JPS61207396A - Production of phosphatidylcholine - Google Patents

Production of phosphatidylcholine

Info

Publication number
JPS61207396A
JPS61207396A JP4864685A JP4864685A JPS61207396A JP S61207396 A JPS61207396 A JP S61207396A JP 4864685 A JP4864685 A JP 4864685A JP 4864685 A JP4864685 A JP 4864685A JP S61207396 A JPS61207396 A JP S61207396A
Authority
JP
Japan
Prior art keywords
fatty acid
gpc
activated
anhydride
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4864685A
Other languages
Japanese (ja)
Inventor
Yasuhisa Noguchi
野口 泰久
Hidenori Konishi
小西 秀則
Sachiko Murakami
幸子 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP4864685A priority Critical patent/JPS61207396A/en
Publication of JPS61207396A publication Critical patent/JPS61207396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound useful as a drug, etc., industrially advantageously without using a heavy metal, by reacting glycerophosphorylcholine adsorbed on or impregnated into a carrier with an activated fatty acid in the presence of a catalyst in a solvent. CONSTITUTION:Glycerophosphorylcholine adsorbed on or impregnated into a carrier (e.g., silica gel, etc.) is reacted with an activated fatty acid (preferably 8-24C fatty acid anhydride, chloride, etc., such as palmitic anhydride, etc.) in the presence of a catalyst (e.g., dimethylaminopyridine in the case of acid anhydride, and pyrrolidinopyridine, etc. in the case of acid chloride, etc.) in a solvent (preferably dichloromethane containing dimethyl sulfoxide, etc.), to give the aimed compound. The fatty acid anhydride may be formed by feeding simultaneously the fatty acid and 1-twice molar amounts of a carbodiimide condensation agent and a starting raw material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重金属を使用しない新しいホスファチジルコリ
ンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a new method for producing phosphatidylcholine without using heavy metals.

【従来の技術〕[Conventional technology]

リン脂質は細胞の生体膜の成分として存在しており、生
体膜では2分子構造を持った二重層膜を形成し、タンパ
ク質、コレステロール等とともに物質の透過1選択的輸
送等の生命現象に欠くことのできない機能を果している
。生体中には主にホスファチジルコリン(以下PCと記
す)、ホスファチジルエタノールアミン、ホスファチジ
ルセリン、ホスファチジルイノシトール、スフィンゴミ
エリン等のリン脂質が存在し、このうちPCは−般にレ
シチンと呼ばれ、生体中に最も多く存在し、特にその重
要性が認められている。これらのリン脂質に共通した特
徴は親木基と疎水基をその分子内に持つことであり、こ
れによりリン脂質に特徴的なリポソームと呼ばれる小胞
を作ることができ、あるいは基板上にラングミュア−・
プロジェットの方法により分子が配向した薄膜を作るこ
とができる。
Phospholipids exist as components of biological membranes of cells, and in biological membranes, they form a bilayer membrane with a bimolecular structure, and together with proteins, cholesterol, etc., they are essential for biological phenomena such as selective transport of substances. It performs functions that cannot be performed. There are mainly phospholipids such as phosphatidylcholine (hereinafter referred to as PC), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin in living organisms. Among these, PC is generally called lecithin and is the most abundant in living organisms. There are many of them, and their importance is recognized. A common feature of these phospholipids is that they have a parent group and a hydrophobic group within their molecules, which allows them to form vesicles called liposomes, which are characteristic of phospholipids, or to form Langmuir-like molecules on a substrate.・
Prodgett's method allows the creation of thin films with oriented molecules.

天然のリン脂質は工業的にはすでに天然乳化剤として1
食品、化粧品業界等で利用される一方、その生理活性作
用を利用した医薬への展開が行われている。
Natural phospholipids have already been used industrially as natural emulsifiers.
While it is used in the food and cosmetics industries, it is also being developed into medicine that takes advantage of its physiologically active effects.

最近リン脂質は水中で2分子構造をとった2重層膜を持
つリポソームと呼ばれる閉鎖小胞体を形成することが知
られ、その用途が種々考えられている。たとえば医学、
薬学分野においては薬剤運搬体、人工血液等へ、また工
学的分野においては人工細胞への展開が考えられている
。そして最近ではリン脂質の作る薄膜をエレクトロニク
スへ応用し、絶縁性膜などへの展開が考えられている。
Recently, it has been known that phospholipids form closed endoplasmic reticulum called liposomes, which have a bilayer membrane and have a bimolecular structure in water, and various uses for this are being considered. For example, medicine
In the pharmaceutical field, it is being considered for use in drug carriers, artificial blood, etc., and in the engineering field, it is being considered for use in artificial cells. Recently, thin films made from phospholipids are being applied to electronics, and the development of insulating films is being considered.

しかしながらいずれの用途においても現在は天然リン脂
質が用いられているが、リン脂質が混合物であるために
再現性が悪く、また強度不足のためにリン脂質本来の機
能を工業的に応用するに至っていない。これらの用途に
応用するためにはその目的に応じた構造、強度を持った
リン脂質が嘱望されており、そのために種々の試みがな
されている。たとえばリン脂質を薬剤運搬体用リポソー
ムとして用いるためには生体内分解酵素の影響をあまり
受けず、しかも機能を果した後は分解される必要がある
。そのためにリポソームの一部に重合性リン脂質を用い
て、重合リポソームとしたり。
However, natural phospholipids are currently used for both purposes, but because phospholipids are mixtures, reproducibility is poor and their strength is insufficient, making it difficult to apply the original functions of phospholipids industrially. not present. In order to be applied to these uses, there is a need for phospholipids that have a structure and strength suitable for the purpose, and various attempts have been made for this purpose. For example, in order to use phospholipids as liposomes for drug carriers, they need to be relatively unaffected by degrading enzymes in the body and to be degraded after they have fulfilled their functions. For this purpose, polymerizable phospholipids are used as part of the liposome to create polymerized liposomes.

酵素により分解を受けにくいエーテル結合を持ったリン
脂質を用いることが試みられている。また薄膜としての
利用を考えたときには、その強度を増すために重合性リ
ン脂質が好ましいとされている。
Attempts have been made to use phospholipids with ether bonds that are less susceptible to decomposition by enzymes. Furthermore, when considering the use as a thin film, polymerizable phospholipids are said to be preferable in order to increase the strength of the film.

従来よりpcの合成法として全合成法、半合成法が知ら
れているが(Baerら、JACS 61(4)、 7
61(1939)、 J、 Biol、 Chew、 
230.447(1958)、 JACS72、942
(1950))、全合成法は工程数が多く、工業化は困
難である。半合成法はグリセロホスホリルコリン(以下
GPCと記す)と活性脂肪酸とからPCを合成する方法
であり、GPCとしてはカドミウム塩等の重金属塩を使
用している。活性化脂肪酸としては、(1)脂肪酸を酸
クロリド化して用いる方法(Can、 J、 Bioc
ham、 Physiol、 37.953(1959
))、(2)脂肪酸をイミダゾール塩として用いる方法
(特開昭51−91213.Hermetterら、C
hew。
Total synthesis method and semi-synthesis method have been known as methods for synthesizing PC (Baer et al., JACS 61(4), 7).
61 (1939), J. Biol, Chew.
230.447 (1958), JACS72, 942
(1950)), the total synthesis method requires many steps and is difficult to industrialize. The semi-synthetic method is a method of synthesizing PC from glycerophosphorylcholine (hereinafter referred to as GPC) and active fatty acids, and a heavy metal salt such as a cadmium salt is used as GPC. As activated fatty acids, (1) a method of converting fatty acids into acid chlorides and using them (Can, J., Bioc.
ham, Physiol, 37.953 (1959
)), (2) Method of using fatty acids as imidazole salts (JP-A-51-91213. Hermetter et al., C.
Hew.

Phys、 Lipids 1981.28.111)
、および(3)脂肪酸を酸無水物として用いる方法(R
egen ら、JACS(1982)、 104.79
1)が知られている。
Phys, Lipids 1981.28.111)
, and (3) a method using fatty acids as acid anhydrides (R
Egen et al., JACS (1982), 104.79
1) is known.

このうち酸クロリドを原料に用いる方法は、不飽和脂肪
酸をチオニルクロリド、三塩化リン、五塩化リン等で酸
クロリド化する際に二重結合が塩素化される可能性が強
く、しかも酸クロリドが水に弱いために非常に扱いにく
いが、安価で飽和脂肪酸などには有効な方法である。イ
ミダゾール塩を原料に用いる方法はイミダゾール化試薬
が高価な上に金属ナトリウムの使用など不便なことが多
い。これらに比較して酸無水物を原料に用いる方法は合
成がマイルドであり、副生成物も少ない効果的な方法で
ある。
Among these methods, when acid chloride is used as a raw material, there is a strong possibility that double bonds will be chlorinated when unsaturated fatty acids are converted into acid chloride with thionyl chloride, phosphorus trichloride, phosphorus pentachloride, etc. Although it is very difficult to handle because it is sensitive to water, it is an inexpensive and effective method for processing saturated fatty acids. Methods using imidazole salts as raw materials are often inconvenient, such as the imidazolization reagent being expensive and the use of metallic sodium. Compared to these methods, the method using acid anhydrides as raw materials is an effective method with milder synthesis and fewer by-products.

この方法に使用する酸無水物を合成する方法としては、
無水酢酸と脂肪酸を反応させる方法(Wallaceら
、JACS、 63.699(1941))、酸クロリ
ドと脂肪酸を反応させる方法(Youngsら、 JA
OC5,35゜416(1958))などが従来から知
られているが、これらの方法はかなり過激な方法であり
、不飽和結合を持つ脂肪酸には好ましい方法ではない。
The method for synthesizing the acid anhydride used in this method is as follows:
A method for reacting acetic anhydride with a fatty acid (Wallace et al., JACS, 63.699 (1941)), a method for reacting an acid chloride and a fatty acid (Youngs et al., JA
Although methods such as OC5, 35° 416 (1958) have been known, these methods are quite radical and are not preferred for fatty acids having unsaturated bonds.

穏やかな酸無水物化方法としてはN、N’−ジシクロへ
キシルカルボジイミドを用いる方法(Ringsdor
fら、JACS、 1984.遅狙、 1627)が知
られており、この方法はマイルドで不飽和結合を持つ脂
肪酸の酸無水物化には好ましい方法である。
A mild acid anhydride conversion method uses N,N'-dicyclohexylcarbodiimide (Ringsdor
f et al., JACS, 1984. 1627) is known, and this method is mild and preferred for converting fatty acids with unsaturated bonds into acid anhydrides.

このような方法による従来のPCの製造方法はN、N’
−ジシクロへキシルカルボジイミド(以下DCCと記す
)を脂肪酸の1/2モル当量用いて乾燥クロロホルム中
などで反応させて脂肪酸無水物を生成させ、沈殿物をろ
別後シリカゲルカラム等を用いて精製し、乾燥すること
により精製脂肪酸無水物を得るか、または未精製のまま
、これをGPCの塩化カドミウム塩等と、ジメチルアミ
ノピリジン(以下DMAPと記す)またはピロリジノピ
リジン(以下PPYと記す)等の触媒を使用して反応さ
せることによりPCを得る方法であり、その反応は次の
反応式(1)に示される。
The conventional PC manufacturing method using this method is N, N'
- Dicyclohexylcarbodiimide (hereinafter referred to as DCC) is reacted with 1/2 molar equivalent of fatty acid in dry chloroform to generate fatty acid anhydride, and the precipitate is filtered and purified using a silica gel column or the like. , to obtain a purified fatty acid anhydride by drying, or to obtain a purified fatty acid anhydride as it is unpurified, with a cadmium chloride salt of GPC, etc., and dimethylaminopyridine (hereinafter referred to as DMAP) or pyrrolidinopyridine (hereinafter referred to as PPY), etc. This is a method of obtaining PC by a reaction using a catalyst, and the reaction is shown in the following reaction formula (1).

(式中、 RCO−はアシル基を表す)酸クロリドを用
いる方法は、酸クロリドをGPCの塩化カドミウム塩等
と反応させることによりPCを得る方法であり、その反
応は次の反応式%式% (式中、 RCO−はアシル基を表す)〔発明が解決し
ようとする問題点〕 しかしながらこれらの従来の方法においては。
(In the formula, RCO- represents an acyl group.) The method using acid chloride is a method of obtaining PC by reacting acid chloride with cadmium chloride salt of GPC, etc., and the reaction is as follows: (In the formula, RCO- represents an acyl group.) [Problems to be Solved by the Invention] However, in these conventional methods.

一方の原料であるGPCは非常に吸湿性が強く、室温で
高粘性あるいはブロック状になりやすい物性を持つこと
から取り扱いが困難であり、しかもGPCの持つ4級ア
ンモニウム基が2級の011のエステル化を妨たげるた
め、取り扱いを容易にすることと4級アンモニウム基の
影響を排除するために1反応式(I)、(II)で示さ
れるように、塩化カドミウム塩等の重金属塩として用い
られてきた。
One raw material, GPC, is extremely hygroscopic and has physical properties that make it highly viscous or easily form blocks at room temperature, making it difficult to handle.Moreover, the quaternary ammonium group of GPC is a secondary 011 ester. It is used as a heavy metal salt such as a cadmium chloride salt, as shown in Reaction Formula 1 (I) and (II), in order to facilitate handling and eliminate the influence of quaternary ammonium groups. It's here.

そして塩化カドミウム塩のもう一つの利点として、粗G
PCから精製GPCにする際、塩化カドミウム塩にして
再結晶することにより精製が可能になるということがあ
った。しかしこの精製方法は収率が低いため、卵黄レシ
チンのようにPC純度の高い原料からGPCを合成すれ
ば、工業的には特に大きなメリットとはならない。
Another advantage of cadmium chloride salt is that crude G
When converting PC into purified GPC, purification could be achieved by recrystallizing it into cadmium chloride salt. However, this purification method has a low yield, so if GPC is synthesized from a raw material with high PC purity such as egg yolk lecithin, it will not be of any particular advantage industrially.

現在重金属の人体に与える害は重大な問題となっており
、カドミウムはイタイタイ病の原因とされ、塩化カドミ
ウム等の重金属を使うことは好ましくない。またGPC
の塩化カドミウム塩を用いてPCを合成すると、GPC
の塩化カドミウム塩合成工程およびカドミウム塩の除去
工程が必要になるため、工業的に困難さを伴う上1.そ
の廃棄にも多大な費用が必要とされるなど多くの問題点
がある。
Currently, the harm caused by heavy metals to the human body is a serious problem, and cadmium is said to be the cause of Itai-tai disease, so it is not desirable to use heavy metals such as cadmium chloride. Also GPC
When PC is synthesized using cadmium chloride salt, GPC
1) is industrially difficult because it requires a cadmium chloride salt synthesis step and a cadmium salt removal step. There are many problems, such as the large amount of cost required for its disposal.

この発明は以上のような問題点を解決するためのもので
、担体に吸着はたは含浸させたGPCを活性化脂肪酸と
反応させることにより、塩°化カドミウムを使用するこ
となく簡単な工程および装置により高収率でPCを製造
することが可能なPCの製造方法を提案することを目的
としている。
This invention is intended to solve the above-mentioned problems. By reacting GPC adsorbed or impregnated on a carrier with activated fatty acids, a simple process and process can be achieved without using cadmium chloride. The purpose of this invention is to propose a method for producing PC that can produce PC with high yield using an apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、担体に吸着または含浸させたグリセロホス
ホリルコリンと活性化脂肪酸とを触媒の存在下に溶媒中
で混合し、反応させることを特徴とするホスファチジル
コリンの製造方法である。
This invention is a method for producing phosphatidylcholine, which comprises mixing glycerophosphorylcholine adsorbed or impregnated onto a carrier and activated fatty acid in a solvent in the presence of a catalyst, and reacting the mixture.

担体としてはシリカゲル、活性炭、ゼオライト。Supports include silica gel, activated carbon, and zeolite.

ガラス、陶器1m器、セライト、活性白土、岩石。Glass, 1m pottery, celite, activated clay, rock.

または樹脂等のGPCを吸着または含浸できる無機物お
よび有機物が使用できる。
Alternatively, inorganic and organic substances capable of adsorbing or impregnating GPC, such as resin, can be used.

本発明の原料であるGPCは合成されるPCの骨格とな
るもので主に大豆、卵黄等の天然レシチンを分離精製後
あるいはそのまま加水分解またはアルコリーシスして得
ることができる。天然レシチンの分離はシルカゲルカラ
ム、活性アルミナカラム等を用い、クロロホルム/メタ
ノール系混合溶媒等で溶出させて行われる。精製あるい
は粗レシチンからGPCを得るにはテトラブチルアンモ
ニウムヒドロキサイド等の4級アルキルアンモニウム水
酸化物あるいはアルカリ金属などでアルコリーシスする
ことにより可能であるが、低濃度のアルカリ等で穏やか
に加水分解してもよいゆこうして得られたGPCはシリ
カゲル、活性炭、ゼオライト、ガラス、陶器、磁器、セ
ライト、活性白土、岩石、樹脂等の無機、有機物からな
る担体に吸着または含浸させて反応に用いる。吸着また
は含浸の方法はGPCをメタノール等の適当な溶媒に溶
解して担体と接触させ、エバポレータ等で溶媒を除いて
吸着または含浸させる。担体の吸着または含浸させるG
PCの量は5〜50重量%程度である。
GPC, which is the raw material of the present invention, serves as the skeleton of synthesized PC, and can be obtained mainly by hydrolyzing or alcoholizing natural lecithin from soybean, egg yolk, etc. after separating and purifying it or as it is. Natural lecithin is separated using a silica gel column, activated alumina column, etc., and eluted with a chloroform/methanol mixed solvent. GPC can be obtained from purified or crude lecithin by alcoholysis with a quaternary alkyl ammonium hydroxide such as tetrabutylammonium hydroxide or an alkali metal, but it is possible to obtain GPC from purified or crude lecithin by gentle hydrolysis with a low concentration of alkali, etc. The GPC thus obtained is adsorbed or impregnated onto a carrier made of an inorganic or organic substance such as silica gel, activated carbon, zeolite, glass, pottery, porcelain, celite, activated clay, rock, or resin, and used for the reaction. In the method of adsorption or impregnation, GPC is dissolved in a suitable solvent such as methanol, brought into contact with a carrier, and the solvent is removed using an evaporator or the like, followed by adsorption or impregnation. G to adsorb or impregnate the carrier
The amount of PC is about 5 to 50% by weight.

本発明の次の原料である脂肪酸としては天然もしくは合
成の飽和または不飽和脂肪酸が使用でき、特に炭素数8
〜24のものが好ましい。このような脂肪酸としてはミ
リスチン酸、パルミチン酸、ステアリン酸、オレイン酸
、リノール酸等の天然由来の脂肪酸、あるいは分子内に
重合性基やフェニル基などを持った合成脂肪酸があり、
これらを目的に応じて単独に用いたり、あるいは自由に
組合せて用いることができる。重合性基を持つ脂肪酸を
使用すると重合性のPCを製造することができる。
As the fatty acid which is the next raw material of the present invention, natural or synthetic saturated or unsaturated fatty acids can be used, especially those having 8 carbon atoms.
~24 are preferred. Such fatty acids include naturally occurring fatty acids such as myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid, as well as synthetic fatty acids that have polymerizable groups or phenyl groups in their molecules.
These can be used alone or in any combination depending on the purpose. Polymerizable PC can be produced by using a fatty acid having a polymerizable group.

これらの脂肪酸は活性化脂肪酸として、担体に吸着また
は含浸させたGPCと反応させる。活性化脂肪酸として
は、脂肪酸の無水物、クロル化物またはイミダゾール化
物など、GPCと反応するように活性化したものがある
These fatty acids are reacted as activated fatty acids with GPC adsorbed or impregnated onto a carrier. Activated fatty acids include those activated to react with GPC, such as anhydrides, chlorides, or imidazolates of fatty acids.

前記脂肪酸を活性化脂肪酸にするには、酸無水物の場合
はDCC,1−シクロへキシル−3−(2−モルホリノ
エチル)カルボジイミド、N、N’−ジイソプロピルカ
ルボジイミド、1−シクロへキシル−3−(4−ジエチ
ルアミノシクロヘキシル)カルボジイミド、1−エチル
−3−(ジエチルアミノプロピル)カルボジイミドなど
のカルボジイミド系縮合剤を用いて脂肪酸を酸無水物と
するのが好ましい。このほか飽和酸などの場合は無水酢
酸と反応させたり、その酸クロリドと反応させることに
よって酸無水物を得ることができる。
In order to convert the fatty acid into an activated fatty acid, in the case of an acid anhydride, DCC, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide, N,N'-diisopropylcarbodiimide, 1-cyclohexyl-3 It is preferable to convert the fatty acid into an acid anhydride using a carbodiimide condensing agent such as -(4-diethylaminocyclohexyl)carbodiimide and 1-ethyl-3-(diethylaminopropyl)carbodiimide. In addition, in the case of a saturated acid, an acid anhydride can be obtained by reacting it with acetic anhydride or its acid chloride.

脂肪酸クロル化物の場合はチオニルクロリド。Thionyl chloride for fatty acid chlorides.

三塩化リン、五塩化リン等と脂肪酸を反応させることに
よって得られる。脂肪酸イミダゾール化物は脂肪酸をN
、N’−カルボニルジイミダゾールと反応させることに
より得られる。
It is obtained by reacting phosphorus trichloride, phosphorus pentachloride, etc. with fatty acids. Fatty acid imidazolates convert fatty acids into N
, N'-carbonyldiimidazole.

本発明で使用する触媒はGPCと活性化脂肪酸とを反応
させてPCを生成させるための触媒であり、PCの異性
化を生じさせない穏やかなものが好ましい、脂肪酸無水
物の場合はDMAP、PPY、脂肪酸クロル化物の場合
はピリジン、脂肪酸イミダゾール化物の場合はイミダゾ
ールアルカリ金属塩などが好ましい。
The catalyst used in the present invention is a catalyst for producing PC by reacting GPC with an activated fatty acid, and is preferably a mild catalyst that does not cause isomerization of PC.In the case of fatty acid anhydrides, DMAP, PPY, In the case of a chlorinated fatty acid, pyridine is preferred, and in the case of an imidazolized fatty acid, an imidazole alkali metal salt is preferred.

反応に使用する溶媒は上記各成分を分散または溶解でき
るものであればよく、たとえばジクロロメタン、クロロ
ホルム、四塩化炭素、ベンゼン。
The solvent used in the reaction may be any solvent as long as it can disperse or dissolve each of the above components, such as dichloromethane, chloroform, carbon tetrachloride, and benzene.

トルエン、ヘキサン等が使用できるが、これらにジメチ
ルスルホキシド、ジメチルホルムアミド、ジメチルアセ
トアミド、N−メチルピロリドン、ヘキサメチルホスホ
ルアミド、スルホラン、テトラメチル尿素等を適宜加え
て用いると、GPCの溶解度が増し1反応にとって好ま
しい、これらの溶媒は乾燥して用いるのが好ましい。
Toluene, hexane, etc. can be used, but when dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide, sulfolane, tetramethylurea, etc. are appropriately added to these, the solubility of GPC increases. These solvents preferred for the reaction are preferably used dry.

PCの製造方法は担体に吸着または含浸さぜたGPCと
脂肪酸無水物、脂肪酸クロル化物または脂肪酸イミダゾ
ール化物をジクロロメタン等の乾燥溶媒中で触媒の存在
下反応させると、前記反応式(1)、(II)に準じた
反応によりPCが製造される。
The method for producing PC is to react GPC adsorbed or impregnated on a carrier with a fatty acid anhydride, a fatty acid chloride, or a fatty acid imidazolate in the presence of a catalyst in a dry solvent such as dichloromethane. PC is produced by a reaction similar to II).

脂肪酸無水物を用いるときには次の方法で反応させるこ
とができる。すなわちDCC等のカルボジイミド系縮合
剤を脂肪酸と等モル以上用い、ジクロロメタン等の乾燥
溶媒中で担体に吸着または含浸させたGPC1脂肪酸、
カルボジイミド系縮合剤および触媒を同時に仕込み反応
させる。DCC等の縮合剤は反応途中で適時添加するこ
ともできる0反応は常温〜60℃で攪拌下に6〜72時
間行うことによりPCが生成する。このときの反応は次
の反応式〔■〕で示される。
When using a fatty acid anhydride, the reaction can be carried out by the following method. That is, GPC1 fatty acid, which is adsorbed or impregnated onto a carrier in a dry solvent such as dichloromethane, using a carbodiimide condensing agent such as DCC in an amount equal to or more than the fatty acid;
A carbodiimide condensing agent and a catalyst are simultaneously charged and reacted. A condensing agent such as DCC may be added at any time during the reaction. PC is produced by carrying out the reaction at room temperature to 60° C. with stirring for 6 to 72 hours. The reaction at this time is shown by the following reaction formula [■].

r=−=−−−″−−−−−−−−−−−−−−−−−
−一−m↓ DCC+  RCO○H−一→ この反応は、反応系にDCC等の縮合剤が存在すると、
脂肪酸がDMAP等の触媒とは反応せず、縮合剤と反応
して酸無水物化することを利用するものであり、〔■〕
式ではDCCにより脂肪酸を酸無水物化し、それをGP
Cと反応させてPCを生成させ、副生じた遊離脂肪酸を
再びDCCによす酸無水物化して反応に用いる。
r=−=−−−″−−−−−−−−−−−−−−−−
-1-m↓ DCC+ RCO○H-1→ This reaction occurs when a condensing agent such as DCC is present in the reaction system.
It utilizes the fact that fatty acids do not react with catalysts such as DMAP, but react with condensing agents to form acid anhydrides, [■]
In the formula, fatty acids are converted into acid anhydrides by DCC, and then converted into GP
PC is produced by the reaction with C, and the free fatty acid produced as a by-product is again converted into an acid anhydride by DCC and used for the reaction.

このように反応によって遊離する脂肪酸を・常に過剰の
縮合剤と反応させて酸無水物とし、こ;れをGPCと反
応させると、脂肪酸を酸無水物へと□リサイクル使用す
ることになり9反応に必要な脂肪酸量が削減できるとと
もに、高価な触媒も遊離脂肪酸と塩を作らず、少量にて
効力を発揮することになる。
In this way, the fatty acids liberated by the reaction are always reacted with an excess of condensing agent to form acid anhydrides, and when this is reacted with GPC, the fatty acids are recycled into acid anhydrides, resulting in 9 reactions. The amount of fatty acids required for this process can be reduced, and the expensive catalyst does not produce free fatty acids and salts, making it effective even in small amounts.

縮合剤の必要量は脂肪酸と等モル以上であればよく、大
過剰に添加してもPCの収率を下げることはないが、脂
肪酸のモル数の2倍量までが適当である。縮合剤は反応
の経過とともに適時添加してもよく、予め反応開始時に
必要量を全て添加してもよい。
The required amount of the condensing agent may be at least equimolar to the fatty acid, and even if added in large excess, the yield of PC will not be lowered, but an amount up to twice the number of moles of the fatty acid is suitable. The condensing agent may be added at appropriate times during the course of the reaction, or may be added in the required amount in advance at the start of the reaction.

反応終了後、ろ別、濃縮、精製を行い精製pcを得る。After the reaction is completed, filtration, concentration, and purification are performed to obtain purified PC.

原料である脂肪酸を選ぶことにより、用途に応じて種々
の構造および強度を有するPCが製造される。
By selecting the fatty acid as the raw material, PC can be manufactured with various structures and strengths depending on the application.

以上のようなPCの製造方法では塩化カドミウム塩等の
重金属塩を使用しないので、重金属汚染の心配がなく、
製造されたPCの医薬や食品への利用が可能であり、廃
液処理も簡単になるとともに、反応工程も短縮され、収
率も従来のカドミウム塩法と変らず、高収率でPCを製
造することができる。
The above PC manufacturing method does not use heavy metal salts such as cadmium chloride, so there is no need to worry about heavy metal contamination.
The produced PC can be used in medicines and foods, waste liquid treatment is simplified, the reaction process is shortened, and the yield is the same as the conventional cadmium salt method, producing PC at a high yield. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば担体に吸着または含浸させたGpcと活
性化脂肪酸とを触媒の存在下に混合して反応させるよう
にしたので、カドミウム塩等の重金属塩を用いる必要が
なく、簡単な工程および装置により高収率でPCt!:
製造することができ、廃液処理が容易になる。
According to the present invention, Gpc adsorbed or impregnated on a carrier and activated fatty acids are mixed and reacted in the presence of a catalyst, so there is no need to use heavy metal salts such as cadmium salts, and the process is simple and easy. The device allows high yield PCt! :
can be manufactured easily, and waste liquid treatment becomes easy.

〔実施例〕〔Example〕

以下参考例および実施例に基づいて本発明を具体的に説
明する。
The present invention will be specifically described below based on Reference Examples and Examples.

参考例−1 市販卵黄レシチン100gをベンゼン800mρに溶解
し、攪拌しつつテトラブチルアンモニウムヒドロキサイ
ド10%メタノール溶液100gを加えた。沈殿が析出
し始めてから30分間攪拌を続け、その後30分静置し
た。底に沈殿した粗GPCをデカンテーションで回収し
、ベンゼンで洗浄した0次゛いて一20℃に冷却したア
セトン1iに粗GPCを投入し。
Reference Example-1 100 g of commercially available egg yolk lecithin was dissolved in 800 mρ of benzene, and 100 g of a 10% methanol solution of tetrabutylammonium hydroxide was added while stirring. Stirring was continued for 30 minutes after precipitation started, and then left to stand for 30 minutes. The crude GPC precipitated at the bottom was collected by decantation, and the crude GPC was poured into acetone 1i, which had been washed with benzene and cooled to -20°C.

沈殿を得た。アセトン再沈を同様に再びくり返し。A precipitate was obtained. Repeat the acetone reprecipitation in the same manner.

エステル等の不純物を含まない粗GPCを回収した。こ
の粗GPCをメタノールに溶解し、不溶分を遠心分離に
より除いた。上澄をエバポレーションし、33.の粗G
PCを得た0次いで再びメタノール167gに溶解し、
粗GPCメタノール溶液を得た。
Crude GPC containing no impurities such as esters was recovered. This crude GPC was dissolved in methanol, and insoluble matter was removed by centrifugation. Evaporate the supernatant, 33. coarse G
The obtained PC was then dissolved again in 167 g of methanol,
A crude GPC methanol solution was obtained.

参考例−2 市販卵黄レシチン50gを、直径8Gのガラスカラムに
充てんした1、5Ωのシリカゲルで分離した。
Reference Example-2 50 g of commercially available egg yolk lecithin was separated using a 1.5 Ω silica gel packed in a glass column with a diameter of 8 G.

溶出溶剤にはクロロホルム/メタノール/水=65/2
5/4を用いた。得られたP C31gヲ300tsQ
ノ/<:/ゼンに溶解し、攪拌しつつテトラブチルアン
モニウムヒドロキサイド10%メタノール溶液31gを
加えた。次いで参考例−1と同様に処理し8.9gのG
PCを得た。再びメタノール50gに溶解し、GPCメ
タノール溶液を得た。
Elution solvent: chloroform/methanol/water = 65/2
5/4 was used. The obtained PC31g 300tsQ
ノ/<:/ 31 g of a 10% methanol solution of tetrabutylammonium hydroxide was added while stirring. Then, 8.9 g of G was treated in the same manner as in Reference Example-1.
I got a PC. It was dissolved again in 50 g of methanol to obtain a GPC methanol solution.

参考例−3 パルミチン酸20 g (0,078モル)とDCC8
,0g(0,04モル)を乾燥クロロホルム中で5℃、
15時間反応させた。析出したジシクロへキシルウレア
をろ別し、ろ液を濃縮して粗パルミチン酸無水物を得た
。この粗パルミチン酸無水物をクロロホルムを溶出剤と
して、シリカゲルカラムで分離し、純パルミチン酸無水
物13.6g(0,028モル)を得た。
Reference example-3 20 g (0,078 mol) of palmitic acid and DCC8
,0 g (0.04 mol) in dry chloroform at 5°C.
The reaction was allowed to proceed for 15 hours. The precipitated dicyclohexylurea was filtered off, and the filtrate was concentrated to obtain crude palmitic anhydride. This crude palmitic anhydride was separated on a silica gel column using chloroform as an eluent to obtain 13.6 g (0,028 mol) of pure palmitic anhydride.

同様にして純オレイン酸無水物14.6 g (0,0
27モル)を得た。(反応式−〔■〕)。
In the same manner, 14.6 g of pure oleic anhydride (0,0
27 mol) was obtained. (Reaction formula - [■]).

CC ジシクロへキシルウレア 実施例−1 参考例−1により得た粗GPCメタノール溶液40gを
カラムクロマトグラフィ用シリカゲル40gに加え、エ
バポレーター中でメタノールを除きっつ粗GPCをシリ
カゲルに吸着させた。次いでベンゼンを加え、減圧上共
沸脱水し、完全に水分とメタノールを除いた。この粗G
PC吸着シリカゲル10gをとり、参考例−3により得
たパルミチン酸無水物11g(0,0223−1−/L
z)およびD M A P 2.0g(0,0164モ
ル)とジクロロメタン100g中で室温下48時間反応
させた。反応後、反Is混金物を減圧下エバポレーショ
ンし、メタノールにより24時間ソックスレー抽出した
。次いで抽出液をイオン交換樹脂アンバーライト200
C(ロームアンドハース社商IN)のカラムに通し、D
MAPを除いた。流出液を濃縮し、シリカゲルカラムで
溶出剤としてクロロホルム/メタノール/水= 65/
25/ 4を用いて精製することにより、シバルミチン
酸ホスファチジルコリン(、D P P C) 148
gを得た。
CC Dicyclohexylurea Example-1 40 g of the crude GPC methanol solution obtained in Reference Example-1 was added to 40 g of silica gel for column chromatography, and while methanol was removed in an evaporator, the crude GPC was adsorbed on the silica gel. Next, benzene was added and azeotropic dehydration was performed under reduced pressure to completely remove water and methanol. This rough G
Take 10 g of PC-adsorbed silica gel and add 11 g of palmitic acid anhydride (0,0223-1-/L) obtained in Reference Example-3.
z) and 2.0 g (0,0164 mol) of D M A P in 100 g of dichloromethane at room temperature for 48 hours. After the reaction, the anti-Is mixture was evaporated under reduced pressure and Soxhlet extracted with methanol for 24 hours. Next, the extract was treated with ion exchange resin Amberlite 200.
Pass it through a column of C (Rohm & Haas Inc. IN) and D
MAP was excluded. The effluent was concentrated and passed through a silica gel column using chloroform/methanol/water as eluent = 65/
Phosphatidylcholine cybalmitate (DPPC) 148 by purification using 25/4
I got g.

実施例−2 実施例−1で得た粗GPC吸着シリカゲル10gを用い
実施例−1と同様にジクロロメタン70gおよびジメチ
ルスルホキシド30gの混合溶媒中で反応させた。反応
混合物を減圧下エバポレーションし、メタノールにより
24時間ソックスレー抽出した。次いで抽出液をアンバ
ーライト200Cのカラムに通してDMAPを除いた。
Example 2 Using 10 g of the crude GPC-adsorbed silica gel obtained in Example 1, a reaction was carried out in a mixed solvent of 70 g of dichloromethane and 30 g of dimethyl sulfoxide in the same manner as in Example 1. The reaction mixture was evaporated under reduced pressure and Soxhlet extracted with methanol for 24 hours. The extract was then passed through an Amberlite 200C column to remove DMAP.

流出液を濃縮し、−20℃のアセトン200tm Q中
に投入して、沈殿を得た。実施例−1と同様に精製し、
DPPCl、93gを得た。
The effluent was concentrated and poured into acetone 200tm Q at -20°C to obtain a precipitate. Purified in the same manner as in Example-1,
93 g of DPPCl was obtained.

実施例−3 参考例−2により得たGPCメタノール溶液10gを陶
器製沸石を細く砕いたものLogに加え、エバポレータ
ー中でメタノールを除きつつGPCを含浸させた。次い
でベンゼンを加え、減圧上共沸脱水し、完全に水分とメ
タノールを除いた。このGPC含浸沸石と、参考例−3
で得たパルミチン酸無水物11.6 g (0,023
5モル)およびDMAP2.2g(0,0176モル)
とを乾燥クロロホルム100g中で室温下48時間反応
させた。次いで反応混合物をろ過し沸石をよくクロロホ
ルムで洗浄した。洗浄液とる液を合わせメタノールで希
釈してアンバーライト200Cのカラムに通し、DMA
Pを除いた。実施例−1と同様に精製し、D P P 
C2,85gを得た。
Example 3 10 g of the GPC methanol solution obtained in Reference Example 2 was added to finely crushed ceramic zeolite Log, and GPC was impregnated while removing methanol in an evaporator. Next, benzene was added and azeotropic dehydration was performed under reduced pressure to completely remove water and methanol. This GPC-impregnated zeolite and Reference Example-3
11.6 g of palmitic anhydride (0,023
5 mol) and DMAP 2.2 g (0,0176 mol)
were reacted in 100 g of dry chloroform at room temperature for 48 hours. The reaction mixture was then filtered and the zeolite was thoroughly washed with chloroform. Combine the washing solution and dilute with methanol, pass through an Amberlite 200C column, and add DMA.
P was excluded. Purified in the same manner as Example-1, and D P P
85 g of C2 was obtained.

実施例−4 参考例−2により得たGPCメタノール溶液10gを、
細く砕いた粒状活性炭10gに加え、エバポレーター中
でメタノールを除きつつGPCを含浸させた。次いでベ
ンゼンを加え、減圧上共沸脱水し、完全に水分とメタノ
ールを除いた。このGPC含浸活性炭と参考例−3で得
たオレイン酸無水物12.8 g (0,0235モル
)およびD M A P 2.2 g (0,0176
モル)とを乾燥クロロホルム70gおよびジメチルホル
ムアミド30gの混合溶媒中で室温下48時間反応させ
た0次いで反応混合物をろ過し、活性炭をよくクロロホ
ルムで洗浄、した。洗浄液とる液を合わせメタノールで
希釈してアンバーライト200Cのカラムに通し、DM
APを除いた。実施例−2と同様に精製しジオレイン酸
ホスファチジルコリン(DOPC)3.41gを得た。
Example-4 10 g of the GPC methanol solution obtained in Reference Example-2 was
In addition to 10 g of finely crushed granular activated carbon, GPC was impregnated while removing methanol in an evaporator. Next, benzene was added and azeotropic dehydration was performed under reduced pressure to completely remove water and methanol. This GPC-impregnated activated carbon, 12.8 g (0,0235 mol) of oleic anhydride obtained in Reference Example-3, and 2.2 g (0,0176 mol) of D M A P
The reaction mixture was then filtered, and the activated carbon was thoroughly washed with chloroform. Combine the washing solution and dilute with methanol, pass through an Amberlite 200C column, and DM
AP was excluded. Purification was carried out in the same manner as in Example 2 to obtain 3.41 g of phosphatidylcholine dioleate (DOPC).

実施例−5 参考例−2により得たGPCメタ−ノル溶液10gを直
径0.5■以下のガラスピーズLogに加え、工バボレ
ーター中でメタノールを除きつつGPCを含浸させた。
Example 5 10 g of the GPC methanol solution obtained in Reference Example 2 was added to glass beads Log having a diameter of 0.5 square meters or less, and impregnated with GPC while removing methanol in a vaporizer.

次いでベンゼンを加え、X圧下共沸脱水し、完全に水分
とメタノールを除いた。このGPC含浸ガラスピーズと
参考例−3で得たオレイン酸無水物12.8g(0,0
235モル)およびDMA P2.2g(0,0176
モル)とをジクロロメタン100g中で室温下48時間
反応させた6次いで反応混合物をろ過し、ガラスピーズ
をよくジクロロメタンで洗浄した。洗浄液とる液を合わ
せ、メタノールで希釈してアンバーライト200Cのカ
ラムに通し、DMAPを除いた。実施例−1と同様に精
製し、DOPC2,96gを得た。
Next, benzene was added and azeotropic dehydration was performed under X pressure to completely remove water and methanol. These GPC-impregnated glass beads and 12.8 g of oleic anhydride (0,0
235 mol) and DMA P2.2 g (0,0176
mol) in 100 g of dichloromethane at room temperature for 48 hours.Then, the reaction mixture was filtered, and the glass beads were thoroughly washed with dichloromethane. The washing solution and the solution were combined, diluted with methanol, and passed through an Amberlite 200C column to remove DMAP. Purification was performed in the same manner as in Example-1 to obtain 2.96 g of DOPC.

実施例−6 実施例−3と同様にして得たGPC含浸沸石と市販バル
ミチン酸クロリドをピリジンを触媒として反応させた。
Example 6 GPC-impregnated zeolite obtained in the same manner as in Example 3 and commercially available balmitic acid chloride were reacted using pyridine as a catalyst.

すなわちGPC含浸沸石をジクロロホルムメタン50g
に氷バス中で分散し、バルミチン酸クロリド6.5g(
0゜0235モル)をジクロロメタン25gに溶解し、
ゆっくり滴下した6次いでピリジンt、4g(o、ot
7sモル)をジクロロメタン25gに溶解して滴下した
。30分反反応、室温にて2時間反応させた。反応混合
物をろ過し、沸石をよくジクロロメタンで洗浄した。洗
浄液とる液を合わせ濃縮し、−20℃のアセトン200
mΩ中に投入し、沈殿を得た。実施例−1と同様に精製
し、DPPC2,14gを得た。
That is, GPC-impregnated zeolite with 50 g of dichloroformmethane
6.5 g of balmitic acid chloride (
0°0235 mol) was dissolved in 25 g of dichloromethane,
Slowly dropped 6 then pyridine, 4 g (o, ot
7 s mol) was dissolved in 25 g of dichloromethane and added dropwise. The reaction was carried out for 30 minutes and then at room temperature for 2 hours. The reaction mixture was filtered and the zeolite was thoroughly washed with dichloromethane. Combine the washing solution and the solution, concentrate, and add 200 ml of acetone at -20°C.
mΩ to obtain a precipitate. Purification was performed in the same manner as in Example-1 to obtain DPPC2, 14 g.

実施例−7 実施例−4と同様にして得たGPC含浸活性炭を実施例
−6と同様に反応、MIBLDPPC2,25gを得た
Example-7 The GPC-impregnated activated carbon obtained in the same manner as in Example-4 was reacted in the same manner as in Example-6 to obtain 2.25 g of MIBLDPPC.

実施例−8 参考例−1により得た粗GPCメタノール溶液40gを
、乾燥した市販スチレン−ジビニルベンゼン樹脂(ビー
ズ状)40gに加え、エバポレーター中でメタノールを
除きつつ、粗GPCを上記樹脂に含浸させた1次いでベ
ンゼンを加え、減圧上共沸脱水し、完全に水分とメタノ
ールを除いた。この粗GPC含浸樹脂10gをとり、実
施例−1と同様に反応させた0次いで反応混合物をろ過
し樹脂をよくジクロロメタンで洗浄した。洗浄液とる液
を合わせ、メタノールで希釈してアンバーライト200
Cのカラムに通し、DMAPを除いた。実施例−1と同
様に精製し、D P P C1,65gを得た。
Example-8 40 g of the crude GPC methanol solution obtained in Reference Example-1 was added to 40 g of dried commercially available styrene-divinylbenzene resin (beads), and while methanol was removed in an evaporator, the crude GPC was impregnated into the resin. Benzene was then added and azeotropic dehydration was performed under reduced pressure to completely remove water and methanol. 10 g of this crude GPC-impregnated resin was taken and reacted in the same manner as in Example-1.Then, the reaction mixture was filtered, and the resin was thoroughly washed with dichloromethane. Combine the cleaning solution and the solution, dilute with methanol, and add Amberlite 200.
DMAP was removed by passing it through a column of C. Purification was performed in the same manner as in Example-1 to obtain 65 g of D P P C1.

実施例−9 実施例−8で得た粗GPC含浸樹脂togを用い、実施
例−1と同様にジクロロメタン70gおよびジメチルア
セトアミド30gの混合溶媒中で反応させた。次いで反
応混合物をろ過し、樹脂をよくジクロロメタンで洗浄し
た。洗浄液とる液を合わせ、メタノールで希釈してアン
バーライト200Cのカラムに通しDMAPを除いた。
Example-9 Using the crude GPC-impregnated resin tog obtained in Example-8, a reaction was carried out in a mixed solvent of 70 g of dichloromethane and 30 g of dimethylacetamide in the same manner as in Example-1. The reaction mixture was then filtered and the resin was washed thoroughly with dichloromethane. The washing solution and the solution were combined, diluted with methanol, and passed through an Amberlite 200C column to remove DMAP.

実施例−2と同様に精製し、DPPC2,18gを得た
Purification was performed in the same manner as in Example-2 to obtain 18 g of DPPC2.

実施例−10 実施例−8で得た粗GPC含浸樹脂10gとバルミチン
酸5.6g(0,022モル)、D CC6,8g (
0,033モル)、DMAPo、89g(0,0073
モル)をジクロロメタン100g中で室温下、同時に混
合し48時間反応させた0反応後、反応混合物をろ過し
、樹脂およびジシクロへキシルウレアをジクロロメタン
で洗浄した。洗浄液とる液を合わせ、メタノールで希釈
してアンバーライト200Cのカラムに通し、DMAP
を除いた。実施例−1と同様に精製し、DPPC2,2
6gを得た。
Example-10 10 g of the crude GPC-impregnated resin obtained in Example-8, 5.6 g (0,022 mol) of valmitic acid, and 6.8 g of DCC (
0,033 mol), DMAPo, 89 g (0,0073
After the reaction, the reaction mixture was filtered and the resin and dicyclohexylurea were washed with dichloromethane. Combine the washing solution and the solution, dilute with methanol, pass through an Amberlite 200C column, and add DMAP.
was excluded. Purified in the same manner as in Example-1, DPPC2,2
6g was obtained.

実施例−11 参考例−1の方法により得た粗GPCメタノール溶液4
0gを40gのセライトに加え、エバポレータでメタノ
ールを除きつつ、粗GPCをセライトに含浸させ、ベン
ゼンによる共沸脱水によりメタノールと水を完全に除い
た。この粗GPCセライト10gをとり、実施例−1と
同様に反応させた。
Example-11 Crude GPC methanol solution 4 obtained by the method of Reference Example-1
0 g was added to 40 g of Celite, and while methanol was removed using an evaporator, crude GPC was impregnated into Celite, and methanol and water were completely removed by azeotropic dehydration with benzene. 10 g of this crude GPC celite was taken and reacted in the same manner as in Example-1.

次いで、反応混合物をろ過しセライトをよくジクロロメ
タンで洗浄した。洗浄液とる液をあわせ、メタノールで
希釈してアンバーライト200Cのカラムに通しDMA
Pを除いた。実施例−1と同様に精製し、DPPC1,
2gを得た。
Then, the reaction mixture was filtered and the Celite was thoroughly washed with dichloromethane. Combine the washing solution and solution, dilute with methanol, and pass through an Amberlite 200C column for DMA.
P was excluded. Purified in the same manner as in Example-1, DPPC1,
2g was obtained.

実施例−12 参考例−1の方法により得た粗GPCメタノール溶液3
0gを30gの活性白土に加え、実施例−11と同様に
して得られた粗GPC含浸活性白土10gをとり、実施
例−1と同様に反応させた0次いで。
Example-12 Crude GPC methanol solution 3 obtained by the method of Reference Example-1
0g was added to 30g of activated clay, 10g of the crude GPC-impregnated activated clay obtained in the same manner as in Example-11 was taken, and reacted in the same manner as in Example-1.

実施例−11と同様の方法でDMAPを除いた後、実施
例−1と同様に精製し、DPPC1,4gを得た。
After removing DMAP in the same manner as in Example-11, the product was purified in the same manner as in Example-1 to obtain 1.4 g of DPPC.

代理人 弁理士 柳 原   成 手続補正書 昭和60年4月f 日 昭和60年特許願第48646号 2、発明の名称 ホスファチジルコリンの製造方法 3、補正をする者 事件との関係  特許出願人 代表者 小川照次 4、代理人 〒105電話436−47006、補正の
対象 明細書の発明の詳細な説明の欄 7、補正の内容 明細書第8頁を別紙の通り訂正する。
Agent Patent attorney Yanagi Hara Written amendment April 1985, Japan Patent Application No. 48646, filed in 1985 2, Title of invention Method for producing phosphatidylcholine 3, Relationship with the person making the amendment Case Patent applicant representative Ogawa Terutsugu 4, agent 105 telephone number 436-47006, amend column 7 of the detailed explanation of the invention of the specification subject to amendment and page 8 of the specification of contents of the amendment as shown in the attached sheet.

PCを得る方法であり、その反応は次の反応式%式% (式中、 RCO−はアシル基を表す)〔発明が解決し
ようとする問題点〕
This is a method for obtaining PC, and the reaction is performed using the following reaction formula (in the formula, RCO- represents an acyl group) [Problems to be solved by the invention]

Claims (5)

【特許請求の範囲】[Claims] (1)担体に吸着または含浸させたグリセロホスホリル
コリンと活性化脂肪酸とを触媒の存在下に溶媒中で混合
し、反応させることを特徴とするホスファチジルコリン
の製造方法。
(1) A method for producing phosphatidylcholine, which comprises mixing glycerophosphorylcholine adsorbed or impregnated onto a carrier and activated fatty acid in a solvent in the presence of a catalyst and reacting the same.
(2)担体がシリカゲル、活性炭、ゼオライト、ガラス
、陶器、磁器、セライト、活性白土、岩石、または樹脂
である特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the carrier is silica gel, activated carbon, zeolite, glass, earthenware, porcelain, celite, activated clay, rock, or resin.
(3)活性化脂肪酸が炭素数8〜24の天然もしくは合
成の飽和または不飽和脂肪酸の無水物、クロル化物ある
いはイミダゾール化物である特許請求の範囲第1項また
は第2項記載の製造方法。
(3) The production method according to claim 1 or 2, wherein the activated fatty acid is an anhydride, a chloride, or an imidazolate of a natural or synthetic saturated or unsaturated fatty acid having 8 to 24 carbon atoms.
(4)溶媒がジメチルスルホキシド、ジメチルホルムア
ミド、ジメチルアセトアミド、N−メチルピロリドン、
ヘキサメチルホスホルアミド、スルホラン、またはテト
ラメチル尿素を含有するものである特許請求の範囲第1
項ないし第3項のいずれかに記載の製造方法。
(4) The solvent is dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone,
Claim 1 contains hexamethylphosphoramide, sulfolane, or tetramethylurea.
The manufacturing method according to any one of Items 1 to 3.
(5)脂肪酸無水物がホスファチジルコリン合成時に脂
肪酸および脂肪酸と等モル以上のカルボジイミド系縮合
剤により合成されるものである特許請求の範囲第3項記
載の製造方法。
(5) The production method according to claim 3, wherein the fatty acid anhydride is synthesized using a fatty acid and a carbodiimide condensing agent in an amount equal to or more than the same molar amount as the fatty acid during the synthesis of phosphatidylcholine.
JP4864685A 1985-03-12 1985-03-12 Production of phosphatidylcholine Pending JPS61207396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4864685A JPS61207396A (en) 1985-03-12 1985-03-12 Production of phosphatidylcholine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864685A JPS61207396A (en) 1985-03-12 1985-03-12 Production of phosphatidylcholine

Publications (1)

Publication Number Publication Date
JPS61207396A true JPS61207396A (en) 1986-09-13

Family

ID=12809123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864685A Pending JPS61207396A (en) 1985-03-12 1985-03-12 Production of phosphatidylcholine

Country Status (1)

Country Link
JP (1) JPS61207396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344711A2 (en) * 1988-06-02 1989-12-06 Wako Pure Chemical Industries Ltd Process for producing phosphatidylcholine derivatives
CN114014889A (en) * 2021-11-25 2022-02-08 江苏东南纳米材料有限公司 Method for synthesizing phosphatidylcholine by using solid phase carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344711A2 (en) * 1988-06-02 1989-12-06 Wako Pure Chemical Industries Ltd Process for producing phosphatidylcholine derivatives
CN114014889A (en) * 2021-11-25 2022-02-08 江苏东南纳米材料有限公司 Method for synthesizing phosphatidylcholine by using solid phase carrier

Similar Documents

Publication Publication Date Title
ES2165115T5 (en) A PROCEDURE FOR THE PURIFICATION OF PHOSFATIDINILSERINE.
Nicolaou et al. N-Phenylselenophthalimide (N-PSP) and N-phenylselenosuccinimide (N-PSS). Two versatile carriers of the phenylseleno group. Oxyselenation of olefins and a selenium-based macrolide synthesis
NL940021I1 (en) Purified hematoporphyrin derivative for the diagnosis and treatment of tumors, and method for preparing it.
EP1213294B2 (en) Purifying process for phosphatidylserine
JPS61207396A (en) Production of phosphatidylcholine
JPS61129190A (en) Polymerizable glycerophospholipid
JPH0367676B2 (en)
JPS6185396A (en) Preparation of phosphatidylcholine
JPS61275287A (en) Production of synthetic phosphatidylcholine
JPS6216439A (en) Production of phosphatidylcholine
GB2058792A (en) Process for the Preparation of L- alpha -Glycerylphosphoryl Choline
JPS61275286A (en) Production of phosphatidylcholine
JPS61158990A (en) Production of glycerophosphorylcholine
EP0073834B1 (en) Water-soluble cholesterol derivatives
JP2887617B2 (en) Method for producing phosphatidylcholine
JPH0572915B2 (en)
JPS61129191A (en) Glycerophospholipid containing decosahexaenoic acid
JPS629599B2 (en)
GB2144332A (en) Pharmaceutical preparations containing fructose-1,6-diphosphate
JP2884105B2 (en) Method for producing phosphatidylcholine
JP2546289B2 (en) Method for producing synthetic lecithin
JPS61180793A (en) Production of phosphatidylcholine
JPS5940839B2 (en) Method for producing mixed acid type 1,2-diacyl-3-glycerylphosphorylcholines
JPS62181287A (en) Production of phosphatidylcholine
JPH1129587A (en) Solid-carried glycerol-3-phosphate and its production