JPS61207864A - Output control device of stirling engine - Google Patents

Output control device of stirling engine

Info

Publication number
JPS61207864A
JPS61207864A JP4823285A JP4823285A JPS61207864A JP S61207864 A JPS61207864 A JP S61207864A JP 4823285 A JP4823285 A JP 4823285A JP 4823285 A JP4823285 A JP 4823285A JP S61207864 A JPS61207864 A JP S61207864A
Authority
JP
Japan
Prior art keywords
valve
pressure
pressure reducing
working gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4823285A
Other languages
Japanese (ja)
Other versions
JPH0318030B2 (en
Inventor
Yoshihiro Naito
喜裕 内藤
Masaru Tsunekawa
恒川 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP4823285A priority Critical patent/JPS61207864A/en
Publication of JPS61207864A publication Critical patent/JPS61207864A/en
Publication of JPH0318030B2 publication Critical patent/JPH0318030B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/05Controlling by varying the rate of flow or quantity of the working gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To promote the improvement of operating efficiency, by opening and closing a pressure reducing valve, provided in the highest cycle line in a Stirling engine, and a pressure booster valve, provided in the lowest cycle line, by a control lever and opening a communicating valve, provided between suction and delivery sides of a working gas compressor, by detection of opening of the pressure reducing valve. CONSTITUTION:A Stirling engine connects the highest cycle line of each cylinder 1 with a pressure reducing valve 5 through check valves 2 while the lowest cycle line with a pressure booster valve 8 through check valves 6. Each valve 5, 8 connects with suction and delivery sides of a working gas compressor 3 by pipes 15, 16. Each pipe 15, 16 is connected by a bypass pipe 17 equipped with a solenoid operated valve 20. If the pressure reducing valve 5 operates so as to be opened by actuating a piston 10, receiving the pressure of gas in a pipe 7, or by controlling a lever 11 to manually handle its bottom end, the engine, closing a contact 19 to open the solenoid operated valve 20 and applying no load to the compressor 3 with no compression of the working gas, increases operating efficiency of the engine.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、スターリング機関の出力制御装置に関し、特
に詳述すれば、減速時の操作レノ(−の操作力を小とし
且つ減速走行時圧縮器及び吸入吐出弁にか\る負担を小
さくさせるために利用される。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to an output control device for a Stirling engine, and more specifically, the present invention relates to an output control device for a Stirling engine. It is also used to reduce the burden on the suction and discharge valves.

(従来技術とその問題点) 外燃機関であるスターリング機関の出力は、作動ガスを
封入した作動空間内の圧によって決められる。たとえば
、スターリング機関の出力を高める時は作動空間内の作
動ガス圧を上昇させる。このようなスターリング機関の
出力制御装置の代表的従来例を第2図に示す(特開昭4
6−23534号公報参照)。スターリング機関の作動
空間1を、逆止弁2を介して圧縮機3に最高サイクル圧
ライン4おLびライン15によって連結させる。該ライ
ン4とライン15とは減圧弁5で連結する。又、作動空
間1は、逆止弁6を介して最低サイクル圧ラインTおよ
びライン16によって圧縮機3に連結される。該ライン
Tとライン16とは増圧弁8で連結する。
(Prior Art and Its Problems) The output of a Stirling engine, which is an external combustion engine, is determined by the pressure within a working space filled with working gas. For example, when increasing the output of a Stirling engine, the working gas pressure in the working space is increased. A typical conventional example of such a Stirling engine output control device is shown in FIG.
6-23534). The working space 1 of the Stirling engine is connected via a check valve 2 to a compressor 3 by a maximum cycle pressure line 4L and a line 15. The line 4 and line 15 are connected through a pressure reducing valve 5. The working space 1 is also connected to the compressor 3 by a minimum cycle pressure line T and a line 16 via a check valve 6 . The line T and line 16 are connected through a pressure increase valve 8.

9は高圧タンクを示す。9 indicates a high pressure tank.

増圧弁8の下流側をフィードバックピストンシリンダ1
0に接続し、該シリンダ10内のピストンをアクセルレ
バ−11の端部にロッドを介して連結する。アクセルレ
バ−11は、増減弁8,5の弁棒12 、13と対向す
る。フィードバックピストンシリンダ10は、最低サイ
クル圧2イン7の圧に応じてピストンが動き、アクセル
レバ−11の支点14の位置を変位させる働きをする。
The downstream side of the pressure increase valve 8 is connected to the feedback piston cylinder 1.
0, and the piston in the cylinder 10 is connected to the end of the accelerator lever 11 via a rod. The accelerator lever 11 faces the valve rods 12 and 13 of the increase/decrease valves 8 and 5. The feedback piston cylinder 10 has a piston that moves in response to the minimum cycle pressure of 2 in 7, and functions to displace the position of the fulcrum 14 of the accelerator lever 11.

スターリング機関の出力を増大させる時は、アクセルレ
バ−11を左方向に押し増圧弁8を開とさせ、高圧作動
ガスを圧縮器3或いはタンク9から作動空間1に供給す
る。又、スターリング機関の出力を下げる時は、アクセ
ルレバ−11を右方向に押し、減圧弁5を開とさせ、作
動空間1の圧を圧縮機3側に抜き減圧させる。
When increasing the output of the Stirling engine, the accelerator lever 11 is pushed to the left to open the pressure increase valve 8, and high-pressure working gas is supplied from the compressor 3 or tank 9 to the working space 1. Further, when lowering the output of the Stirling engine, the accelerator lever 11 is pushed to the right to open the pressure reducing valve 5, and the pressure in the working space 1 is released to the compressor 3 side to reduce the pressure.

出力の増減が安定域(所定値)に入ると、可動支点14
の変位に↓り増減圧弁8,5が閉じる。
When the increase or decrease in output enters the stable range (predetermined value), the movable fulcrum 14
The pressure increase/decrease valves 8 and 5 close as the displacement decreases.

ところで、定常運転時、圧縮器3は、ライン15から作
動ガスを吸入し、ライン16に高圧作動ガスを吐出する
ので、両ライン15,16の圧力差は大となり、即ち、
大きな圧力変化が生じ、圧縮器3の仕事量が大きく、圧
縮器に対する障害も多となる。そこで、特公昭45−3
124号公報に与られる如く、減圧弁15を省き両ライ
ン15.16間に弁18t−有するパイパスライン17
t−設けることが提案されている。この手段は、スター
リング機関の定常運転時には、減速弁となる弁18を手
動で開とし、両ライン15.16の作動ガス圧をはソ同
じとさせる。この結果、該定常運転時には、作動ガスは
ライン16から、ライン17お工びライン15を介し圧
縮器3に戻り、圧縮器3は、はとんど圧縮仕事をしない
ので、前述した圧縮器3への障害を解消させることがで
きる。しかしながら、定常運転に入った時、手動で弁1
8を開き、減速時には手動で減速弁1Bを閉じる作業は
煩しく、これを怠り、た時の圧縮器3への障害を考える
と好ましいものでない。
By the way, during steady operation, the compressor 3 sucks working gas from line 15 and discharges high-pressure working gas to line 16, so the pressure difference between both lines 15 and 16 becomes large, that is,
A large pressure change occurs, the workload of the compressor 3 is large, and there are many obstacles to the compressor. Therefore, the special public
As disclosed in Japanese Patent No. 124, the pressure reducing valve 15 is omitted and the bypass line 17 has a valve 18t between both lines 15 and 16.
It is proposed to provide t-. This means, during steady operation of the Stirling engine, manually opens the valve 18, which serves as a speed reduction valve, to make the working gas pressures in both lines 15, 16 the same. As a result, during the steady operation, the working gas returns to the compressor 3 from the line 16, through the line 17 and through the line 15, and since the compressor 3 hardly performs compression work, the compressor 3 described above It is possible to eliminate obstacles to However, when entering steady operation, the valve 1 must be manually operated.
8 and then manually close the deceleration valve 1B during deceleration, which is cumbersome and undesirable in view of damage to the compressor 3 if this is neglected.

そこで、特公昭46−23535号公報は2、操作レバ
ー11を二本設け、一方のレバーでバイパス弁18の開
閉を制御することを教示する。しかし、この特公昭46
−23535号公報も、バイパス弁18の開閉のための
レバーの手動操作を必要とし、又、バイパス弁18の上
流と下流の圧力差によりレバーの操作力も大となってい
る。
Therefore, Japanese Patent Publication No. 46-23535 teaches that two operating levers 11 are provided and one lever controls opening and closing of the bypass valve 18. However, this special public
Publication No. 23535 also requires manual operation of a lever to open and close the bypass valve 18, and the operating force of the lever is also large due to the pressure difference between the upstream and downstream sides of the bypass valve 18.

(本発明の技術的課題) 本発明は、前述した従来技術の不具合を解消させること
を、解決すべき技術的課題とする。
(Technical Problem of the Present Invention) A technical problem to be solved by the present invention is to eliminate the problems of the prior art described above.

(本発明の技術的手段とその作用) 本発明は、減圧弁の上流側と増圧弁の下流側とを、電磁
弁を有するバイパス回路で連結し、操作レバーの減圧弁
開方向への動きにより作動するセンサを配し、該センサ
からの出力により電磁弁の開閉を制御する手段を基本的
に採用する。この手段の採用は、定常運転時には開とな
っている電磁弁が、操作レバーを出力を減する方向に動
かすと、センサが電源と電磁弁を結ぶ電気回路を閉とし
、電磁弁を閉じ、ノ(イノ(ス回路金閉鎖する。この状
態で、減圧弁が開となっているので、圧縮器は作動ガス
を作動空間及び最高サイクル圧ラインから吸引し、作動
空間の圧を下げる。減速が安定域に入ると、可動支点が
移動し、操作レバーが減圧弁を開から閉とさせ、又、セ
ンサがオフ状態となり、電磁弁が開となる□。この結果
、定常運転時には、圧縮器からの作動ガスは、バイパス
回路を通って、再び、圧縮器に戻る流れとなり、圧縮器
の仕事量はきわめて小さいものとなる。
(Technical means of the present invention and its effects) The present invention connects the upstream side of the pressure reducing valve and the downstream side of the pressure increasing valve by a bypass circuit having a solenoid valve, and the movement of the operating lever in the pressure reducing valve opening direction connects the upstream side of the pressure reducing valve and the downstream side of the pressure increasing valve. Basically, a method is adopted in which an operating sensor is provided and the opening and closing of the electromagnetic valve is controlled by the output from the sensor. This method is adopted because when the solenoid valve, which is open during normal operation, moves the control lever in the direction to reduce the output, the sensor closes the electric circuit connecting the power supply and the solenoid valve, and closes the solenoid valve. (The switch circuit is closed. In this state, the pressure reducing valve is open, so the compressor sucks working gas from the working space and the highest cycle pressure line, lowering the pressure in the working space. The deceleration is stable. When it enters the range, the movable fulcrum moves, the operating lever changes the pressure reducing valve from opening to closing, the sensor turns off, and the solenoid valve opens □.As a result, during steady operation, the pressure from the compressor is reduced. The working gas flows back to the compressor through the bypass circuit, and the amount of work done by the compressor becomes extremely small.

操作レバーの動きは、電気信号によって電磁弁に送られ
るので、バイパス回路の開閉に要する操作力はきわめて
小さいものとなる。
Since the movement of the operating lever is sent to the electromagnetic valve by an electrical signal, the operating force required to open and close the bypass circuit is extremely small.

(実施例) 第1図に本発明の実施例を示すが、第2図に示した従来
例と同一部品には同符号を記し、その説明を省略する。
(Embodiment) An embodiment of the present invention is shown in FIG. 1, and the same parts as those in the conventional example shown in FIG.

減圧弁5の弁棒13に、マイクロスイッチの如きセンサ
19を配す。−万、減圧弁5の下流側のライン15と、
増圧弁8の上流側のライン16とを、電磁弁20を有す
るバイパスライン17で連結させる。ta弁20は、セ
ンサ19に電気的に接続される。電磁弁20は、スター
リング機関の定常運転時には、開状態でめり、圧縮器3
からの作動ガスは、ライン16からバイパスライン17
を通って、ライン15から圧縮器3に戻り、圧縮器3の
吸入、吐出量は同じで、圧縮器3は圧縮仕事をしない。
A sensor 19 such as a microswitch is arranged on the valve stem 13 of the pressure reducing valve 5. - 10,000, a line 15 downstream of the pressure reducing valve 5;
A line 16 on the upstream side of the pressure increase valve 8 is connected to a bypass line 17 having a solenoid valve 20. The ta valve 20 is electrically connected to the sensor 19. During steady operation of the Stirling engine, the solenoid valve 20 is in the open state and the compressor 3 is closed.
The working gas from the line 16 to the bypass line 17
The air returns to the compressor 3 through the line 15, and the suction and discharge amounts of the compressor 3 are the same, and the compressor 3 does no compression work.

操作レバー11を、弁棒13を押し、減圧弁5を開とさ
せるよう変位すると、この操作レバー11の動きはセン
サ19を閉じ、電磁弁20へ通電をなし、該電磁弁20
を閉じる。この結果、バイパス回路は閉じることになり
、作動空間1の作動ガスは、最高サイクル圧ライン4、
減圧弁5お工びライン15を介して、圧縮器3に吸入さ
れ、圧縮された作動ガスは、ライン16に吐出され、作
動空間1の圧が下がり、スターリング機関の出力が減少
する。出力減少状態が安定すると、可動支点14が動き
、操作レノ(−11の弁棒13を押す力はなくなり、減
圧弁5が閉じ、又、センサ19も電磁弁20への通電。
When the operating lever 11 is displaced so as to push the valve stem 13 and open the pressure reducing valve 5, this movement of the operating lever 11 closes the sensor 19, energizes the solenoid valve 20, and causes the solenoid valve 20 to close.
Close. As a result, the bypass circuit is closed, and the working gas in the working space 1 is transferred to the highest cycle pressure line 4,
The compressed working gas is drawn into the compressor 3 through the pressure reducing valve 5 and the line 15, and is discharged into the line 16, reducing the pressure in the working space 1 and reducing the output of the Stirling engine. When the output reduction state becomes stable, the movable fulcrum 14 moves, the force pushing the valve stem 13 of the operating lever (-11) disappears, the pressure reducing valve 5 closes, and the sensor 19 also energizes the solenoid valve 20.

を切る。このため、電磁弁20が開となり、・(イパス
回路が復帰する。
cut. Therefore, the solenoid valve 20 is opened, and the I-pass circuit is restored.

(効果) 本発明では、バイパス回路に組込まれる弁の位置は、操
作レバーの位置と無関保に選定できるので、設計の自由
度が高い。又、バイパスラインを圧縮器の吸入、吐出弁
に近接して設けてるので、バイパスラインの長さを短く
シ、作動ガスの流れ抵抗を小さくシ、圧縮器の負担をよ
り軽くすることができる。
(Effects) In the present invention, the position of the valve incorporated in the bypass circuit can be selected independently of the position of the operating lever, so there is a high degree of freedom in design. Furthermore, since the bypass line is provided close to the suction and discharge valves of the compressor, the length of the bypass line can be shortened, the flow resistance of the working gas can be reduced, and the burden on the compressor can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す説明図、および第2図は
従来例を示す説明図である。 図中=1・・・作動空間、3・・・圧縮機、4・・・最
高サイクル圧ライン、5・・・減圧弁、7・・・最低サ
イクル圧ライン、8・・・増圧弁、11・・・操作レバ
ー、19・・・センサ、20・・・電磁弁。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a conventional example. In the diagram = 1... working space, 3... compressor, 4... highest cycle pressure line, 5... pressure reducing valve, 7... lowest cycle pressure line, 8... pressure increasing valve, 11 ...Operation lever, 19...Sensor, 20...Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 作動空間を逆止弁を介して作動ガス圧縮機および作動ガ
ス貯蔵タンクに連結させる最高サイクルラインに減圧弁
を設け、さらに、前記作動空間を逆止弁を介して前記作
動ガス貯蔵タンクに連結する最低サイクル圧ラインに増
圧弁を設け、前記増減圧弁を可動支点を中心として揺動
する操作レバーにより開閉制御するスターリング機関の
出力制御装置において、前記減圧弁の下流側と前記増圧
弁の上流側とを結ぶバイパス回路に電磁弁を配し、前記
操作レバーを前記減圧弁の開弁方向に動かした時作動す
るセンサを配し、該センサの出力により前記電磁弁の開
閉を制御させることを特徴とするスターリング機関の出
力制御装置。
A pressure reducing valve is provided in the highest cycle line that connects the working space to the working gas compressor and the working gas storage tank through a check valve, and further connects the working space to the working gas storage tank through the check valve. An output control device for a Stirling engine in which a pressure increaser valve is provided in a minimum cycle pressure line and the pressure increaser/reducer valve is controlled to open and close by an operating lever that swings about a movable fulcrum, the downstream side of the pressure reducer valve and the upstream side of the pressure increaser valve. A solenoid valve is disposed in a bypass circuit connecting the pressure reducing valve, a sensor is disposed that is activated when the operating lever is moved in the opening direction of the pressure reducing valve, and opening and closing of the solenoid valve is controlled by the output of the sensor. Stirling engine output control device.
JP4823285A 1985-03-13 1985-03-13 Output control device of stirling engine Granted JPS61207864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4823285A JPS61207864A (en) 1985-03-13 1985-03-13 Output control device of stirling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4823285A JPS61207864A (en) 1985-03-13 1985-03-13 Output control device of stirling engine

Publications (2)

Publication Number Publication Date
JPS61207864A true JPS61207864A (en) 1986-09-16
JPH0318030B2 JPH0318030B2 (en) 1991-03-11

Family

ID=12797692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4823285A Granted JPS61207864A (en) 1985-03-13 1985-03-13 Output control device of stirling engine

Country Status (1)

Country Link
JP (1) JPS61207864A (en)

Also Published As

Publication number Publication date
JPH0318030B2 (en) 1991-03-11

Similar Documents

Publication Publication Date Title
KR100292418B1 (en) Apparatus for compression control of exhaust gas refiller
JPH0644871A (en) Circuit breaker
JPS61207864A (en) Output control device of stirling engine
JP2901547B2 (en) Control device for air press machine
US4219312A (en) Volume control system for compressor unit
JPH0791969B2 (en) Valve drive for internal combustion engine
JPS603436A (en) Exhaust brake system
JPH0128217B2 (en)
CN218377935U (en) Gas circuit structure of eccentric butterfly valve during high pressure difference
CN2278992Y (en) High voltage breaker actuator
CN212838655U (en) Anti-jamming built-in spring type cylinder
JPH07217401A (en) Hydraulic system for hydraulic driving gear for high-voltage circuit breaker
CN216518787U (en) Air passage control system of anti-surge valve actuating mechanism
CN212376999U (en) Control structure for quickly opening large hydraulic two-way cartridge valve
CN2620099Y (en) Electrocontrolled pneumatic oil stopping device
JPS6222037Y2 (en)
JPH0247820Y2 (en)
JPH07317428A (en) Door opening/closing device
CN207673783U (en) The pressure difference of opening natural gas compression system vibrates vibration-proof structure
JPS623157A (en) Working gas pressure control device for stirling engine
JPS61123718A (en) Variable nozzle controller for turbosupercharger
JPS60198361A (en) Output controller for stirling engine
JP2889813B2 (en) Valve drive
SU1186827A1 (en) Automatic pneumatic installation
JPH077592Y2 (en) Compressor capacity control device