒3をヘリカル中心軸2と平行な
方向に移動させた後、ネジ5を締め付けることにより、
導体円筒3をヘリカル素子1に対してヘリカル中心軸Z
の方向に任意の位置に固定することができる。FIG. 3 shows the cross-sectional structure of the reflecting plate 2 and the conductor cylinder 3. The reflecting plate 2 is formed into a circular shape so as not to destroy the symmetry of the radiation directivity characteristics, and a plurality of small diameter screw holes 6 are provided on the outer circumference of the reflecting plate 2. As shown in FIG. 2, the conductor cylinder 3 is provided with a plurality of elongated holes 4 in the same direction as the helical central axis Z, and screws 5 are inserted through the elongated holes 4.
is fitted into the screw hole 6 of the reflection plate 2. After moving the conductor cylinder 3 in a direction parallel to the helical central axis 2 with the screw 5 passing through the elongated hole 4, by tightening the screw 5,
The conductor cylinder 3 is aligned with the helical center axis Z with respect to the helical element 1.
It can be fixed in any position in the direction of.
導体円筒3の高さは、反射板2の厚さより十分に大であ
ることが必要であり、また、長穴4は、導体円筒3をヘ
リカル中心軸Zと平行方向に移動させてもネジ5がネジ
穴6に挿入可能で且つ放射指向特性の軸対称性をくずさ
ないように、できるだけ小さくなければならない。The height of the conductor cylinder 3 needs to be sufficiently larger than the thickness of the reflector 2, and the elongated hole 4 does not allow the screw 5 to move even when the conductor cylinder 3 is moved in a direction parallel to the helical center axis Z. must be as small as possible so that it can be inserted into the screw hole 6 and the axial symmetry of the radiation directivity characteristics is not destroyed.
以下、上述のヘリカルアンテナ装置により電波を受′信
する場合の作用について説明する。ここで、導体円筒3
がヘリカル中心軸Zに平行にヘリカル素子1を覆う方向
へ移動することを上へ移動するというとともに、逆の方
向へ移動することを下へ移動するということにする。Hereinafter, the operation when receiving radio waves using the above-mentioned helical antenna device will be explained. Here, the conductor cylinder 3
The movement in a direction parallel to the helical central axis Z to cover the helical element 1 is referred to as upward movement, and the movement in the opposite direction is referred to as downward movement.
第4図は導体円筒3が下へ移動した状態で反射板2に固
定されているときの側面断面の構成を示す。この場合に
は、ヘリカル素子1の全体に電波が到来し、ヘリカル中
心軸2とほぼ直交する矢印a方向から到来する電波とヘ
リカル中心軸Zに対して斜め方向の矢印す方向から到来
する電波をともに受信することができる。FIG. 4 shows the configuration of a side cross section when the conductor cylinder 3 is fixed to the reflector plate 2 in a downwardly moved state. In this case, radio waves arrive at the entire helical element 1, and radio waves arrive from the direction of the arrow a, which is almost orthogonal to the helical center axis 2, and radio waves arrive from the direction of the arrow, which is diagonal to the helical center axis Z. Both can be received.
第5図は導体円筒3が上へ移動した状態で反射板2に固
定されているときの側面断面の構成を示す。この場合に
は、ヘリカル中心軸Zに対して斜め方向の矢印C方向か
ら到来する電波の一部は導体円筒3で反射され、ヘリカ
ル素子1に電波が集中する。一方、ヘリカル中心軸Zと
ほぼ直交する矢印d方向から到来する電波の一部は、導
体円筒3で反射され、ヘリカル素子1には届かない。FIG. 5 shows the configuration of a side cross section when the conductor cylinder 3 is fixed to the reflector plate 2 in an upwardly moved state. In this case, a portion of the radio waves arriving from the direction of arrow C oblique to the helical center axis Z is reflected by the conductor cylinder 3, and the radio waves are concentrated on the helical element 1. On the other hand, a part of the radio waves arriving from the direction of arrow d, which is substantially perpendicular to the helical center axis Z, is reflected by the conductor cylinder 3 and does not reach the helical element 1.
すなわち、導体円筒3が上に移動して固定された状態で
は、ヘリカルアンテナの放射指向特性は、導体円筒3が
下に移動して固定された状態での放射指向特性に比べて
、指向性が鋭くなる。そして、この指向性は、導体円筒
3の上へ移動する量が大きくなる程、より鋭くなる。さ
らに、導体円筒3が上に移動して固定された状態では、
ヘリカルアンテナの主放射方向近傍の利得が高くなる。That is, when the conductor cylinder 3 is moved upward and fixed, the radiation directivity of the helical antenna is less directional than when the conductor cylinder 3 is moved downward and fixed. Become sharp. This directivity becomes sharper as the amount of movement above the conductor cylinder 3 increases. Furthermore, when the conductor cylinder 3 is moved upward and fixed,
The gain near the main radiation direction of the helical antenna increases.
以上の動作を実証した測定結果を第6図に示す。Figure 6 shows measurement results that demonstrate the above operation.
この測定結果は、第7図に示すヘリカルアンテナの座標
系のZX面内における周波数11.95GHzでの指向
特性を示し、縦軸が受信電力、横軸がZ軸からの角度を
それぞれ表す。なお、この場合のヘリカル素子1の巻数
は6.5ターン、反射板2の直径は74mである。This measurement result shows the directivity characteristic at a frequency of 11.95 GHz in the ZX plane of the coordinate system of the helical antenna shown in FIG. 7, where the vertical axis represents the received power and the horizontal axis represents the angle from the Z axis. In this case, the number of turns of the helical element 1 is 6.5 turns, and the diameter of the reflection plate 2 is 74 m.
第6図において、実線Aは、導体円筒3が下に移動した
状態すなわち導体円筒3が上へ移動した量を示す第7図
中の距離りが0鶴のときの放射指向特性を示す。また、
実線Bは、導体円筒3が上へ移動して距離りが20mの
ときの放射指向特性を示し、実線Cは、導体円筒3がさ
らに上へ移動して距離りが25mのときの放射指向特性
を示す。この測定結果から明らかなように、導体円筒3
の移動により放射指向特性が変化することが分かる。In FIG. 6, a solid line A shows the radiation directivity characteristic when the distance in FIG. 7, which indicates the amount that the conductor cylinder 3 has moved downward, ie, the amount that the conductor cylinder 3 has moved upward, is zero. Also,
Solid line B shows the radiation directivity characteristic when the conductor cylinder 3 moves upward and the distance is 20 m, and solid line C shows the radiation directivity characteristic when the conductor cylinder 3 moves further upward and the distance is 25 m. shows. As is clear from this measurement result, the conductor cylinder 3
It can be seen that the radiation directivity characteristics change with the movement of .
第8図は本発明の他の実施例の構成を示し、7はヘリカ
ル素子、8は反射板、9は導体円筒である。第9図は第
8図のI−I’断面の構成を示し、金属導体の円板から
なる反射板8の外周面に形成されたネジ10に導体円筒
9の内面に形成されたネジ11が噛み合って、反射板8
の外周に導体円筒9が設けられる。FIG. 8 shows the structure of another embodiment of the present invention, in which 7 is a helical element, 8 is a reflecting plate, and 9 is a conductor cylinder. FIG. 9 shows the configuration of the II' cross section in FIG. 8, in which a screw 10 formed on the outer circumferential surface of the reflective plate 8 made of a metal conductor disk is connected to a screw 11 formed on the inner surface of the conductor cylinder 9. Engage, reflector 8
A conductor cylinder 9 is provided on the outer periphery of the conductor cylinder 9.
この場合、反射板8に対して導体円筒9をヘリカル軸Z
を中心に回転させることにより、ネジの効果で導体円筒
9がヘリカル中心軸2に平行な方向に摺動し、上述の実
施例と同様な効果をもたせることができる。さらに、こ
の場合には、導体円筒9が、貫通穴等が設けられないの
で、完全な軸対称となり、放射指向特性の軸対称性を保
ちやすい。また、導体円筒の操作性が良くなる。In this case, the conductor cylinder 9 is aligned with the helical axis Z with respect to the reflector 8.
By rotating around the center, the conductor cylinder 9 slides in a direction parallel to the helical central axis 2 due to the effect of the screw, and the same effect as in the above embodiment can be achieved. Furthermore, in this case, since the conductor cylinder 9 is not provided with a through hole or the like, it becomes completely axially symmetrical, and it is easy to maintain the axially symmetrical nature of the radiation directivity characteristics. Moreover, the operability of the conductor cylinder is improved.
〈発明の効果〉
以上説明したように、本発明においては、ヘリカルアン
テナの放射指向特性が反射板に円環状の金属板を設置す
ることにより変化することを利用し、導体円筒を反射板
と中心軸が共通に組み合わせて構成し、この導体円筒を
ヘリカル中心軸と平行な方向に移動可能にしたことによ
り、所望のビーム幅、利得、サイドローブレベル等を得
ることができる。<Effects of the Invention> As explained above, in the present invention, the radiation directivity characteristics of a helical antenna are changed by installing an annular metal plate on the reflector, and the conductor cylinder is placed in the center of the reflector. A desired beam width, gain, sidelobe level, etc. can be obtained by combining the axes in common and making this conductor cylinder movable in a direction parallel to the helical center axis.
本発明によるヘリカルアンテナ装置は、アンテナ装置と
して組み立てた後に指向性を細かく調整する場合に有効
である。特に本発明のヘリカルアンテナ装置をオフセッ
トパラボラアンテナ等の反射鏡アンテナの1次放射器と
して使用した場合、1次放射器の特性を変化させること
により、反射鏡の曲面形状を変えることなくまた焦点距
離等も変化させずに、開口直径の異なる反射鏡に共通し
てこの1次放射器を使用することができ、アンテナ全体
の設計が容易になるとともに、部品の共通化を図ること
ができる。さらに、組立後に指向性の細かい調節を行う
ことができるので、効率のよい受信を行うことができる
。また、この1次放射器を大量生産することができるた
め、1次放射器の低価格化が実現できる。The helical antenna device according to the present invention is effective when finely adjusting directivity after being assembled as an antenna device. In particular, when the helical antenna device of the present invention is used as the primary radiator of a reflector antenna such as an offset parabolic antenna, by changing the characteristics of the primary radiator, it is possible to improve the focal length without changing the curved shape of the reflector. This primary radiator can be used in common with reflecting mirrors having different aperture diameters without changing the antenna structure, etc., making it easy to design the entire antenna and making parts common. Furthermore, since directivity can be finely adjusted after assembly, efficient reception can be achieved. Furthermore, since this primary radiator can be mass-produced, the price of the primary radiator can be reduced.
第1図は本発明実施例の平面図、第2図は第1図の側面
図、第3図は第2図の部分断面図、第4図と第5図は本
発明実施例の動作説明図、第6図は本発明実施例の測定
結果を示すグラフ、第7図は本発明実施例の座標系とパ
ラメータを示す図、第8図は本発明の他の実施例の斜視
図、第9図は第8図の部分断面図である。
1.7・・・ヘリカル素子
2.8・・・反射板
3.9・・・導体円筒
2・・・ヘリカル中心軸
特許出願人 シャープ株式会社
代 理 人 弁理士 西1) 新
築5図
第8図
第8図
第2図
マ
第4図Fig. 1 is a plan view of the embodiment of the present invention, Fig. 2 is a side view of Fig. 1, Fig. 3 is a partial sectional view of Fig. 2, and Figs. 4 and 5 are explanations of the operation of the embodiment of the present invention. 6 is a graph showing the measurement results of the embodiment of the present invention, FIG. 7 is a diagram showing the coordinate system and parameters of the embodiment of the present invention, and FIG. 8 is a perspective view of another embodiment of the present invention. FIG. 9 is a partial sectional view of FIG. 8. 1.7...Helical element 2.8...Reflector plate 3.9...Conductor cylinder 2...Helical center axis Patent applicant Sharp Corporation Representative Patent attorney Nishi 1) New construction 5 Figure 8 Figure 8 Figure 2 Figure 4
Claims (1)
体の反射板と、導体の円筒とを備え、上記反射板はヘリ
カル中心軸と中心軸が共通の円板であり、上記円筒はヘ
リカル中心軸と中心軸が共通に上記反射板の外周に設け
られ且つヘリカル中心軸と平行な方向に移動可能であり
、上記円筒を移動させることにより放射指向特性を変化
させるように構成したことを特徴とするヘリカルアンテ
ナ装置。A helical element having a main radiation direction in the main axis direction, a reflecting plate made of a metal conductor, and a cylinder made of a conductor, the reflecting plate being a disk whose central axis is common to the helical central axis, and the cylinder having the helical central axis and a central axis is provided in common on the outer periphery of the reflecting plate and is movable in a direction parallel to the helical central axis, and the radiation directivity characteristics are changed by moving the cylinder. Helical antenna device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5078985A JPS61208904A (en) | 1985-03-13 | 1985-03-13 | Helical antenna system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5078985A JPS61208904A (en) | 1985-03-13 | 1985-03-13 | Helical antenna system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61208904A true JPS61208904A (en) | 1986-09-17 |
Family
ID=12868573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5078985A Pending JPS61208904A (en) | 1985-03-13 | 1985-03-13 | Helical antenna system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61208904A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127804A (en) * | 1988-11-08 | 1990-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Helical antenna |
US4935747A (en) * | 1986-09-10 | 1990-06-19 | Aisin Seiki Kabushiki Kaisha | Axial mode helical antenna |
US5081469A (en) * | 1987-07-16 | 1992-01-14 | Sensormatic Electronics Corporation | Enhanced bandwidth helical antenna |
WO1996019846A1 (en) * | 1994-12-22 | 1996-06-27 | Deltec New Zealand Limited | An adjustable helical antenna |
WO1998002936A1 (en) * | 1996-07-16 | 1998-01-22 | Qualcomm Incorporated | Modified helical antenna |
KR20000023396A (en) * | 1998-09-25 | 2000-04-25 | 도낀 가부시끼가이샤 | Two-resonance helical antenna capable of suppressing fluctuation in electric characteristic without restriction in size of a helical coil |
JP2012152262A (en) * | 2011-01-24 | 2012-08-16 | Nagoya Univ | Perspiration measuring method, and perspiration measuring apparatus |
CN107749514A (en) * | 2017-09-06 | 2018-03-02 | 南京理工大学 | Number applied to X frequency ranges passes antenna |
-
1985
- 1985-03-13 JP JP5078985A patent/JPS61208904A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935747A (en) * | 1986-09-10 | 1990-06-19 | Aisin Seiki Kabushiki Kaisha | Axial mode helical antenna |
US5081469A (en) * | 1987-07-16 | 1992-01-14 | Sensormatic Electronics Corporation | Enhanced bandwidth helical antenna |
JPH02127804A (en) * | 1988-11-08 | 1990-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Helical antenna |
WO1996019846A1 (en) * | 1994-12-22 | 1996-06-27 | Deltec New Zealand Limited | An adjustable helical antenna |
WO1998002936A1 (en) * | 1996-07-16 | 1998-01-22 | Qualcomm Incorporated | Modified helical antenna |
KR20000023396A (en) * | 1998-09-25 | 2000-04-25 | 도낀 가부시끼가이샤 | Two-resonance helical antenna capable of suppressing fluctuation in electric characteristic without restriction in size of a helical coil |
JP2012152262A (en) * | 2011-01-24 | 2012-08-16 | Nagoya Univ | Perspiration measuring method, and perspiration measuring apparatus |
CN107749514A (en) * | 2017-09-06 | 2018-03-02 | 南京理工大学 | Number applied to X frequency ranges passes antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5757323A (en) | Antenna arrangements | |
KR101307113B1 (en) | Circularly polarized loop reflector antenna and associated methods | |
US3936835A (en) | Directive disk feed system | |
JPH0586682B2 (en) | ||
JPH07106847A (en) | Leaky-wave waveguide slot array antenna | |
US3742513A (en) | Optimized reflector antenna | |
US3836977A (en) | Antenna system having a reflector with a substantially open construction | |
JPH0313105A (en) | Radial line slot antenna | |
AU2020204437B2 (en) | Wide Band Log Periodic Reflector Antenna for Cellular and Wifi | |
JPS5843604A (en) | Antenna element | |
JPS61208904A (en) | Helical antenna system | |
Hansen et al. | High performance reflector hat antenna with very low sidelobes for radio-link applications | |
US4313122A (en) | Open cavity radiating source excited by a dipole | |
JP2011015203A (en) | Curved surface reflector antenna and position measuring system using the same | |
JPH06291538A (en) | Microwave polarization lens device | |
CN107634339B (en) | High-directivity umbrella-shaped convex surface common reflector antenna based on super surface | |
Chia et al. | Design of low profile cylindrical luneburg lens antenna | |
RU2245595C1 (en) | Feedthrough antenna system (alternatives) | |
GB2303491A (en) | Antenna arrangement | |
Rusch | 1.3. Analysis of Paraboloidal-Reflector Systems | |
RU34808U1 (en) | PASS ANTENNA SYSTEM (OPTIONS) | |
JP2502401B2 (en) | Radial line slot antenna | |
JP2655853B2 (en) | Microwave antenna | |
JP2626182B2 (en) | Radial line slot antenna | |
Schrank et al. | Reflector antennas |