JPS61207506A - Method for protecting lining of vacuum degassing device for molten steel - Google Patents

Method for protecting lining of vacuum degassing device for molten steel

Info

Publication number
JPS61207506A
JPS61207506A JP60047235A JP4723585A JPS61207506A JP S61207506 A JPS61207506 A JP S61207506A JP 60047235 A JP60047235 A JP 60047235A JP 4723585 A JP4723585 A JP 4723585A JP S61207506 A JPS61207506 A JP S61207506A
Authority
JP
Japan
Prior art keywords
lining
molten steel
vacuum degassing
degassing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047235A
Other languages
Japanese (ja)
Inventor
Tatsuo Matsumura
松村 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP60047235A priority Critical patent/JPS61207506A/en
Publication of JPS61207506A publication Critical patent/JPS61207506A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To decrease the damage of lining refractories of a vacuum degassing device for a molten steel, etc., lined with carbon-contg. refractories and to extend the service life thereof by introducing an inert gas into a degassing vessel in a vacuum state after the degassing treatment of the molten steel. CONSTITUTION:The lining of the degassing vessel of the vacuum degassing device of an RH type, DH type, etc., for the molten steel is executed by stamping and calcining the refractory material prepd. by adding a binder such as phenolic resin, furan resin, pitch or tar to the refractory material consisting of oxide or carbide refractories contg. >=5wt% carbonaceous raw materials such as graphite, pitch coke or electrode scrap and consisting of the balance magnesia, calcia, dolomite clinker, alumina, spinel, zirconia, silicon carbide, boron carbide, etc., and kneading the mixture. The molten steel is refined by the vacuum degassing in such vacuum degassing vessel and thereafter the inexpensive inert gas such as nitrogen is introduced in the degassing vessel, by which the early damage of the refractory lining by the spalling arising from the oxidation of the carbon of the refractory lining is prevented.

Description

【発明の詳細な説明】 (産業上の利Jl−j分野) 本発明は、炭素含有耐火物で内張すされた溶鋼真空脱ガ
ス、装置の内張りを保護する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for protecting the lining of molten steel vacuum degassing and equipment lined with carbon-containing refractories.

(従来の技術) 溶鋼の真空脱ガス処理は、水素に起因する高級鋼の欠陥
をなくする目的で開発使用されたのであるが、最近では
脱酸、脱炭処理、連続鋳造を目的とした普通鋼の大量処
理、特殊錆の製造など、その用途は急速に拡大されてい
る。これに使用される真空脱ガス装置のウェアーライニ
ングとしては焼成マグクロ煉瓦が最も一般的である。し
かし、焼成マグクロ煉瓦はスラブを吸収して変質層を生
成し、さらに湿度変動が加えられると、この変質層に亀
裂を発生ずるいわゆる構造的スポーリングを起す欠点が
あり、湿度変動の大きい真空脱ガス装置では内張りの剥
落による損傷によって寿命が短い。
(Prior art) Vacuum degassing treatment of molten steel was developed and used for the purpose of eliminating defects in high-grade steel caused by hydrogen, but recently it has been used for the purpose of deoxidizing, decarburizing, and continuous casting. Its applications are rapidly expanding, including mass processing of steel and production of special rust. The most common wear lining for the vacuum degassing equipment used for this purpose is fired maguro bricks. However, fired maguro bricks absorb slabs and form an altered layer, and when humidity fluctuations are applied, this altered layer cracks, causing so-called structural spalling. Gas equipment has a short service life due to damage caused by peeling of the lining.

この対策として、スラブが全く浸透せず構造的スポーリ
ングを起さない内張り材質として例えばマグネシア−炭
素質煉瓦などの炭素含有耐火物を使用することが試みら
れている。
As a countermeasure to this problem, attempts have been made to use carbon-containing refractories such as magnesia-carbon bricks as lining materials that do not penetrate the slab at all and do not cause structural spalling.

(発明が解決しようとする問題点) しかし、炭素含有耐火物は、使用初期の溶損は少ないが
末期になると急速に溶損が進み、耐用性の面で結局は従
来の焼成マククロ煉瓦と変わらなくなる。この理II口
3ついて研究したところ、溶鋼咎真空脱ガス処理した後
、次の処理を行うまでの待機中に槽内の温度が低下する
と内張りの稼動面に目地切れを生し、そこから侵入した
空気がウェアーライニングとパーマネジ1〜ライニング
、又はウェアーライニングと準パーマネン1〜ライニン
グの間に設けた膨張吸収層でウェアーライニングの背面
全面に拡散し、炭素含有耐火物中のカーボンを酸化消失
させるためであることがわかった。膨張吸収層は一般に
モルタル、キャスタブル、スタンプ材などの多孔質材質
からなり、しかも厚さが5〜20mmと厚いために空気
が通りやすい構造となっている。
(Problem to be solved by the invention) However, although carbon-containing refractories suffer little erosion in the early stages of use, erosion rapidly progresses in the later stages of use, and in terms of durability, they end up being no different from conventional fired macro bricks. It disappears. When we researched this theory, we found that after vacuum degassing of molten steel, if the temperature inside the tank drops while waiting for the next treatment, cracks will form on the working surface of the lining, and intrusion will occur from there. The air diffuses over the entire back surface of the wear lining through the expansion absorption layer provided between the wear lining and the permanent screw 1~lining, or between the wear lining and the semi-permanent screw 1~lining, and oxidizes and eliminates carbon in the carbon-containing refractory. It turned out to be. The expansion absorbing layer is generally made of a porous material such as mortar, castable material, or stamp material, and has a thickness of 5 to 20 mm, so that air can easily pass through it.

炭素含有耐火物の酸化防止技術は種々提案されているが
、これを真空脱ガス装置の内張りに使用した場合は、十
分な効果は得られなかった。例えば特開昭54−121
−0号公報には、電気炉天井用炭素含有煉瓦の酸化防止
として、金属板で煉瓦を覆っている。しかし、真空脱ガ
ス装置の場合は電気炉などに使用する場合と異なり、操
業中に金属板は酸化されることがなく金属状で溶解流出
し、内張りが目加して炭素含有耐火物の酸化を防止する
方法が提案されている。これら金属粉末の添加景は転炉
などの内張りでは3wt%程度でたりるが、真空脱ガス
装置では10wt%未満では酸化防止効果が十分でない
。10wt%を超えると酸化はしなくなるものの、金属
粉末が低融点物質のために多量の添加で耐蝕性が低下す
る。
Various anti-oxidation techniques for carbon-containing refractories have been proposed, but when used for the lining of vacuum degassing equipment, sufficient effects have not been obtained. For example, JP-A-54-121
In Publication No.-0, in order to prevent the oxidation of carbon-containing bricks for the ceiling of an electric furnace, the bricks are covered with a metal plate. However, in the case of vacuum degassing equipment, unlike when used in electric furnaces, the metal plate is not oxidized during operation and melts and flows out in a metallic state, and the lining adds to the oxidation of carbon-containing refractories. Methods have been proposed to prevent this. The addition of these metal powders is about 3 wt % in the lining of a converter, etc., but in a vacuum degassing device, if it is less than 10 wt %, the oxidation prevention effect is not sufficient. If the amount exceeds 10 wt%, oxidation will not occur, but since the metal powder is a low melting point substance, corrosion resistance will decrease if a large amount is added.

(問題点を解決するための手段) 真空脱ガス装置は真空操業されるので操業中は当然酸素
濃度が低く、炭素含有耐火物が酸化されることもない。
(Means for Solving the Problems) Since the vacuum degassing apparatus is operated in a vacuum, the oxygen concentration is naturally low during operation, and the carbon-containing refractory is not oxidized.

そこで、溶鋼な真空脱ガス処理した後、っぎの処理を行
うまでの待機中に、脱ガス槽内を不活性ガス雰囲気に保
ち、内張りの酸化防止を図ること咎考えた。ところが、
待機中に単に不活性ガスを導入しても効果は極めて少な
かった。
Therefore, we thought of keeping the interior of the degassing tank in an inert gas atmosphere to prevent oxidation of the lining during the standby period after the vacuum degassing treatment of molten steel and before the next treatment. However,
Simply introducing inert gas during standby had very little effect.

これは酸化が問題になる耐火物背面部へ不活性ガスが行
きわたらないためと、既に空気の侵入で酸化が進行して
いるある際に、脱ガス槽内に不活性ガス髪導入すると内
張り背面の酸化を防止できることを知り、本発明を完成
させたものである。
This is because inert gas does not reach the back of the refractory where oxidation is a problem, and when oxidation has already progressed due to air intrusion, if inert gas is introduced into the degassing tank, the back of the lining The present invention was completed after discovering that the oxidation of

すなわち本発明は、炭素含有耐火物で内張りした真空脱
ガス装置において、溶鋼の真空脱ガス処理を終えた後、
脱ガス槽が真空状態下に不活性ガスを導入し、脱ガス槽
内を不活性ガス雰囲気にすることを特徴とする溶鋼真空
脱ガス装置の内張り保護方法である。
That is, the present invention provides a vacuum degassing device lined with a carbon-containing refractory, after completing vacuum degassing treatment of molten steel,
This is a method for protecting the lining of a vacuum degassing apparatus for molten steel, characterized in that an inert gas is introduced into the degassing tank under a vacuum condition to create an inert gas atmosphere inside the degassing tank.

真空脱ガス装置に内張すされる炭素含有耐火物の具体的
組成、製造方法などは特に限定されるものではないが、
その−例を示すとっぎのとおりである。まず、炭素原料
としては例えば鱗状黒鉛、土状黒鉛、ピッチコークス、
電極屑などから選ばれる一種または二種以上が使用され
る。その割合は5wt%以上が好ましい。5wt%未満
では炭素がもつスラグ浸透防止の効果が得られず、また
炭素の割合が少ないために酸化の問題もない。炭素以外
の、耐火原料を組み合わせる場合は、例えばマグネシア
、カルシア、ドロマイトクリンカ−2合成マグドロクリ
ンカー、アルミナ。
The specific composition and manufacturing method of the carbon-containing refractory lined in the vacuum degassing device are not particularly limited;
The following is an example of this. First, carbon raw materials include, for example, scaly graphite, earthy graphite, pitch coke,
One or more types selected from electrode scraps are used. The proportion is preferably 5 wt% or more. If it is less than 5 wt%, the effect of carbon in preventing slag penetration cannot be obtained, and since the proportion of carbon is small, there is no problem of oxidation. When combining refractory raw materials other than carbon, examples include magnesia, calcia, dolomite clinker-2 synthetic magdo clinker, and alumina.

スピネル、ピクロクロマイト、ジルコニア、電融または
焼結のマグクロなどの酸化物原料、あるいは炭化珪素、
炭化はう素等の非酸化物原料から選ばれる一種または二
種以上が使用される。さらに必要に応じて、Al、Si
t Mg。
Oxide raw materials such as spinel, picrochromite, zirconia, electrofused or sintered maguro, or silicon carbide,
One or more types selected from non-oxide raw materials such as boron carbide are used. Furthermore, if necessary, Al, Si
tMg.

定形耐火物は以上の配合物に結合剤を添加し、混練して
、鋳込み、スタンプなどの任意の方法で施工される。一
方。
A shaped refractory is constructed by adding a binder to the above-mentioned mixture, kneading it, and using any method such as casting or stamping. on the other hand.

定形耐火物の場合は、例えばフェノール樹脂、フラン樹
脂、タールピッチなどの結合剤を添加し、混線、成形後
、不焼成品の場合には100〜400℃で熱処理し、こ
れによって結合剤であるのタールまたは樹脂中の揮発分
を除去し、耐火物の強度を発現させる。また、結合剤が
硬化性樹脂の場合にはこれによって熱硬化が起こり、強
度が発現する。
In the case of shaped refractories, for example, a binder such as phenol resin, furan resin, or tar pitch is added, and after cross-wiring and molding, in the case of unfired products, heat treatment is performed at 100 to 400 °C, which is the binder. Removes the volatile content in the tar or resin and develops the strength of the refractory. Furthermore, when the binder is a curable resin, thermal curing occurs and strength is developed.

焼成品はさらに800℃以上、好ましくは900−15
00℃の高温度に熱処理することによって、タールまた
は樹脂結合から炭素結合を形成させる。
The fired product is further heated to 800°C or higher, preferably 900-15°C.
Carbon bonds are formed from tar or resin bonds by heat treatment to a high temperature of 00°C.

このようにして得られる炭素含有耐火物により、真空脱
ガス装置の一部または全部の内張りを構成する。対象と
なる真空脱ガス装置の型式は特に限定されるものではな
く、ス装置の操業方法は、例えば″真空脱ガス法″昭和
54年5月15日・耐火物技術協会発行・P371−3
73にも記載されているように、脱ガス槽の下端に設け
られた浸漬管を取鍋内に浸漬し、脱ガス槽内を真空にし
て溶鋼を吸いあげ、流入飛散させて真空脱ガス処理が行
われる。真空脱ガス処理を終えた後、従来は浸漬管を取
鍋内の溶鋼から引き上げ、真空脱ガス装置は次の処理ま
でそのままで待機する。
The carbon-containing refractory thus obtained forms part or all of the lining of the vacuum degassing device. The type of vacuum degassing equipment to be applied is not particularly limited, and the operating method of the vacuum degassing equipment is, for example, the "Vacuum degassing method" published by the Refractory Technology Association, May 15, 1970, P371-3.
As described in 73, the immersion tube installed at the lower end of the degassing tank is immersed in the ladle, the inside of the degassing tank is evacuated, the molten steel is sucked up, and the molten steel is flowed and scattered to perform vacuum degassing treatment. will be held. After completing the vacuum degassing process, the immersion tube is conventionally pulled out of the molten steel in the ladle, and the vacuum degassing device is left standing by until the next process.

これに対し本発明では、真空脱ガス処理後、浸漬管を直
ちに引き上げず、浸漬管の下端を溶鋼で閉塞した状態と
し、脱ガス槽が真空状態下に不活性ガスを導入し、脱ガ
ス槽内を不活性ガス雰囲気にした後で浸漬管を引き上げ
る。
On the other hand, in the present invention, after the vacuum degassing treatment, the immersion tube is not pulled up immediately, but the lower end of the immersion tube is closed with molten steel, and the degassing tank introduces an inert gas under a vacuum condition. After creating an inert gas atmosphere inside, pull up the immersion tube.

脱ガス槽に導入する不活性ガスとしては、例えば窒素。Examples of the inert gas introduced into the degassing tank include nitrogen.

アルゴンなどが使用できるが、コス1〜の面から窒素が
望ましい。不活性ガス導入[Jの位置は特に限定される
ものではなく、例えばRH式真空ガス槽の場合には溶鋼
を環流させるために浸漬管に設置されているアルゴンガ
ス吹き込み用導管から吹き込み、酸素を吹き込む羽目を
下部槽側壁に備えている場合にはその羽目から吹き込む
こともできる。不活性ガスを吹き込むための導入口を別
に設けてもよいが、この場合は真空脱ガス処理中のスラ
ブや溶鋼による閉塞を部を覆うなどして脱ガス槽内に密
封するか、不活性ガスを連続導入して常にプラス圧にし
ておくと、より完全な不活性ガス雰囲気を保つことがで
きる。不活性ガスを導入する際の真空度は、300 r
n m I(g程度でも効果が認められるが、好ましく
は]、 Om m Hg以下である。
Although argon or the like can be used, nitrogen is preferable from the viewpoint of cost 1. Inert gas introduction [The position of J is not particularly limited; for example, in the case of an RH type vacuum gas tank, in order to circulate the molten steel, oxygen is blown in from the argon gas blowing conduit installed in the immersion pipe. If the side wall of the lower tank is equipped with a lining for blowing, the air can also be blown through the lining. A separate inlet for blowing inert gas may be provided, but in this case, the blockage caused by slabs or molten steel during vacuum degassing treatment must be sealed in the degassing tank by covering it, or the inert gas A more complete inert gas atmosphere can be maintained by continuously introducing gas to maintain a positive pressure. The degree of vacuum when introducing inert gas is 300 r
n m I (although the effect is recognized even at about g, it is preferable) is not more than Om m Hg.

(作 用) 真空脱ガス装置において、その内張りである炭素含有耐
火物の酸化を防止することができる。真空脱ガス装置で
酸化が問題となるのは炭素含有耐火物の背面部であるが
、脱ガス槽が真空状態下に不活性ガスを導入するので、
不活性ガスは内張りの1」地部あるいはキレツなどの僅
かな間隙を瞬時に通り抜け、その背面に行きわたって背
面部の酸化を防止する。
(Function) In a vacuum degassing device, oxidation of the carbon-containing refractory that is the lining of the vacuum degassing device can be prevented. In vacuum degassing equipment, oxidation is a problem on the back side of carbon-containing refractories, but since the degassing tank introduces inert gas under vacuum conditions,
The inert gas instantly passes through small gaps such as the 1" bottom or cracks of the inner lining, spreads to the back side of the lining, and prevents oxidation of the back side.

(実施例) つぎに本発明の実施例を示すが、本発明はこれに限定 
、されるものではない。
(Example) Next, an example of the present invention will be shown, but the present invention is limited to this example.
, it is not something that will be done.

各側で内張りに用いた炭素含有耐火物は、鱗状黒鉛20
wt%、残部マグネシアクリンカ−よりなる配合物に、
結合剤として固定炭素鼠45%、粘度300cpsのフ
ェノール樹脂を外掛5W11%添加し、混練、成形後、
250°Cで24時間乾燥して得たマグネシア−炭素質
煉瓦である。
The carbon-containing refractories used for the lining on each side were scale graphite 20
wt%, the balance consisting of magnesia clinker,
As a binder, 45% fixed carbon and 11% phenolic resin with a viscosity of 300 cps were added, and after kneading and molding,
This is a magnesia-carbonaceous brick obtained by drying at 250°C for 24 hours.

Om m lI g )に保ったうえで、下部槽側壁に
設けられた既存の酸素吹き込み羽目から窒素ガスを導入
した。待機中は、脱ガス槽内の圧力を1.05気圧の窒
素ガス雰囲気に保った。
Nitrogen gas was introduced from the existing oxygen blowing panel provided on the side wall of the lower tank. During standby, the pressure inside the degassing tank was maintained at a nitrogen gas atmosphere of 1.05 atm.

比較例1 ;溶鋼を真空脱ガス処理後、浸漬管を取鍋の
溶鋼内から引き−lユげ、脱ガス槽内を一旦大気圧にも
どした後、下部槽側壁に設けられた既存の酸素吹き込み
羽目から窒素ガスを導入した。待機中は、脱ガス槽内の
圧力を1゜05気圧の窒素ガス雰囲気に保った。
Comparative Example 1; After vacuum degassing of the molten steel, the immersion tube was pulled out from the molten steel in the ladle, and after the inside of the degassing tank was returned to atmospheric pressure, the existing oxygen installed on the side wall of the lower tank was removed. Nitrogen gas was introduced through the blowing line. During standby, the pressure inside the degassing tank was maintained at a nitrogen gas atmosphere of 1.05 atm.

比較例2;溶鋼を真空脱ガス処理後、不活性ガスの導入
は一切行わす、従来どおりの方法で操業した。
Comparative Example 2: After the molten steel was vacuum degassed, the operation was carried out in the conventional manner without introducing any inert gas.

以」二の各側は、真空脱ガス装置の操業に合せて以」二
の操作を300回繰り返した。各側における内張りの耐
酸化性および損耗速度を表に示す。
On each side, the above-mentioned operation was repeated 300 times in accordance with the operation of the vacuum degassing equipment. The oxidation resistance and wear rate of the lining on each side is shown in the table.

* 1 ; 200回操業後、炉止めして、内張りの酸
化層の厚さを測定しした。
*1; After 200 operations, the furnace was stopped and the thickness of the oxidized layer on the lining was measured.

(効 果) 本発明によれば、真空脱ガス装置の内張りに炭素含有幽
、1人物を用いた場合に見られる背面酸化の問題を解消
でき、使用の末期に内張りの溶損が急速に進む現象がな
くなる。
(Effects) According to the present invention, it is possible to solve the problem of backside oxidation that occurs when a carbon-containing gas is used for the lining of a vacuum degassing device, and the lining is rapidly eroded at the end of use. The phenomenon disappears.

したがって、炭素含有耐火物がもつスラク浸透防止など
の効果をいかんなく発揮でき、実施例のテークからも明
らかなとおり、内張りの寿命が格段に向−1−する。
Therefore, the effects of the carbon-containing refractory, such as preventing penetration of slack, can be fully exhibited, and as is clear from the results of the examples, the life of the lining is greatly extended.

本発明は、不活性ガスの導入を脱ガス槽内が真空状態下
で行うことで初めて達成されるが、真空脱ガス装置の操
業を利用すれば真空状態をつくることができるので、本
発明は既存の設備そのままで実施できる。
The present invention is achieved only when the inert gas is introduced into the degassing tank under a vacuum condition, but since a vacuum condition can be created by using the operation of a vacuum degassing device, the present invention It can be carried out using existing equipment as is.

なお、実施例で示した以外の炭素含有耐火物で内張りを
構成した場合も、同様の効果かえられた。
Note that similar effects were obtained when the lining was made of a carbon-containing refractory other than those shown in the examples.

Claims (1)

【特許請求の範囲】[Claims] 炭素含有耐火物で内張りした真空脱ガス装置において、
溶鋼の真空脱ガス処理を終えた後、脱ガス槽が真空状態
下に不活性ガスを導入し、脱ガス槽内を不活性ガス雰囲
気にすることを特徴とする溶鋼真空脱ガス装置の内張り
保護方法。
In vacuum degassing equipment lined with carbon-containing refractories,
Lining protection for molten steel vacuum degassing equipment, characterized in that after vacuum degassing of molten steel is completed, an inert gas is introduced into the degassing tank under vacuum conditions to create an inert gas atmosphere inside the degassing tank. Method.
JP60047235A 1985-03-08 1985-03-08 Method for protecting lining of vacuum degassing device for molten steel Pending JPS61207506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047235A JPS61207506A (en) 1985-03-08 1985-03-08 Method for protecting lining of vacuum degassing device for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047235A JPS61207506A (en) 1985-03-08 1985-03-08 Method for protecting lining of vacuum degassing device for molten steel

Publications (1)

Publication Number Publication Date
JPS61207506A true JPS61207506A (en) 1986-09-13

Family

ID=12769547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047235A Pending JPS61207506A (en) 1985-03-08 1985-03-08 Method for protecting lining of vacuum degassing device for molten steel

Country Status (1)

Country Link
JP (1) JPS61207506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327164B1 (en) * 1998-12-21 2002-11-22 주식회사 포스렉 Magnesia-alumina-silicon carbide-carbon refractories and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327164B1 (en) * 1998-12-21 2002-11-22 주식회사 포스렉 Magnesia-alumina-silicon carbide-carbon refractories and preparation method thereof

Similar Documents

Publication Publication Date Title
Huang et al. Dynamic interaction of refractory and molten steel: corrosion mechanism of alumina-magnesia castables
KR930005250B1 (en) Refractory containing aluminium nitride oxide refractory for sliding nozzle and nozzle for continuously casting
Thethwayo et al. A review of carbon-based refractory materials and their applications
Wang et al. Corrosion of alumina-magnesia castable by high manganese steel with respect to steel cleanness
WO2017090929A1 (en) Refractory composition and well block for steel casting manufactured therefrom
JP2900605B2 (en) Metal impregnated refractories
US5411997A (en) Mud material used for iron tap hole in blast furnace
WO2022215727A1 (en) Castable refractory
JPS61207506A (en) Method for protecting lining of vacuum degassing device for molten steel
JP2022161032A (en) Castable refractory and molten steel ladle
JPS62158561A (en) Nozzle for low-temperature casting of molten steel
JP2827375B2 (en) Coating method for kiln interior
Biswas et al. Modern refractory practice for clean steel
JP6315037B2 (en) Lined refractories for continuous casting tundish
JPS61295317A (en) Method for protecting lining of vacuum degassing apparatus
JP2816585B2 (en) Method for producing refractory material containing magnesia
CN108585796A (en) A method of introducing silicon carbide-based synthesis material improves Ultra-low carbon Magnesia-carbon material resistance to slag
KR930009349B1 (en) Refractory brick of mgo-c matrix
JPS61246314A (en) Method for protecting lining of apparatus for vacuum-degassing molten steel
RU2148049C1 (en) Spinel-periclase-carbonic refractory material
JP3074317B2 (en) Carbonaceous refractory for treating molten light metal and method for producing the same
JPS61246313A (en) Method for protecting lining of apparatus for vacuum-degassing molten steel
JPH09125133A (en) Wall structure of vacuum degassing device and method for protecting its lining
JPH0556306B2 (en)
GB1564927A (en) Bonds for refractory materials