JPS6120767B2 - - Google Patents

Info

Publication number
JPS6120767B2
JPS6120767B2 JP1514979A JP1514979A JPS6120767B2 JP S6120767 B2 JPS6120767 B2 JP S6120767B2 JP 1514979 A JP1514979 A JP 1514979A JP 1514979 A JP1514979 A JP 1514979A JP S6120767 B2 JPS6120767 B2 JP S6120767B2
Authority
JP
Japan
Prior art keywords
voltage
thermocouple
temperature
cold junction
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1514979A
Other languages
Japanese (ja)
Other versions
JPS55107834A (en
Inventor
Masahiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1514979A priority Critical patent/JPS55107834A/en
Publication of JPS55107834A publication Critical patent/JPS55107834A/en
Publication of JPS6120767B2 publication Critical patent/JPS6120767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は例えば石油等の液体燃料を気化させて
燃焼させる燃焼器に使用される気化ヒータのサー
モ回路に関し、特に温度センサとして熱電対を使
用した時に熱起電圧増巾のためのオペアンプのオ
フセツト調整及び熱電対の冷接点周囲温度による
影響の補正を簡単化した気化ヒータサーモ回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermocircuit for a vaporization heater used in a combustor that vaporizes and burns liquid fuel such as petroleum, and particularly relates to a thermoelectromotive voltage amplification circuit when a thermocouple is used as a temperature sensor. This invention relates to a vaporization heater thermocircuit that simplifies the offset adjustment of an operational amplifier and the correction of the influence of the cold junction ambient temperature of a thermocouple.

従来、例えば石油ガス化燃焼器の気化面温度は
石油ガス化に関し重要なもので正確な温度を検出
しなければならず、気化ヒータサーモ回路の温度
センサには高温という環境にも充分耐えうるもの
として熱電対が一般に使用されているが、熱起電
圧の温度係数が小さいために増巾しなければなら
ず、これにはオペアンプが使用されている。
Conventionally, for example, the temperature of the vaporization surface of an oil gasification combustor is important for oil gasification and must be detected accurately, and the temperature sensor of the vaporization heater thermocircuit has been designed to be able to withstand the high temperature environment. Thermocouples are commonly used, but because the temperature coefficient of thermoelectromotive voltage is small, they must be amplified, and operational amplifiers are used for this purpose.

しかしながら、オペアンプ自体にオフセツト電
圧及び電流ドリフト等の問題があり、これら影響
を熱電対の起電圧増巾に与えないためにオペアン
プごとに調整を必要としていた。また、熱電対の
熱起電圧の零点補償もしなければならず、熱電対
の回路側の冷接点周囲温度をサーミスタ等で検知
して得る電圧と、前述のオペアンプによつて増巾
された熱起電圧とを2段目のオペアンプに入力し
冷接点周囲温度による影響の補正を行なつた出力
電圧を得た後、この出力電圧と気化ヒータの設定
温度に対応した電圧とをコンパレータで比較し得
られた出力信号によつて負荷となる気化ヒータを
オン・オフするという回路構成がとられてきた。
更に冷接点周囲温度補正後の出力電圧は、2段目
のオペアンプのオフセツト電圧及び電流、温度ド
リフト等の影響を入力電圧との関係で相対的に小
さくできても回路定数のばらつき等の影響で設定
温度で気化ヒータをオン・オフ動作させるために
は調整する必要があつた。
However, the operational amplifier itself has problems such as offset voltage and current drift, and it has been necessary to adjust each operational amplifier to prevent these effects from affecting the electromotive voltage amplification of the thermocouple. It is also necessary to compensate for the zero point of the thermoelectromotive voltage of the thermocouple, and the voltage obtained by detecting the ambient temperature of the cold junction on the circuit side of the thermocouple with a thermistor, and the thermoelectromotive voltage amplified by the aforementioned operational amplifier. After inputting the voltage to the second-stage operational amplifier to obtain an output voltage that corrects the influence of the cold junction ambient temperature, a comparator can compare this output voltage with the voltage corresponding to the set temperature of the evaporative heater. A circuit configuration has been adopted in which the vaporization heater serving as a load is turned on and off based on the output signal.
Furthermore, even if the effects of the offset voltage and current of the second stage operational amplifier, temperature drift, etc. can be made relatively small in relation to the input voltage, the output voltage after cold junction ambient temperature correction is affected by variations in circuit constants, etc. It was necessary to make adjustments in order to turn the vaporization heater on and off at the set temperature.

この様に従来のこの種サーモ回路はオペアンプ
のオフセツト電圧及び電流、温度ドリフトの補償
のための調整、熱電対の冷接点周囲温度補償後の
増巾出力の調整等が別々に行なわれており、調整
が複雑であるばかりか、部品点数が多く生産コス
トの増大・信頼性の低下など多くの欠点を有して
いた。
In this way, in conventional thermo circuits of this type, adjustments are made separately to compensate for the operational amplifier's offset voltage and current, temperature drift, and the amplified output after compensating for the ambient temperature of the thermocouple's cold junction. Not only is adjustment complicated, but it also has many drawbacks, such as a large number of parts, increased production costs, and decreased reliability.

本発明は上記の欠点を解消するためなされたも
ので、オペアンプのオフセツト電圧及び電流、熱
電対の冷接点周囲温度による影響等の補償を1ヶ
所の調整で行なえるよう回路構成することによ
り、調整が簡単で部品点数が少なく信頼性の高い
気化ヒータサーモ回路を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned drawbacks, and has a circuit configuration that allows compensation for the offset voltage and current of the operational amplifier, the influence of the ambient temperature of the cold junction of the thermocouple, etc., by making adjustments at one location. The purpose of the present invention is to provide a vaporization heater thermocircuit that is simple, has a small number of parts, and is highly reliable.

以下、本発明の1実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に本実施例の回路を示し、図中、1は直
流電源、2は気化面の温度を検知する温度センサ
としての熱電対、Aはブランチ回路で、直流電源
1の高電位側から低電位側へ向かつて直列接続さ
れた3〜7の各抵抗と、抵抗4に並列接続され熱
電対2の冷接点周囲温度を検出する8のサーミス
タとで構成されている。9は抵抗4,5間と抵抗
6,7間とに接続された半固定抵抗で、この可動
端子は熱電対2の冷接点の+側(図中a点)に接
続されている。Bは反転増巾回路で、ブランチ回
路Aと並列接続した電源入力線を有する11のオ
ペアンプと12〜14の各抵抗とで構成され、オ
ペアンプ11は熱電対2の−側(図中b点)の電
圧と、抵抗5,6間の分圧点c電圧を入力信号と
している。Cはロー・パス・フイルタで、15,
16の各抵抗と17のコンデンサとで構成されて
いる。20はコンパレータで、その非反転入力端
子へは反転増巾回路Bの出力信号がロー・パス・
フイルタCを介して入力され、反転入力端子へは
気化面設定温度に対応した電圧が入力する。前記
電圧は21,22の抵抗により直流電源1の電圧
を分圧して得られる。23はコンパレータ20の
出力により駆動されるリレーで、このリレー23
の接点により図示しない気化ヒータをオン・オフ
して設定温度付近に気化面温度を保つ。尚、25
〜27はコンデンサ、28はダイオードである。
Figure 1 shows the circuit of this embodiment. In the figure, 1 is a DC power supply, 2 is a thermocouple as a temperature sensor that detects the temperature of the vaporization surface, and A is a branch circuit, which is connected to the high potential side of the DC power supply 1. It consists of 3 to 7 resistors connected in series toward the low potential side, and 8 thermistors connected in parallel to the resistor 4 to detect the ambient temperature of the cold junction of the thermocouple 2. A semi-fixed resistor 9 is connected between the resistors 4 and 5 and between the resistors 6 and 7, and its movable terminal is connected to the + side of the cold junction of the thermocouple 2 (point a in the figure). B is an inverting amplification circuit, which is composed of 11 operational amplifiers having a power input line connected in parallel with branch circuit A and each resistor 12 to 14, and operational amplifier 11 is connected to the - side of thermocouple 2 (point b in the figure). The voltage at the voltage dividing point c between the resistors 5 and 6 are used as input signals. C is a low pass filter, 15,
It consists of 16 resistors and 17 capacitors. 20 is a comparator whose non-inverting input terminal receives the output signal of the inverting amplification circuit B in a low-pass manner.
The voltage is inputted via filter C, and a voltage corresponding to the set temperature of the vaporizing surface is inputted to the inverting input terminal. The voltage is obtained by dividing the voltage of the DC power supply 1 using resistors 21 and 22. 23 is a relay driven by the output of the comparator 20;
The vaporization heater (not shown) is turned on and off using the contacts to maintain the vaporization surface temperature near the set temperature. In addition, 25
27 is a capacitor, and 28 is a diode.

また、熱電対2の熱起電圧発生のための温度分
布は気化面(温接点側)温度をT1冷接点周囲温
度をT2とすると第2図の如くなつている。図
中、V2はT1,T2の温度差によりa,b間に発生
する熱起電圧である。この熱電対2による温度測
定では、気化面温度T1が一定に保たれていても
冷接点周囲温度T2が変化すれば発生する熱起電
圧V2が変わり、第3図に示すように冷接点周囲
温度T2が高くなるほど熱起電圧V2は低下する
(第3図中、T2′〜T2は冷接点周囲温度を示し
T2′<T2″<T2の関係にある)。従つて、熱電対
による温度測定では必ず回路に接続される冷接点
周囲温度の影響を取り除くための補正を行う必要
がある。
Further, the temperature distribution for generating a thermoelectromotive voltage of the thermocouple 2 is as shown in FIG. 2, where the vaporization surface (hot junction side) temperature is T1 and the cold junction ambient temperature is T2 . In the figure, V 2 is a thermoelectromotive voltage generated between a and b due to the temperature difference between T 1 and T 2 . In temperature measurement using this thermocouple 2, even if the vaporizing surface temperature T 1 is kept constant, if the cold junction ambient temperature T 2 changes, the generated thermoelectromotive force V 2 changes, and as shown in Figure 3, the thermoelectromotive voltage V 2 changes. The higher the contact ambient temperature T 2 is, the lower the thermoelectromotive force V 2 is (in Figure 3, T 2 ′ to T 2 indicate the cold junction ambient temperature).
(The relationship is T 2 ′<T 2 ″<T 2. ) Therefore, when measuring temperature with a thermocouple, it is necessary to make a correction to remove the influence of the ambient temperature of the cold junction connected to the circuit.

この熱電対の補正は本実施例の回路ではブラン
チ回路Aとこれに接続された半固定抵抗9で行な
い、また、同時にオペアンプ11のオフセツト電
圧及び電流、温度ドリフトなどの補償調整も行な
うことができる。
In the circuit of this embodiment, this thermocouple correction is performed using the branch circuit A and the semi-fixed resistor 9 connected thereto, and at the same time, compensation adjustment for the offset voltage and current of the operational amplifier 11, temperature drift, etc. can also be performed. .

次にこれら調整のための操作を説明する。 Next, operations for these adjustments will be explained.

まず、ブランチ回路Aの抵抗5と6との間の分
圧点cの電圧をV1とすると、V1は冷接点周囲温
度T2が上昇するとサーミスタ8の抵抗値が下が
り昇圧し、逆にT2が降下すると降圧するためそ
の特性は第4図に示す直線のようになる。
First, if the voltage at the voltage dividing point c between the resistors 5 and 6 of the branch circuit A is V1 , then when the cold junction ambient temperature T2 increases, the resistance value of the thermistor 8 decreases and the voltage increases, and vice versa. As T 2 decreases, the voltage decreases, so its characteristics become as shown in the straight line shown in FIG.

一方、ブランチ回路Aの抵抗5,6に並列接続
された半固定抵抗9は電圧V1に対してプラス或
いはマイナスの可変電圧を、その可動部と熱電対
2の+極側との接続点aに発生させることができ
る。ここで、熱電対2だけの補償を考えると、今
a点とc点との電位が同じになるよう半固定抵抗
9を調節すれば、熱起電圧V2が反転増巾回路B
の入力間電圧V3となる。反転増巾回路Bの入力
側c点と出力端d点との高圧V4は前記増巾回路
Bの利得で決まりV4=A・V3の関係があり、従
つて、V4=A・V2となる。そして、前述のc点
の電圧V1と前記電圧V4との和が反転増巾回路B
の出力電圧V5となる。これより周囲温度の影響
による電圧V1とV4との変化率を合わせておけば
電圧V4の特性は第4図中直線となり、従つて
冷接点周囲温度の影響が相殺され電圧V5の特性
は第4図の直線となるので出力電圧V5は冷接
点周囲温度とは無関係となる。尚、サースタ8に
よる冷接点周囲温度の補正には熱起電圧V2の補
正と、反転増巾回路Bの温度ドリフトによる補正
分が考慮してあるため回路特性は冷接点周囲温度
による影響を受けることがなくなる。
On the other hand, the semi-fixed resistor 9 connected in parallel to the resistors 5 and 6 of the branch circuit A applies a variable voltage that is positive or negative to the voltage V 1 at the connection point a between the movable part and the + pole side of the thermocouple 2. can be generated. Now, considering compensation for only the thermocouple 2, if the semi-fixed resistor 9 is adjusted so that the potentials at points a and c are the same, the thermoelectromotive voltage V 2 will be reversed by the amplifying circuit B.
The voltage between the inputs is V3 . The high voltage V 4 between the input side point c and the output end point d of the inverting amplification circuit B is determined by the gain of the amplification circuit B, and there is a relationship of V 4 =A·V 3 , therefore, V 4 =A· It becomes V 2 . Then, the sum of the voltage V 1 at the point c and the voltage V 4 is the inverting amplifier circuit B.
The output voltage will be V5 . From this, if we match the rate of change of voltages V 1 and V 4 due to the influence of ambient temperature, the characteristics of voltage V 4 will become a straight line in Fig. 4, and therefore the influence of the cold junction ambient temperature will be canceled out, and the voltage V 5 will be Since the characteristic is the straight line shown in FIG. 4, the output voltage V5 is independent of the ambient temperature of the cold junction. In addition, since the correction of the cold junction ambient temperature by the surstar 8 takes into account the correction of the thermal electromotive voltage V 2 and the correction due to the temperature drift of the inverting amplification circuit B, the circuit characteristics are affected by the cold junction ambient temperature. Things will disappear.

また、熱起電圧増巾にあたつてオペアンプ11
のオフセツト電圧及び電流の影響があり、このオ
フセツトの影響を吸収しないと例えば電圧V4
第4図の直線′のよようになり、出力電圧V5
′のようになつてかなりの影響が現われる。ま
た、ブランチ回路Aの抵抗のばらつきによりV1
の電圧特性が直線′となり、V4の電圧特性は更
に直線まで変化する。これらオフセツト等の
影響を取り除くには冷接点周囲温度の補正と同様
に半固定抵抗9を調節して分圧点cに対する熱電
対のa点の電位を調整すればよい。従つて、冷接
点周囲温度及びオフセツト等の影響を合わせて補
正する場合には両者の影響を合わせた電圧変化を
考慮して半固定抵抗9を調節し分圧点cに対しa
点の電位を調整すればよく、極めて補正操作を簡
単かつ精度良く行なうことができる。
In addition, in order to increase the thermoelectromotive voltage, the operational amplifier 11
There is an effect of offset voltage and current of appear. Also, due to variations in the resistance of branch circuit A, V 1
The voltage characteristics of V 4 become a straight line ′, and the voltage characteristics of V 4 further change to a straight line. In order to remove the influence of these offsets, etc., the potential of the thermocouple point a relative to the voltage dividing point c can be adjusted by adjusting the semi-fixed resistor 9 in the same manner as the correction of the cold junction ambient temperature. Therefore, when correcting the effects of the cold junction ambient temperature and offset, etc., the semi-fixed resistor 9 is adjusted by taking into account the voltage change that combines the effects of both, and a
It is only necessary to adjust the potential at a point, and the correction operation can be performed extremely easily and accurately.

この操作によつて得られた反転増巾回路Bから
の出力電圧V5はロー・パス・フイルタCを介し
てコンパレータ20の非反転入力端子へ電圧V7
となつて入力される。一方、コンパレータ20の
反転入力端子には設定温度に対応した、抵抗2
1,22の分圧比による電圧V6が入力してお
り、前記V6とV7とを比較し、第5図に示すよう
にV6>V7(気化面温度T1が設定温度より低い)
の場合はリレー23を駆動し気化ヒータへ通電
し、V6<V7(気化面温度T1が設定温度より高
い)の場合は気化ヒータへの通電を停止させる。
そして、前述の動作の切替点Eの変動をなくすこ
とができる。
The output voltage V5 from the inverting amplification circuit B obtained by this operation is applied to the non-inverting input terminal of the comparator 20 via the low pass filter C as a voltage V7.
It is input as follows. On the other hand, the inverting input terminal of the comparator 20 has a resistor 2 corresponding to the set temperature.
A voltage V 6 with a partial voltage ratio of 1 and 22 is input , and the voltage V 6 and V 7 are compared, and as shown in FIG . )
In this case, the relay 23 is driven to energize the vaporization heater, and when V 6 <V 7 (the vaporization surface temperature T 1 is higher than the set temperature), the energization to the vaporization heater is stopped.
Further, the above-mentioned fluctuation in the switching point E of the operation can be eliminated.

以上述べたように本発明によれば、半固定抵抗
の抵抗値を調節するという1度の操作で全ての影
響を取り除くことができるので、調整が極めて簡
単かつ精度良く行なえると共に、部品点数が少な
くてすみサーモ回路が安価で信頼性の高いものを
得ることができる。
As described above, according to the present invention, all effects can be removed with a single operation of adjusting the resistance value of the semi-fixed resistor, so adjustment can be performed extremely easily and accurately, and the number of parts can be reduced. It is possible to obtain a thermo circuit with low cost and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による気化ヒータサーモ回路の
1実施例を示す回路図、第2図は同上サーモ回路
の熱電対の温度分布図、第3図は熱電対の冷接点
周囲温度を変えたときの熱起電圧―測定温度のグ
ラフ、第4図は冷接点周囲温度変化に対する回路
各部の電圧変化を示す図、第5図は調整後のコン
パレータ入力電圧関係を示す図である。 A…ブランチ回路、B…反転増巾回路、C…ロ
ー・パス・フイルタ、2…熱電対、8…サーミス
タ、9…半固定抵抗、11…オペアンプ。
Fig. 1 is a circuit diagram showing one embodiment of the vaporization heater thermocircuit according to the present invention, Fig. 2 is a temperature distribution diagram of the thermocouple of the same thermocircuit, and Fig. 3 is a diagram showing the temperature distribution of the thermocouple when the ambient temperature of the cold junction of the thermocouple is changed. A graph of thermoelectromotive voltage vs. measured temperature, FIG. 4 is a diagram showing voltage changes in various parts of the circuit with respect to changes in the ambient temperature of the cold junction, and FIG. 5 is a diagram showing the comparator input voltage relationship after adjustment. A... Branch circuit, B... Inverting amplifier circuit, C... Low pass filter, 2... Thermocouple, 8... Thermistor, 9... Semi-fixed resistor, 11... Operational amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 気化ヒータで加熱される燃焼器気化面の温度
を測定する温度センサとしての熱電対からの信号
をオペアンプを用いた増巾回路で増巾し、この増
巾出力をロー・パス・フイルタを介してコンパレ
ータに入力して該コンパレータで気化面設定温度
にに対応する電圧値と比較し気化ヒータをオン・
オフさせるよう構成した燃焼器用気化ヒータサー
モ回路において、前記増巾回路内のオペアンプの
電源入力線と並列に、前記熱電対の冷接点周囲温
度検知用サーミスタと複数の抵抗とからなるプラ
ンチ回路を設けると共に、該プランチ回路内の適
当な分圧点電圧に対して正負の可変電圧を取り出
せるよう半回定抵抗を接続して該半固定抵抗の可
動端子と熱電対の冷接点の一端を接続し、熱電対
の他の冷接点と前記分圧点とを前記オペアンプの
入力端子に接続したことを特徴とする燃焼器用気
化ヒータサーモ回路。
1 The signal from the thermocouple, which serves as a temperature sensor that measures the temperature of the combustor vaporization surface heated by the vaporization heater, is amplified by an amplifier circuit using an operational amplifier, and the amplified output is passed through a low-pass filter. is input to the comparator, and the comparator compares it with the voltage value corresponding to the set temperature of the vaporization surface to turn on the vaporization heater.
In the combustor vaporization heater thermocircuit configured to be turned off, a plant circuit consisting of a thermistor for detecting the ambient temperature of the cold junction of the thermocouple and a plurality of resistors is provided in parallel with the power input line of the operational amplifier in the amplification circuit; , connect a semi-fixed resistor so that positive and negative variable voltages can be extracted from the appropriate voltage dividing point voltage in the plant circuit, connect the movable terminal of the semi-fixed resistor to one end of the cold junction of the thermocouple, and create a thermoelectric A vaporization heater thermocircuit for a combustor, characterized in that the other cold junction of the pair and the voltage dividing point are connected to an input terminal of the operational amplifier.
JP1514979A 1979-02-13 1979-02-13 Themocouple circuit for evaporation heater of combuster Granted JPS55107834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1514979A JPS55107834A (en) 1979-02-13 1979-02-13 Themocouple circuit for evaporation heater of combuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1514979A JPS55107834A (en) 1979-02-13 1979-02-13 Themocouple circuit for evaporation heater of combuster

Publications (2)

Publication Number Publication Date
JPS55107834A JPS55107834A (en) 1980-08-19
JPS6120767B2 true JPS6120767B2 (en) 1986-05-23

Family

ID=11880737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1514979A Granted JPS55107834A (en) 1979-02-13 1979-02-13 Themocouple circuit for evaporation heater of combuster

Country Status (1)

Country Link
JP (1) JPS55107834A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616887B1 (en) * 1987-06-19 1990-03-09 Theobald Sa A THERMOELECTRIC DEVICE FOR FLAME MONITORING AND IGNITION AND EXTINGUISHING SAFETY FOR GAS BURNER
JP4814595B2 (en) * 2005-09-15 2011-11-16 パナソニック株式会社 Amplifier circuit for control

Also Published As

Publication number Publication date
JPS55107834A (en) 1980-08-19

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US3898554A (en) Measured-value transducer with a compensating bridge circuit
US6320450B1 (en) Temperature sensing circuit using thermopile sensor
US8026460B2 (en) Control circuit for thermostatic oven in oven controlled crystal oscillator
US4667166A (en) Differential amplifier system
JP2005534014A (en) Variable resistance sensor with a common reference leg
JP2005534014A5 (en)
JPH0349374B2 (en)
US4497586A (en) Celsius electronic thermometer circuit
US4241303A (en) Linearization circuit
US6158887A (en) Correction for parasitic voltages in resistance thermometry
JP2004514230A (en) Method of adjusting BGR circuit and BGR circuit
JP3222367B2 (en) Temperature measurement circuit
JP2001141757A (en) Sensor device using hall element
JPS6120767B2 (en)
US3650154A (en) Thermocouple input temperature sensing circuitry
US3521164A (en) Rms voltage measuring apparatus
US3339412A (en) Capacitance measuring apparatus
US3528022A (en) Temperature compensating networks
JPH116751A (en) Thermal-type flowmeter
JPH10148557A (en) Flow rate sensor circuit, and method for adjusting its sensor output
RU1778556C (en) Device for measuring temperature difference
JP2576414B2 (en) AC level detection circuit
KR101446759B1 (en) Output specification calibrating apparatus for a capacitance press sensor
JPH0750134B2 (en) AC / DC difference comparison device for thermoelectric AC / DC converter