JPS61129191A - Glycerophospholipid containing decosahexaenoic acid - Google Patents

Glycerophospholipid containing decosahexaenoic acid

Info

Publication number
JPS61129191A
JPS61129191A JP25030784A JP25030784A JPS61129191A JP S61129191 A JPS61129191 A JP S61129191A JP 25030784 A JP25030784 A JP 25030784A JP 25030784 A JP25030784 A JP 25030784A JP S61129191 A JPS61129191 A JP S61129191A
Authority
JP
Japan
Prior art keywords
acid
docosahexaenoic acid
formulas
glycerophosphorylcholine
glycerophospholipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25030784A
Other languages
Japanese (ja)
Inventor
Yasuhisa Noguchi
野口 泰久
Osamu Nakachi
仲地 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP25030784A priority Critical patent/JPS61129191A/en
Publication of JPS61129191A publication Critical patent/JPS61129191A/en
Pending legal-status Critical Current

Links

Abstract

NEW MATERIAL:A compound of formula I (R<1>CO, R<2>CO are residues of natu rally occurring fatty acids where at least one is residue of docosahexaenoic acid; R<3> is H, CH2CH2N<+>(CH3)3, CH2CH2N<+>H3, formulas II-V). EXAMPLE:1,2-Didocosahexaenyl-Sn-3-glycerophosphorylcholine. USE:Liposome, cholesterol-lowering agent, preventive for thrombosis: is shows high stability to oxidation. PREPARATION:For example, a deacylated phospholipid such as glycerylphosphorylcholine or glycerylphosphorylethanolamine or its cadmium salt is allowed to react with an anhydride, chloride or imidazole salt of docosahenxaenoic acid in the presence of a catalyst such as 4- dimethylaminopyridine in a solvent such as dichloromethane at room temperature under stirring.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明はアシル基にドコサヘキサエン酸を含有するグリ
セロリン脂質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a glycerophospholipid containing docosahexaenoic acid in an acyl group.

〔従来の技術〕[Conventional technology]

天然リン脂質は主にホスファチジルコリン、ホスファチ
ジルエタノールアミン、ホスファチジルセリン、ホスフ
ァチジルイノシトールなどのグリセロリン脂質およびス
フィンゴミエリンなどのスフィンゴリン脂質からなり、
細胞の生体膜の重要な成分として存在している。これら
の中でもホスファチジルコリンは一般にレシチンと呼ば
れ、動植物界のリン脂質の中で一番多く存在している。
Natural phospholipids mainly consist of glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingophospholipids such as sphingomyelin.
It exists as an important component of biological membranes of cells. Among these, phosphatidylcholine is generally called lecithin and is the most abundant phospholipid in the animal and plant kingdoms.

これらのリン脂質の共通した特徴は親水基と疎水基を持
つことであり、生体膜中では二重層膜を形成し、タンパ
ク質、コレステロールなどとともに物質の透過、選択的
輸送などの生命現象に欠くことのできない機能をはたし
ている。リン脂質は工業的にはすでに天然乳化剤として
用いられ1食品工業、化粧品業界等で用いられている。
A common feature of these phospholipids is that they have a hydrophilic group and a hydrophobic group, and they form a double layer in biological membranes, and together with proteins and cholesterol, they are essential for biological phenomena such as permeation of substances and selective transport. It performs functions that cannot be performed. Phospholipids have already been used industrially as natural emulsifiers, such as in the food industry and the cosmetics industry.

また最近リン脂質はその脂質の特徴により水溶液中でリ
ポソームと呼ばれる非常に小さな閉鎖小胞体を作ること
が知られている。
Furthermore, it has recently been known that phospholipids form very small closed endoplasmic reticulum called liposomes in aqueous solutions due to their lipid characteristics.

一方、動植物油、とりわけ魚油中の高度不飽和脂肪酸で
あるドコサヘキサエン酸にはコレステロール、中性脂肪
の低下および動脈硬化の予防、そして血栓症の予防など
の生理活性が認められている。また最近ではドコサヘキ
サエン酸を含むリン脂質が抗がん作用を持つと言われて
いる。
On the other hand, docosahexaenoic acid, a highly unsaturated fatty acid found in animal and vegetable oils, especially fish oil, has been recognized to have physiological activities such as lowering cholesterol and neutral fats, preventing arteriosclerosis, and preventing thrombosis. Recently, phospholipids containing docosahexaenoic acid are said to have anticancer effects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来このようなドコサヘキサエン酸は酸
化安定性が極めて悪い上に水に不溶であり、医薬として
用いる場合は酸素の透過を防ぐためにゼラチンでカプセ
ル化して用いるなどかなりの制約があった。
However, in the past, such docosahexaenoic acid had extremely poor oxidative stability and was insoluble in water, and when used as a medicine, there were considerable restrictions such as encapsulating it with gelatin to prevent oxygen permeation.

本発明は、このような問題点を解決するためのもので、
ドコサヘキサエン酸をリン脂質の構造内に含ませること
により、酸化安定性をよくしたドコサヘキサエン酸含有
グリセロリン脂質を提供することを目的としている。
The present invention is intended to solve these problems,
The object of the present invention is to provide a glycerophospholipid containing docosahexaenoic acid with improved oxidative stability by incorporating docosahexaenoic acid into the structure of the phospholipid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、下記一般式〔I〕で表わされる化合物からな
るドコサヘキサエン酸含有グリセロリン脂質である。
The present invention is a docosahexaenoic acid-containing glycerophospholipid comprising a compound represented by the following general formula [I].

(式中、 R’CO−およびR2GO−はそれぞれ天然
由来の脂肪酸残基を示し、その一方または両方がドコサ
ヘキサエン酸残基であり、R3は−CH2CH2N4″
(CHコ)3゜〔13式において、R’CO−またはR
2C0−を残基とするドコサヘキサエン酸は、に22,
6.ω−3(オメガ−3酸・・・二重結合が末端メチル
基側から3番目に位置する)、二重合結合がシス位置で
示される高度不飽和脂肪酸で、生体内で優れた生理活性
を示す。R’CO−またはR2C0−の一方がドコサヘ
キサエン酸残基の場合、他方を残基とする脂肪酸として
はパルミチン酸、ステアリン酸、オレイン酸等の炭素数
10〜20の通常の飽和または不飽和脂肪酸があげられ
る。
(In the formula, R'CO- and R2GO- each represent a naturally occurring fatty acid residue, one or both of which is a docosahexaenoic acid residue, and R3 is -CH2CH2N4''
(CHco)3゜[In formula 13, R'CO- or R
Docosahexaenoic acid with 2C0- as a residue is 22,
6. Omega-3 (omega-3 acid...the double bond is located at the third position from the terminal methyl group) is a highly unsaturated fatty acid in which the double bond is in the cis position, and has excellent physiological activity in vivo. show. When one of R'CO- or R2C0- is a docosahexaenoic acid residue, the fatty acid with the other as a residue is a normal saturated or unsaturated fatty acid having 10 to 20 carbon atoms such as palmitic acid, stearic acid, oleic acid, etc. can give.

本発明のドコサヘキサエン酸含有グリセロリン脂質は、
(1)式におけるHl、 R2,R3の組合せにより種
々の化合物があり、代表的な化合物としては、1−バル
ミトイル−2−ドコサヘキサエニルー5n−3−グリセ
ロホスホリルコリン、1−バルミトイル−2−ドコサヘ
キサエニルーSロー3−グリセロホスホリルエタノール
アミン、■、2−シトコサへキサエニルー5n−3−グ
リセロホスホリルコリン、1,2−シトコサへキサエニ
ルー5n−3−グリセロホスホリルエタノールアミンな
どがあげられる。
The docosahexaenoic acid-containing glycerophospholipid of the present invention is
There are various compounds depending on the combination of Hl, R2, and R3 in formula (1), and representative compounds include 1-valmitoyl-2-docosahexaenyl-5n-3-glycerophosphorylcholine, 1-valmitoyl-2-docosahexaenyl, Examples include hexaenyl-S rho 3-glycerophosphorylethanolamine, (1), 2-cytocosahexaenyl-5n-3-glycerophosphorylcholine, and 1,2-cytocosahexaenyl-5n-3-glycerophosphorylethanolamine.

本発明のドコサヘキサエン酸含有グリセロリン脂質は、
グリセリルホスホリルコリン(G P C)、グリセリ
ルホスホリルエタノールアミン(GPE)等の脱アシル
リン脂質体と、ドコサヘキサエン酸の無水物、塩化物、
イミダゾール塩等とを反応させることにより製造するこ
とができる。その他の製造方法として全合成によるジア
シルグリセロール等からのグリセロリン脂質の合成法が
あり、この方法によれば天然型光学活性共役酸型グリセ
ロリン脂質のみならず、光学異性体、立体異性体または
それらの混合物の合成も可能である。
The docosahexaenoic acid-containing glycerophospholipid of the present invention is
Deacylated phospholipids such as glycerylphosphorylcholine (GPC) and glycerylphosphorylethanolamine (GPE), anhydride and chloride of docosahexaenoic acid,
It can be produced by reacting with an imidazole salt or the like. Another method for producing glycerophospholipids is to synthesize glycerophospholipids from diacylglycerol, etc. by total synthesis.This method allows not only natural optically active conjugated acid-type glycerophospholipids, but also optical isomers, stereoisomers, or mixtures thereof. It is also possible to synthesize

上記製造に用いられるドコサヘキサエン酸は魚油、鯨油
などから分解、分離、精製して得られ。
The docosahexaenoic acid used in the above production is obtained by decomposing, separating, and refining fish oil, whale oil, etc.

得られたドコサヘキサエン酸は酸無水物、酸塩化物、酸
イミダゾール塩等に変換して用いられる。
The obtained docosahexaenoic acid is used after being converted into an acid anhydride, acid chloride, acid imidazole salt, etc.

また上記製造に用いられる脱アシルリン脂質体はグリセ
ロリン脂質の骨格となるもので、主に大豆、卵黄等の天
然リン脂質を分離、分解または分解、再結晶して得られ
るグリセリルホスホリルコリンまたはグリセリルホスホ
リルエタノールアミン等の脱アシルリン脂質体が使用で
きる。分離はシリカゲルまたは活性アルミナを用い、ク
ロロホルム/メタノール等の混合溶媒で溶出させて行わ
れる。分解はテトラブチルアンモニウt1ヒドロキサイ
ドで行われるが、低濃度のカセイソーダ等でおだやかに
分解してもよい。再結晶はカドミウム塩等として行われ
る。グリセリルホスホリルコリン等の脱アシルリン脂質
体は非常に強い吸湿性を示し、そのまま用いることもで
きるが、カドミウム塩などに変換して反応に用いる方が
反応操作上扱いやすく好ましい。再結晶はカドミウム塩
などの形で含水アルコール溶液中で行われる。
In addition, the deacylated phospholipid used in the above production forms the backbone of glycerophospholipid, and is mainly glycerylphosphorylcholine or glycerylphosphorylethanolamine obtained by separating, decomposing, decomposing, and recrystallizing natural phospholipids such as soybean and egg yolk. Deacylated phospholipid bodies such as the following can be used. Separation is performed using silica gel or activated alumina and elution with a mixed solvent such as chloroform/methanol. The decomposition is carried out with tetrabutylammonium t1 hydroxide, but it may also be gently decomposed with a low concentration of caustic soda or the like. Recrystallization is performed as a cadmium salt or the like. Desacylated phospholipids such as glycerylphosphorylcholine exhibit very strong hygroscopicity and can be used as they are, but it is preferable to use them in the reaction after converting them into cadmium salts, etc., as they are easier to handle in terms of reaction operations. Recrystallization is carried out in a hydroalcoholic solution in the form of a cadmium salt or the like.

ドコサヘキサエン酸無水物、塩化物、イミダゾール等と
脱アシルリン脂質体またはそのカドミウム塩等との反応
は、4−ジメチルアミノピリジン等の触媒の存在下、ジ
クロロメタン等の乾燥溶媒中で、常温下に攪拌して行う
と、ドコサヘキサエン酸含有グリセロリン脂質が生成す
る。
The reaction between docosahexaenoic anhydride, chloride, imidazole, etc. and the deacylated phospholipid or its cadmium salt is carried out by stirring at room temperature in a dry solvent such as dichloromethane in the presence of a catalyst such as 4-dimethylaminopyridine. When carried out, docosahexaenoic acid-containing glycerophospholipids are produced.

〔作 用〕[For production]

本発明のドコサヘキサエン酸含有グリセロリン脂質は優
れた酸化安定性を有し、生体内でドコサヘキサエン酸お
よびグリセロリン脂質に分解してそれぞれの相乗的な生
理活性を示すので、食品。
The docosahexaenoic acid-containing glycerophospholipid of the present invention has excellent oxidative stability and decomposes into docosahexaenoic acid and glycerophospholipid in vivo and exhibits synergistic physiological activities of each, so it is a food product.

化粧品、医薬品等として生体に利用することができ、特
にコレステロールの低下、血栓症状の予防などの薬理効
果が高い。
It can be used in living organisms as cosmetics, medicines, etc., and has particularly high pharmacological effects such as lowering cholesterol and preventing blood clot symptoms.

このリン脂質はそのままの形で摂取または投薬等により
生体に利用できるが、リポソームを形成し、その水溶液
として利用することにより、酸素の透過を防ぎ、酸化安
定性の優れた生理活性物質として用いることができる。
These phospholipids can be used by living organisms as they are by ingestion or administration, but by forming liposomes and using them as an aqueous solution, they can be used as physiologically active substances with excellent oxidative stability by preventing the permeation of oxygen. I can do it.

このリポソーム水溶液は、透明な注射液または経管栄養
剤などの輸液として用いることができる。
This liposome aqueous solution can be used as a transparent injection solution or an infusion solution such as a tube feeding solution.

本発明のリン脂質は両親媒性であるため、そのリポソー
ムも両親媒性であり、リポソームの空間を利用して他の
物質を入れ、生体に供給することができる8つまりビタ
ミンCなどの水溶性物質であればリポソームの内側の小
胞に、ビタミンEなどの疎水性物質であればリポソーム
膜の疎水部に入れて、生体に供給することが可能である
。リポソームはii’/’ V法(超音波処理)により
、リン脂質を有機溶媒に溶解した後、有機溶媒を蒸発さ
せて薄膜を作り、そこに水溶液を加え超音波処理するこ
とにより作ることができるが、このほか溶液注入法など
によっても作ることができる。
Since the phospholipids of the present invention are amphipathic, the liposomes are also amphipathic, and other substances can be introduced into the living body using the space of the liposomes, that is, water-soluble substances such as vitamin C. Substances can be placed in the vesicles inside liposomes, and hydrophobic substances such as vitamin E can be placed in the hydrophobic part of the liposome membrane, and then supplied to living organisms. Liposomes can be made using the ii'/'V method (ultrasonic treatment) by dissolving phospholipids in an organic solvent, evaporating the organic solvent to form a thin film, and adding an aqueous solution to it and subjecting it to ultrasound treatment. However, it can also be made by a solution injection method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドコサヘキサエン酸をリン脂質の構造
中に含ませるようにしたので、酸化安定性が高く、優れ
た生理活性を有し、リポソームとして利用可能なリン脂
質が得られる。
According to the present invention, since docosahexaenoic acid is included in the structure of the phospholipid, a phospholipid that has high oxidation stability, excellent physiological activity, and can be used as a liposome can be obtained.

〔実施例〕〔Example〕

以下、参考例、実施例にもとずき本発明をさらに具体的
に説明する。
Hereinafter, the present invention will be explained in more detail based on Reference Examples and Examples.

参考例−1 イワシ、サバ、イカ浦などの油脂を含む雑魚浦をソジウ
ムメチラートの存在下メタノール中でエステル交換反応
し、常法通り雑魚油メチルエステルを得た。このメチル
エステルの脂肪酸組成はC,4,85,36%、CI6
+0 14.55%、C,6□6.り1%。
Reference Example 1 Miscellaneous fish oil methyl ester was obtained by transesterification of sardine, mackerel, squid, etc. containing oils and fats in methanol in the presence of sodium methylate in a conventional manner. The fatty acid composition of this methyl ester is C, 4, 85, 36%, CI6
+0 14.55%, C, 6□6. 1%.

C18,。2.49%、C18,113,55%、C1
8,4,ω−32,52%、C2o、、  8.33%
、 C20+41 ω−60,88%、C2g+5. 
 (Ll−311,81%、C2□、I 6.63%、
C22:Srω−31,67%、C2□、6. ω−3
13,49%、C2411,00%、その他10.81
%であった。
C18. 2.49%, C18,113,55%, C1
8,4,ω-32,52%, C2o,, 8.33%
, C20+41 ω-60,88%, C2g+5.
(Ll-311, 81%, C2□, I 6.63%,
C22: Srω-31,67%, C2□, 6. ω-3
13,49%, C2411,00%, other 10.81
%Met.

次いでこのメチルエステルを薄膜式の分子蒸留機にかけ
前留分をカットした。その後留分の脂肪酸組成は、C+
4:o  1.31%−Cr6+o  2.12%、C
ru:+  1.35%、cta+。2.43%−C1
81111゜98%、C18+41.79%、C2o、
、  11.95%−C20!4+ ω−61.03%
、C20151(1)−316,64%、C22111
0,74%、C2□、3.ω−33,01%−C221
6+ ω−321,23%、C248□ 2.77%、
その他11.65%であった。
Next, this methyl ester was applied to a thin film type molecular distillation machine to cut off the pre-distillate. The fatty acid composition of the subsequent fraction is C+
4: o 1.31%-Cr6+o 2.12%, C
ru: +1.35%, cta+. 2.43%-C1
81111°98%, C18+41.79%, C2o,
, 11.95%-C20!4+ω-61.03%
, C20151(1)-316,64%, C22111
0.74%, C2□, 3. ω-33,01%-C221
6+ ω-321,23%, C248□ 2.77%,
Others accounted for 11.65%.

次いでこの分子蒸留メチルエステル300gを25℃で
1200gの尿素が飽和されたメタノール溶液に加え、
15℃に冷却し2時間保った。析出した尿素付加物をろ
別し、母液を濃縮後ヘキサンで抽出することによりC1
6+1 0.48%、c’ta+43.86%、C20
110・36%・C2014t ω−62・19%・C
201jj+ ω−333,77%、C2□、、  0
.22%、C22,5,ω−35,16%、C2□、6
.ω−348,59%、その他5.37%の組成を持っ
たメチルエステル113gを得た。この尿素付加メチル
エステルをラシヒリングの入った保温された充填塔を持
った蒸留装置により0.01〜0 、05+++mHg
で蒸留し、C2216+  ω−393,54%。
Then, 300 g of this molecularly distilled methyl ester was added to a methanol solution saturated with 1200 g of urea at 25°C.
It was cooled to 15°C and kept for 2 hours. The precipitated urea adduct was filtered, and the mother liquor was concentrated and extracted with hexane to obtain C1.
6+1 0.48%, c'ta+43.86%, C20
110・36%・C2014t ω-62・19%・C
201jj+ ω-333,77%, C2□,, 0
.. 22%, C22,5, ω-35,16%, C2□,6
.. 113 g of methyl ester having a composition of ω-348, 59% and other 5.37% was obtained. This urea-added methyl ester was distilled to 0.01 to 0.05+++ mHg using a distillation apparatus equipped with a heat-insulated packed column containing a Raschig ring.
Distilled at C2216+ ω-393, 54%.

C2G+51 (11−33,22%、その他3.24
%のメチルエステル14.41gを得た。このメチルエ
ステルを常法通りけん化し、酸に戻して、ドコサヘキサ
エン酸(93%)12.34gを得た。
C2G+51 (11-33, 22%, other 3.24
% methyl ester was obtained. This methyl ester was saponified in a conventional manner and converted back to acid to obtain 12.34 g of docosahexaenoic acid (93%).

参考例−2 市販卵黄レシチン50gを、直径8cmのガラスカラム
に充填した1、5Qのシリカゲルで分離した。
Reference Example-2 50 g of commercially available egg yolk lecithin was separated using 1,5Q silica gel packed in a glass column with a diameter of 8 cm.

溶出溶剤にはクロロホルム/メタノール/水=65/2
5/4の混合溶媒を用いた。各フラクションごとに薄層
クロマトグラフィーで追跡し、レシチン部から31gの
レシチンを得、ホスファチジルエタノールアミン部から
9gのホスファチジルエタノールアミンを得た。得られ
たレシチン3500mQのエーテルに溶解させ、攪拌し
つつテトラブチルアンモニウムヒドロキサイド10%メ
タノール1容液80mftを加えた。底に沈殿したグリ
セリルホスホリルコリンをデカンテーションで回収し、
エーテルで洗浄した。得られたグリセリルホスホリルコ
リンは9.1gであった。このグリセリルホスホリルコ
リンを温水に溶解し、別に温水に溶解しておいた塩化カ
ドミウム・2.5水塩18.9gと混合して反応させた
。不溶分をろ別し、このグリセリルホスホリルコリン−
塩化カドミウムコンプレックス水溶液に白濁が生じるま
でエタノールを加えて、0〜5℃に一晩放置し、生じた
結晶を回収した。この結晶を再び温水に溶解し、同様に
エタノールを加え結晶化させた。結晶を回収して乾燥さ
せ、118gのグリセリルホスホリルコリン−塩化カド
ミウムコンプレックスを得た。
Elution solvent: chloroform/methanol/water = 65/2
A 5/4 mixed solvent was used. Each fraction was tracked by thin layer chromatography, and 31 g of lecithin was obtained from the lecithin portion, and 9 g of phosphatidylethanolamine was obtained from the phosphatidylethanolamine portion. The obtained lecithin was dissolved in 3500 mQ of ether, and 80 mft of 1 volume of 10% tetrabutylammonium hydroxide in methanol was added while stirring. Glycerylphosphorylcholine precipitated at the bottom is collected by decantation,
Washed with ether. The amount of glycerylphosphorylcholine obtained was 9.1 g. This glycerylphosphorylcholine was dissolved in warm water and mixed with 18.9 g of cadmium chloride 2.5 hydrate, which had been separately dissolved in warm water, and reacted. The insoluble matter was filtered out, and this glycerylphosphorylcholine
Ethanol was added to the cadmium chloride complex aqueous solution until it became cloudy, and the solution was left at 0 to 5°C overnight, and the resulting crystals were collected. These crystals were again dissolved in warm water, and ethanol was added to crystallize them in the same manner. The crystals were collected and dried to obtain 118 g of glycerylphosphorylcholine-cadmium chloride complex.

実施例−1 参考例−1で得られたドコサヘキサエン酸(93%)5
gを乾燥クロロホルムに溶解し、ジシクロへキシルカル
ボジイミド1.7gを加えて、室温で一晩反応させドコ
サヘキサエン酸(93%)無水物を合成した。副生じた
ジシクロヘキシル尿素をろ別し、参考例−2のグリセリ
ルホスホリルコリン−塩化カドミウムコンプレックス1
.1gとジメチルアミノピリジン0.62 gをこのド
コサヘキサエン酸無水物クロロホルム溶液に加えた6密
栓して室温で攪拌しながら48時間反応させ1反応後沈
殿物をろ別し、クロロホルムをエバポレーションして粗
レシチンを得た。粗レシチンをメタノール/クロロホル
ム混合溶媒に再溶解し、イオン交換樹脂アンバーライト
IRC−50、丁RA−45(ロームアンドハース社商
標)各5gを加え、バッチ方式で残存塩化カドミウムを
除いた。メタノールをエバポレーションして再び粗レシ
チンを得た。この粗レシチンをクロロホルム/メタノー
ル/水= 65/25/ 4の混合溶媒を溶出剤として
、直径3cmのガラスカラムにシリカゲル0.2℃を充
填したカラムによりカラム分別した。薄層クロマトグラ
フィーで追跡しながらレシチン部を回収し、エバポレー
ションして純1゜2−シトコサへキサエニルー3n−3
−ブリセロホスホリルコリン1.7gを得た。
Example-1 Docosahexaenoic acid (93%) obtained in Reference Example-1 5
g was dissolved in dry chloroform, 1.7 g of dicyclohexylcarbodiimide was added, and the mixture was reacted overnight at room temperature to synthesize docosahexaenoic acid (93%) anhydride. The by-produced dicyclohexyl urea was filtered out, and the glycerylphosphorylcholine-cadmium chloride complex 1 of Reference Example-2 was obtained.
.. 1 g of dimethylaminopyridine and 0.62 g of dimethylaminopyridine were added to this solution of docosahexaenoic anhydride in chloroform.The mixture was sealed tightly and reacted for 48 hours with stirring at room temperature.After one reaction, the precipitate was filtered out, and the chloroform was evaporated to obtain a crude solution. Obtained lecithin. The crude lecithin was redissolved in a methanol/chloroform mixed solvent, 5 g each of ion exchange resins Amberlite IRC-50 and Ding RA-45 (trademarks of Rohm and Haas) were added, and residual cadmium chloride was removed in a batchwise manner. Methanol was evaporated to obtain crude lecithin again. This crude lecithin was subjected to column fractionation using a 3 cm diameter glass column filled with silica gel at 0.2° C. using a mixed solvent of chloroform/methanol/water = 65/25/4 as an eluent. The lecithin portion was recovered while being followed by thin layer chromatography, and purified by evaporation to obtain pure 1゜2-cytocosahexaenyl-3n-3.
- 1.7 g of briserophosphorylcholine was obtained.

得られた1、2−シトコサへキサエニルー5n−3−グ
リセロホスホリルコリンの元素分析値は次の通りである
The elemental analysis values of the obtained 1,2-cytocosahexaenyl-5n-3-glycerophosphorylcholine are as follows.

元素分析値 CHN  (tzt%) 理論値  71.15  9゜121゜60実測値  
70゜629゜03  1.613また上記1,2−シ
トコサへキサエニルー5n−3−グリセロホスホリルコ
リンのNMRスペクトルは第り図に示す通りであり、第
1図に付記した位置符号は(II)式の通りである。
Elemental analysis value CHN (tzt%) Theoretical value 71.15 9°121°60 Actual value
70゜629゜03 1.613 The NMR spectrum of the above 1,2-cytocosahexaenyl-5n-3-glycerophosphorylcholine is as shown in Figure 1, and the position code added to Figure 1 is the one of formula (II). That's right.

上記により得られた1、2−シトコサへキサエニルー5
n−3−グリセロホスホリルコリン500a+gをベン
ゼンに溶解し、 100mff1容のナスフラスコ中で
ロータリーエバポレーターにより減圧下ベンゼンを除き
、フラスコ壁に膜状に上記ホスファチジルコリンを付着
させた。フラスコに生理食塩水25IIIQを加え、プ
ローグ型超音波発生装置を用い、35ワツトで、20分
間窒素気流下で冷却しながら超音波処理した。得られた
リポソーム溶液は、青白色で透明な液体であり、電子顕
微鏡で観察したところ直径約300人のリポソームを含
んでいた。このリポソーム溶液をフィルターでろ別し、
少量の浮遊物を除き、ウィスター系ラット10匹にIm
Qずつ静注したが、特に免疫反応は認められなかった。
1,2-cytocosahexaenyl 5 obtained above
500a+g of n-3-glycerophosphorylcholine was dissolved in benzene, and the benzene was removed under reduced pressure using a rotary evaporator in a 100 mff 1 volume eggplant flask, and the above phosphatidylcholine was adhered to the flask wall in the form of a film. Physiological saline 25IIIQ was added to the flask, and the flask was subjected to ultrasonication using a Plog-type ultrasonic generator at 35 watts for 20 minutes while cooling under a nitrogen stream. The obtained liposome solution was a blue-white, transparent liquid, and when observed under an electron microscope, it contained approximately 300 liposomes in diameter. This liposome solution is filtered and
After removing a small amount of floating matter, Im
Q was administered intravenously, but no particular immune reaction was observed.

また上記により得られたリポソーム溶液は常温で一週間
以上安定であり、ベンゼンで減圧上共沸脱水して過酸化
物価(P OV )を測定した結果、POvの上昇は認
められなかった。
Furthermore, the liposome solution obtained above was stable at room temperature for more than a week, and when it was azeotropically dehydrated with benzene under reduced pressure and its peroxide value (POV) was measured, no increase in POv was observed.

実施例−2 パルミチン酸7.7gを乾燥クロロホルムに溶解し、ジ
シクロへキシルカルボジイミド3.1gを室温で一晩反
応させ、パルミチン酸無水物を合成した。副生じたジシ
クロヘキシル尿素をろ別し、参考例−2のグリセリルホ
スホリルコリン−塩化カドミウムコンプレックス1.6
gとジメチルアミノピリジン0.62 gをこのパルミ
チン酸無水物クロロホルム溶液に加えた。実施例−1と
同様に反応、精製し、1.2−ジパルミトイル−5n−
3−グリセロホスホリ/L/−Jす’/ (D I’ 
P C) 1.9gを得た。このDPP Cl00mg
をエチルエーテル2m12に溶解し、この、・8液をヘ
ビ毒ホスホリパーゼA250mgおよび塩化カルシラt
、20μmolをO,LM)−リス−塩酸緩衝液5mQ
に溶解したものと37℃で振とうしながら1時間反応さ
せた。EDTA溶液とエタノールで反応を止め、ベンゼ
ンで共沸して′a縮乾燥した。これをクロロホルム/メ
タノール/水: 65/35/ 8の混合溶媒でシリカ
ゲルカラム分離し、1−バルミトイル−5n−3−グリ
セロホスホリルコリン43mgを得た。
Example 2 7.7 g of palmitic acid was dissolved in dry chloroform, and 3.1 g of dicyclohexylcarbodiimide was reacted overnight at room temperature to synthesize palmitic acid anhydride. The by-produced dicyclohexyl urea was filtered and the glycerylphosphorylcholine-cadmium chloride complex 1.6 of Reference Example-2 was obtained.
g and 0.62 g of dimethylaminopyridine were added to this palmitic anhydride chloroform solution. Reaction and purification were carried out in the same manner as in Example 1, and 1,2-dipalmitoyl-5n-
3-glycerophosphoryl/L/-Jsu'/ (DI'
1.9 g of PC) was obtained. This DPP Cl00mg
was dissolved in 2 ml of ethyl ether, and this solution was mixed with 250 mg of snake venom phospholipase A and calcila chloride.
, 20 μmol O, LM)-Lis-HCl buffer 5 mQ
The mixture was reacted for 1 hour with shaking at 37°C. The reaction was stopped with an EDTA solution and ethanol, and the mixture was azeotropically distilled with benzene and condensed to dryness. This was separated on a silica gel column using a mixed solvent of chloroform/methanol/water: 65/35/8 to obtain 43 mg of 1-valmitoyl-5n-3-glycerophosphorylcholine.

このリゾホスファチジルコリン43mgを実施例−1と
同様にして得たドコサヘキサエン酸無水物のクロロホル
ム溶液(ドコサヘキサエン酸無水物150礼含む)およ
び12mgのジメチルアミノピリジンと。
43 mg of this lysophosphatidylcholine was mixed with a chloroform solution of docosahexaenoic anhydride (containing 150 mg of docosahexaenoic anhydride) obtained in the same manner as in Example 1 and 12 mg of dimethylaminopyridine.

実施例−1と同様に反応、精製し、1−バルミトイル−
2−ドコサヘキサエニル−5n−3−グリセロホスホリ
ルコリン38111gを得た。
The reaction and purification were carried out in the same manner as in Example 1, and 1-balmitoyl-
38111 g of 2-docosahexaenyl-5n-3-glycerophosphorylcholine was obtained.

得られた1−バルミトイル−2−トコサヘキサエニルー
5n−3−グリセロホスホリルコリンの元素分析値は次
の通りである。。
The elemental analysis values of the obtained 1-valmitoyl-2-tocosahexaenyl-5n-3-glycerophosphorylcholine are as follows. .

元素分析値 CHN  (tyl−%) 理論値  68.57  9.94  1.74実測値
  68.16  9.89  1.77
Elemental analysis value CHN (tyl-%) Theoretical value 68.57 9.94 1.74 Actual value 68.16 9.89 1.77

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例−1におけるN M Rスペクトル図で
ある。
FIG. 1 is an NMR spectrum diagram in Example-1.

Claims (3)

【特許請求の範囲】[Claims] (1)下記一般式〔 I 〕で表わされる化合物からなる
ドコサヘキサエン酸含有グリセロリン脂質。 ▲数式、化学式、表等があります▼・・・〔 I 〕 (式中、R^1CO−およびR^2CO−はそれぞれ天
然由来の脂肪酸残基を示し、その一方または両方がドコ
サヘキサエン酸残基であり、R^3は−CH_2CH_
2N^+(CH_3)_3、−CH_2CH_2N^+
H_3、▲数式、化学式、表等があります▼、H、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼または ▲数式、化学式、表等があります▼を示す。)
(1) A docosahexaenoic acid-containing glycerophospholipid consisting of a compound represented by the following general formula [I]. ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [I] (In the formula, R^1CO- and R^2CO- each represent a naturally occurring fatty acid residue, and one or both of them is a docosahexaenoic acid residue. Yes, R^3 is -CH_2CH_
2N^+(CH_3)_3, -CH_2CH_2N^+
H_3, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, H, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼. )
(2)R^1CO−またはR^2CO−がパルミチン酸
残基である特許請求の範囲第1項記載のドコサヘキサエ
ン酸含有グリセロリン脂質。
(2) The docosahexaenoic acid-containing glycerophospholipid according to claim 1, wherein R^1CO- or R^2CO- is a palmitic acid residue.
(3)〔 I 〕式化合物が1,2−ジドコサヘキサエニ
ル−Sn−3−グリセロホスホリルコリンまたは1−パ
ルミトイル−2−ドコサヘキサエニル−Sn−3−グリ
セロホスホリルコリンである特許請求の範囲第1項記載
のドコサヘキサエン酸含有グリセロリン脂質。
(3) Claim 1, wherein the compound of formula [I] is 1,2-didocosahexaenyl-Sn-3-glycerophosphorylcholine or 1-palmitoyl-2-docosahexaenyl-Sn-3-glycerophosphorylcholine. The docosahexaenoic acid-containing glycerophospholipid described above.
JP25030784A 1984-11-27 1984-11-27 Glycerophospholipid containing decosahexaenoic acid Pending JPS61129191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25030784A JPS61129191A (en) 1984-11-27 1984-11-27 Glycerophospholipid containing decosahexaenoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25030784A JPS61129191A (en) 1984-11-27 1984-11-27 Glycerophospholipid containing decosahexaenoic acid

Publications (1)

Publication Number Publication Date
JPS61129191A true JPS61129191A (en) 1986-06-17

Family

ID=17205955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25030784A Pending JPS61129191A (en) 1984-11-27 1984-11-27 Glycerophospholipid containing decosahexaenoic acid

Country Status (1)

Country Link
JP (1) JPS61129191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006439A2 (en) * 1987-02-24 1988-09-07 Regents Of The University Of Minnesota Phospholipase a2-resistant liposomes
JP2016053156A (en) * 2014-09-02 2016-04-14 日清ファルマ株式会社 Production method of polyunsaturated fatty acid-binding phospholipid
WO2019135386A1 (en) * 2018-01-04 2019-07-11 備前化成株式会社 Deuterated phospholipid and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006439A2 (en) * 1987-02-24 1988-09-07 Regents Of The University Of Minnesota Phospholipase a2-resistant liposomes
WO1988006439A3 (en) * 1987-02-24 1988-11-03 Univ Minnesota Phospholipase a2-resistant liposomes
JP2016053156A (en) * 2014-09-02 2016-04-14 日清ファルマ株式会社 Production method of polyunsaturated fatty acid-binding phospholipid
WO2019135386A1 (en) * 2018-01-04 2019-07-11 備前化成株式会社 Deuterated phospholipid and method for producing same
JPWO2019135386A1 (en) * 2018-01-04 2021-01-07 備前化成株式会社 Deuterated phospholipids and their production methods

Similar Documents

Publication Publication Date Title
RU2509071C2 (en) Novel lipid compounds
EP0703954B1 (en) Polyphenol derivative compositions and preparation thereof
GB2140806A (en) Stabilisation of unsaturated fatty acids, fish oils or fish
KR20090112631A (en) Novel lipid compounds
WO1994010125A1 (en) Glycerin derivatives and uses thereof
WO2001081290A2 (en) Methods for preparing cla isomers
JP2003012520A (en) Antioxidant and food and drink containing the same
JPS61129190A (en) Polymerizable glycerophospholipid
JPS61129191A (en) Glycerophospholipid containing decosahexaenoic acid
JPH01153629A (en) Anticancer agent
US4725588A (en) Alkyl phospholipid antihypertensive agents in method of lowering blood pressure
IE41597B1 (en) Synthetic phospholipids a process for their manufacture and their use
JPS6163624A (en) Production of glycolipid of high eicosapentaenoic acid content
JPH0387191A (en) Production of phosphatidylinositol
JP2001186898A (en) Method for producing phosphatidyl serine having polyvalent unsaturated fatty acid residue
JPH05236974A (en) Production of highly unsaturated fatty acid-containing phospholipid
JPH09308459A (en) Nutritive composition containing highly unsaturated fatty acid
JPS6216439A (en) Production of phosphatidylcholine
JP2942302B2 (en) Phosphatidyl ascorbate, production method thereof, emulsifier, lipid peroxide inhibitor and cosmetic
JPH06228170A (en) Phosphatidylchromanol derivative, its production, antioxidizing agent and emulsifying agent
JPH03153628A (en) Solubilized composition of highly unsaturated fatty acid-containing lipid
JPH0588718B2 (en)
JPH0662648B2 (en) Method for producing high-purity lecithin
JPH0572915B2 (en)
JPS6256497A (en) Production of phospholipid composition containing eicosapentaenoic acid