JPS61207236A - Controlling method of regenerative inverter for electric railway and device thereof - Google Patents

Controlling method of regenerative inverter for electric railway and device thereof

Info

Publication number
JPS61207236A
JPS61207236A JP60048781A JP4878185A JPS61207236A JP S61207236 A JPS61207236 A JP S61207236A JP 60048781 A JP60048781 A JP 60048781A JP 4878185 A JP4878185 A JP 4878185A JP S61207236 A JPS61207236 A JP S61207236A
Authority
JP
Japan
Prior art keywords
voltage
inverter
current
output
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60048781A
Other languages
Japanese (ja)
Other versions
JPH0688509B2 (en
Inventor
Toyomi Gondo
権藤 豊美
Yoji Hara
洋司 原
Tadashi Shibuya
渋谷 忠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60048781A priority Critical patent/JPH0688509B2/en
Publication of JPS61207236A publication Critical patent/JPS61207236A/en
Publication of JPH0688509B2 publication Critical patent/JPH0688509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To make an inverter into constant-current control as well as to make smooth regenerative operation for an electric car performable, by compensating an automatic voltage regulating system of electric-car voltage on the basis of a deviation output to be obtained in a way of comparing an electricity quantity having detected the electric-car line voltage with the setting electricity quantity. CONSTITUTION:At the time of operation of an electric car 6, supposing output voltage of a transducer 22 is lower than the setting voltage of an inverter voltage setter 24 and an electric current is not flowing in an inverter 8, voltage and current of an electric-car line 5 vary to a B characteristic when commercial supply voltage is high but to an A characteristic when it is low. Next, if a current Id of the electric-car line 5 decreases during operation with the A characteristic, coming to less tan the Id1, and an output current of a transducer 13 is smaller than the setting value of a circulating current setter 15, an amplifier 16 emits the specified voltage signal. Therefore, a fourth comparing circuit 26 outputs a deviation signal to be obtained out of the setting value of regenerative voltage setter 27 and an output signal of the amplifier 16 to a circuit 28, and with the deviation output made up of comparing the deviation signal with the output voltage of the transducer 22, an automatic voltage regulating circuit 31 performs phase control over the inverter 8, making constant-current control performable.

Description

【発明の詳細な説明】 以下の順序で本発明を説明する。[Detailed description of the invention] The present invention will be explained in the following order.

A、産業上の利用分野 B6発明の概要 C6従来の技術 り1発明が解決しようとする問題点 E0問題点を解決するための手段 20作用 G、実施例 G1.第1実施例(第1図J G1.第2案施例(第2図) ル 発明の効果 A、産業上の利用分野 本発明は直流饋電方式の電気鉄道の電車線に直流電力を
供給するコンバータと、回生制御可能な電気車が発する
回生電力を交流電源側に回生ずるインバー夕とを備え九
回生変電所システムに係シ、特に電鉄用回生インバータ
の制御方法と七の゛装置に関する。
A. Industrial fields of application B6 Summary of the invention C6 Prior art 1 Problems to be solved by the invention E0 Means for solving the problems 20 Effects G. Examples G1. First embodiment (Fig. 1 J G1. Second embodiment (Fig. 2)) Effects of the invention A, Industrial application field The present invention supplies DC power to electric railway contact lines using a DC feeder system. The present invention relates to a regenerative substation system comprising a converter for regenerative electric vehicles and an inverter for regenerating regenerative power generated by an electric car capable of regenerative control to the AC power source side, and particularly relates to a method and device for controlling a regenerative inverter for electric railways.

B0発明の概要 本発明は電鉄用回生インバニタの制御方法とその装置に
おいて、 コンバータ電流、インバータ電流および電車線゛電圧を
゛各々検出するとともにそれら検出電気量と予め設定し
た所定の電気量とを各々つき合わせ、且つ前記各々のつ
き合わせによりて得られる偏差出力に基づいて電車線電
圧の自動電圧調整系の補正を行なうように構成すること
VCより、電気車がカ行運転中であってもコンバータ入
力゛電圧の変動に関係橙くインバー夕を確実に動作状態
にすることができるとともに、インバータに流れる循m
w、fILを常に最低のレベルに抑制でき″るようにし
たもので゛ある。
B0 Summary of the Invention The present invention provides a method and device for controlling a regenerative invanitor for electric railways, which includes detecting converter current, inverter current, and contact line voltage, and converting the detected amounts of electricity and predetermined amounts of electricity into each other. The automatic voltage adjustment system for the contact line voltage is configured to be corrected based on the deviation output obtained from each of the above matchings. It is possible to ensure that the inverter is in the operating state regardless of input voltage fluctuations, and the circulating voltage flowing to the inverter is
w, fIL can always be suppressed to the lowest level.

C1従来の技術 一般に回生変電所システムは例えば゛第4図に示すよ′
うに構成されている。第4図において、交流電源」の出
力電力は変圧器2aを介して、ダイオードをプリイジ接
続して構成されたコンバータ3に゛入力される。このコ
ンバータ6は入力された交流電力を直流変換し、その直
流電力を直流高速度遮断器4a゛および電車線5を介し
て電気車6に供給する。電気車6め回生運転時に発生す
る回生電力は、直流高速度遮断t#4bおよび直流リア
クトル7を介して、サイリスタをブリッジ接続して構゛
成されたインバータ8に入力される。このインバ−タ8
は入力された直流電力を交流変換し、その交流電力を変
圧52bを介して交流電源1に回生ずる。
C1 Conventional technology In general, regenerative substation systems are as shown in Figure 4, for example.
It is composed of In FIG. 4, the output power of an AC power supply is inputted via a transformer 2a to a converter 3 constructed by connecting diodes in a pre-circular manner. This converter 6 converts the input AC power into DC power, and supplies the DC power to the electric car 6 via the DC high-speed circuit breaker 4a' and the overhead contact line 5. Regenerative power generated during regenerative operation of electric car 6 is inputted via DC high-speed cutoff t#4b and DC reactor 7 to inverter 8 configured by bridge-connecting thyristors. This inverter 8
converts the input DC power into AC power, and regenerates the AC power to the AC power supply 1 via the transformer 52b.

上記のように構成され次装置において、コンバータ6お
よびインバータ8の運転制御は電車線5の電圧Edの変
化に応じて第5図の電圧−電流特性図に示すように行な
われる。すなわち、電気車6のカ行運転時はコンバータ
6のみが運転状態にあシ、そのときの電車線5の電圧E
dは直流電流をIdとすると第5図の領域■に示す如く
変化する。ま、た、電気車6が回生制動を行なうと電車
線5の電圧Edが上昇し、該電圧Edが回生設定電圧を
超えた時点でインバータ制御回路(図示省略)によりて
インバータ8の運転が開始される。そしてインバータ8
はインバータ制御回路によって第5−〇回生運転領域■
に示す如く電車線5の電圧Edを回生時の電車線電圧V
d0に保つように定電圧制御がなされる。
In the device configured as described above, the operation of converter 6 and inverter 8 is controlled in accordance with changes in voltage Ed of overhead contact line 5 as shown in the voltage-current characteristic diagram of FIG. That is, when the electric car 6 is running in the direction of F, only the converter 6 is in operation, and the voltage E of the overhead contact line 5 at that time is
d changes as shown in region (3) in FIG. 5, where Id is the direct current. Also, when the electric car 6 performs regenerative braking, the voltage Ed of the overhead contact line 5 increases, and when the voltage Ed exceeds the regeneration setting voltage, the inverter control circuit (not shown) starts operating the inverter 8. be done. and inverter 8
is the 5th-〇 regenerative operation area by the inverter control circuit■
As shown in , the voltage Ed of the overhead contact line 5 is changed to the overhead contact line voltage V during regeneration.
Constant voltage control is performed to maintain the voltage at d0.

D0発明が解決しようとする問題点 上記のように構成された回生変電所システムにおいて、
インバータの無負荷直流電圧を前記カ行時の最大電車1
1111c圧vd(コンバータの無負荷゛直゛流電圧l
よシ低く設定すると、コンバータ入力電源電圧の変動に
よってコンバータ3とインバータ8の間に過大な循環電
流が流れてしまう。この為第5図に示すように回生設定
電圧Vdoをカ行時の最大電車線電圧Vd (コンバー
タの無負荷直流電圧)よシ高く設定する必要がありた。
Problems to be solved by the D0 invention In the regenerative substation system configured as described above,
The maximum no-load DC voltage of the inverter during the above 1 train
1111c pressure vd (converter no-load direct current voltage l
If it is set too low, an excessive circulating current will flow between converter 3 and inverter 8 due to fluctuations in converter input power supply voltage. For this reason, as shown in FIG. 5, it was necessary to set the regeneration setting voltage Vdo higher than the maximum contact line voltage Vd (no-load direct current voltage of the converter) when the converter was running.

しかし、このように設定した場合電気車6が回生制動を
行なっても電車線電圧がカ行時の最大電車線電圧Vdか
ら回生設定電圧に到達するまでの期間、インバータ8は
非動作状態の′!ま待機する。この為電気車60発する
回生電力を回生ずることができず、これによって回生電
力を有効に利用することができなくなる。特に回生制動
時の回生電流の立上シが速い場合、前記のようにインバ
ータ8の動作が遅れると、電車線5の電圧Edが異常に
上昇してしまう。
However, in this setting, even if the electric car 6 performs regenerative braking, the inverter 8 remains in the non-operating state during the period from the maximum contact line voltage Vd when the electric car is running to the regenerative setting voltage. ! I'll wait. For this reason, the regenerative power generated by the electric car 60 cannot be regenerated, and as a result, the regenerated power cannot be used effectively. Particularly when the regenerative current rises quickly during regenerative braking, if the operation of the inverter 8 is delayed as described above, the voltage Ed of the overhead contact line 5 will rise abnormally.

この為電気車6は回生ブレーキを用いることができなく
なシ、電気車側の逅断器をトリップし九後にエアブレー
キ等を用いて停止させなければならなくなる。
For this reason, the electric car 6 cannot use regenerative braking, and must trip the switch on the electric car side and then use an air brake or the like to stop the electric car.

また、上記のような欠点を解消する為に次のようなイン
バータ制御方法が用いられていた。すなわち第6図(&
)の電圧−電流特性図に示すように、電車線5の電圧が
所定値、例えばEdo以上のときインバータ8を制御進
み角γ。で運転してコンバータ3とインバータ8間に所
定の循環電流を流すとともに、電車線電圧が所定値以上
のときインバータ8を定電圧制御して電¥L線電圧を一
定値、例えばVd、に保り制御方法である。このように
インバータ8を制御すれば、電気車がカ行運転中であっ
てもインバータを動作状態にしておくことがで5、きる
ので、カ行運転から回生運転への切換えを迅速且つ円滑
に行なうことができ、これによって過大な循環電流およ
び電車線の異常電圧上昇を抑制することができる。しか
しながらこのような制御方法によると、第6図(b)の
如くコンバータ入力電圧(商用電源電圧)が変動した場
合% Toによる一定制御開始時の電圧tEao)をい
かなる電圧値に設定するかによって次のような問題が生
じる。すなわち、ro一定制御開始時の電圧をEdot
に設定して所定のr。一定制御を行ない電車tM篭圧を
第6図(功のA特性とした場合、例えばコンバータ入力
電圧が最低レベルになったとする。この場合、第6図(
b)の特性図よシ明らかなように、コンバータ3の運転
時に所定の循環電流を流してインバータ8を動作状態に
しておくことができなくなシ、例えば、回生運転に切換
わったとき、インバータ8の動作が遅れて電車線電圧は
異常上昇してしまう。また、前記欠点をなくすためにr
o一定制御開始時の電圧を前記Edo+よシ低いE d
otに設定し、第6図(1)lのB特性の如く電′IL
&!電圧を制御したとする。この場合コンバータ入力電
圧が最高レベルになれば、循3j111L流が増加して
しまい不経!である。
Further, in order to eliminate the above-mentioned drawbacks, the following inverter control method has been used. In other words, Figure 6 (&
), when the voltage of the overhead contact line 5 is higher than a predetermined value, for example Edo, the inverter 8 is controlled at a lead angle γ. A predetermined circulating current is passed between the converter 3 and the inverter 8, and when the contact line voltage is higher than a predetermined value, the inverter 8 is controlled at a constant voltage to maintain the electric line voltage at a constant value, for example, Vd. This is a control method. By controlling the inverter 8 in this way, it is possible to keep the inverter in operation even when the electric vehicle is in power mode5, thereby making it possible to quickly and smoothly switch from power mode mode to regenerative operation. This makes it possible to suppress excessive circulating current and abnormal voltage rises in overhead contact lines. However, according to such a control method, when the converter input voltage (commercial power supply voltage) fluctuates as shown in Figure 6(b), the following results depend on what voltage value is set the voltage tEao at the start of constant control by %To. The following problems arise. In other words, the voltage at the start of constant ro control is Edot
set to a predetermined r. When constant control is carried out and the car tM car pressure is set to the A characteristic of Figure 6 (A characteristic), for example, suppose that the converter input voltage has reached the lowest level. In this case, as shown in Figure 6 (
As is clear from the characteristic diagram b), it is no longer possible to keep the inverter 8 in operation by flowing a predetermined circulating current during operation of the converter 3. For example, when switching to regenerative operation, the inverter 8 is delayed and the contact line voltage increases abnormally. In addition, in order to eliminate the above drawbacks, r
oThe voltage at the start of constant control is lower than Edo+.
ot, and as shown in the B characteristic in Figure 6 (1) l, the electric current is
&! Suppose we control the voltage. In this case, if the converter input voltage reaches the highest level, the circulating 3j111L flow will increase, which is a waste! It is.

本発明は上記の点に鑑みてなされたもので、電気車がカ
行運転中であってもコンバータ入力電圧の変動に関係な
くインバータを確実に動作状態にすることができるとと
もに、インバータに流れる循環電流を常に最低のレベル
に抑制できる電鉄用回生インバータの制御方法とその装
置を提供することを目的としている。
The present invention has been made in view of the above points, and it is possible to reliably put the inverter into an operating state regardless of fluctuations in the converter input voltage even when the electric vehicle is in continuous operation, and to improve the circulation flow to the inverter. The object of the present invention is to provide a control method and device for a regenerative inverter for electric railways that can always suppress the current to the lowest level.

E0問題点を解決するための手段 本発明は、 (υ 交流電源の交流出力電力を直流変換し、該直流電
力を直流式電気鉄道の電車線に供給するコンバータと、
電気車が回生制動時に発する回生電力を前記電源側に回
生ずるインバータとを備えた回生変電所において、前記
インバータに流れる電流と所定の循環電流設定量との偏
差出力を所定の増幅特性によって増幅するとともに、該
増幅出力と所定の回生電圧設定量との偏差出力を前記電
車線電圧とつき合わせ、且つその偏差出力に基づいて前
記インバータを位相制御し、前記コンバータに流れる電
流と所定のコンバータ電流設定量との偏差出力を所定の
増幅特性によって増幅するとともに、該増幅出力に基づ
いて前記回生電圧設定量を補正するようにしたことを特
徴とするとともに、(2)  交流電源の交流出力電力
を直流変換し、該直流電力を直流式電気鉄道の電車線に
供給するコンバータと、電気車が回生制動時に発する回
生電力を前記電源側に回生ずるインバータとを備えた回
生変電所において、前記インノ(−夕に流れる電流と予
め設定した循環電流設定量とをつき合わせる第1つき合
わせ部と、前記コンバータに流れる電流と予め設定した
コンバータ電流設定量とをりき合わせる第2つき合わせ
部と、前記電車線の電圧と予め設定したインバータ電圧
設定量とをつき合わせるか、又は前記インバータに流れ
る電流と予め設定したインバータ電流設定量とをつき合
わせる第3つき合わせ部と、前記第1つき合わせ部の偏
差出力を所定の増幅特性で増幅する第1増幅部と、前記
第2つき合わせ部の偏差出力を所定の増幅特性で増幅す
る第2増幅部と、前記第1および第2増幅部の出力信号
と予め設定した回生電圧設定量とをつき合わせる第4つ
き合わせ部と、この第4つき合わせ部と前記第2増幅部
を結ぶ電路に介挿され、前記第3つき合わせ部の偏差出
力に基づいてオン、オフ制御されるスイッチング回路と
、前記第4つき合わせ部の偏差出力と前記電車線電圧と
をつき合わせる第5つき合わせ部と、この第5つき合わ
せ部の偏差出力に基づいて前記インバータの位相11f
lJ御を行なう制御部とを備えたことを特徴としている
Means for Solving the E0 Problem The present invention provides (υ) a converter that converts the AC output power of an AC power source into DC power and supplies the DC power to the contact line of a DC electric railway;
In a regenerative substation equipped with an inverter that regenerates regenerative power generated by an electric vehicle during regenerative braking to the power source side, a deviation output between the current flowing through the inverter and a predetermined circulating current setting amount is amplified by a predetermined amplification characteristic. At the same time, the deviation output between the amplified output and a predetermined regenerative voltage setting amount is matched with the overhead line voltage, and the phase of the inverter is controlled based on the deviation output, so that the current flowing through the converter and the predetermined converter current setting are controlled. The regenerative voltage setting amount is amplified by a predetermined amplification characteristic, and the regenerative voltage setting amount is corrected based on the amplified output, and (2) the AC output power of the AC power source is converted to DC output power. In the regenerative substation, the regenerative substation is equipped with a converter that converts the DC power and supplies the DC power to the contact line of a DC electric railway, and an inverter that regenerates the regenerative power generated by the electric car during regenerative braking to the power source side. a first matching section that matches the current flowing in the evening with a preset circulating current setting amount; a second matching section that matches the current flowing in the converter with the preset converter current setting amount; and the overhead contact line. a third matching section that matches the voltage of the inverter with a preset inverter voltage setting amount or a current flowing through the inverter and a preset inverter current setting amount; and a deviation output of the first matching section. a first amplification section that amplifies the deviation output of the second matching section with a predetermined amplification characteristic; a second amplification section that amplifies the deviation output of the second matching section with a predetermined amplification characteristic; A fourth matching section that matches the set amount of regenerative voltage is inserted into an electric line connecting this fourth matching section and the second amplifier section, and is turned on based on the deviation output of the third matching section. , a switching circuit that is turned off; a fifth matching section that matches the deviation output of the fourth matching section with the overhead line voltage; and a phase adjustment of the inverter based on the deviation output of the fifth matching section. 11f
The present invention is characterized in that it includes a control section that performs lJ control.

20作用 上記のような制御装置において、電車線電圧がインバー
タ設定電圧よシ小さいが、又はインバータ電流がインバ
ータ設定電流より小さいとき前記スイッチング回路はオ
フ制御されるので、第4つき合わせ部には第1増幅部の
出方信号と回生電圧設定量とがつ含合わせられる。これ
によってインバータは循環電流を一定にする定電流制御
が行なわれるので回生電圧設定値とカ行電圧設定値を近
づけても過大な循環電流は流れない。しかも回生設定電
圧に達していないときでもインバータは位相制御がなさ
れることにな9、カ行から回生への運転切換時に動作遅
れは生じない。
20 Effects In the control device as described above, when the overhead line voltage is smaller than the inverter setting voltage or when the inverter current is smaller than the inverter setting current, the switching circuit is controlled to be off, so the fourth contact portion has a The output signal of the first amplifier section and the regenerative voltage setting amount are included. As a result, the inverter performs constant current control to keep the circulating current constant, so even if the regenerative voltage setting value and the regenerative voltage setting value are brought close to each other, an excessive circulating current will not flow. Furthermore, even when the regeneration set voltage has not been reached, the inverter is subjected to phase control9, so there is no delay in operation when switching from drive mode to regeneration mode.

次に電車線電圧がインバータ設定電圧より高くなるか、
又はインバータ電流がインバータ設定電流ニジ大きくな
った場合、スイッチング回路はオン制御される。このと
きインバータ電流が循環電流設定量Lシ小さく且りコン
パータ電流がコンバータ設定電流よシ大きい場合、第4
つき合わせ部には第1および第2増幅部の出力信号と回
生電圧設定量とがつき合わせられる。この為回生電圧設
定量は第2増幅部の出力によりて等測的に補正されたこ
とになシ、その結果制御部は循環電流の増加を抑制する
ようにインバータの位相制御を行なう。
Next, whether the overhead line voltage becomes higher than the inverter setting voltage,
Alternatively, when the inverter current becomes larger than the inverter setting current, the switching circuit is controlled to be turned on. At this time, if the inverter current is smaller than the circulating current setting amount L and the converter current is larger than the converter setting current, the fourth
The matching section matches the output signals of the first and second amplifying sections and the regenerative voltage setting amount. Therefore, the regenerative voltage setting amount is isometrically corrected by the output of the second amplifying section, and as a result, the control section performs phase control of the inverter so as to suppress an increase in the circulating current.

次に電気車の回生運転開始によって電車線電圧が上昇し
、コンバータ電流がコンバータ設定電流より小さくなる
と第2増幅部の出力は零となシ、ま友このときインバー
タ電流が循環電流設定量↓す大きくなると第1増幅部の
出力は零となる。この為第4つき合わせ部の回生電圧設
定量は補正されずに七のまま電車線電圧とつき合わせら
れる。
Next, when the electric car starts regenerative operation and the contact line voltage increases and the converter current becomes smaller than the converter setting current, the output of the second amplifier section becomes zero, and at this time the inverter current decreases to the circulating current setting amount. When it becomes larger, the output of the first amplification section becomes zero. For this reason, the regenerative voltage setting amount of the fourth matching section is matched with the overhead contact line voltage at 7 without being corrected.

そしてその偏差出力信号に基づいてインバータは位相制
御される。これにLりて電車線電圧は一定に保たれる。
The phase of the inverter is then controlled based on the deviation output signal. Accordingly, the overhead line voltage is kept constant.

G、実施例 G、  第1実施例 以下、図面を参照しながら本発明の一実施例を説明する
。第1図において第4図と同一部分は同一符号を持りて
示し、その説明は省略する。変圧器2!Lとコンバータ
6を結ぶ電路には変流器11が、変圧器2bとインバー
タ8を結ぶ電路には変流器12が各々介挿されている。
G. Example G First Example An example of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 4 are designated by the same reference numerals, and their explanation will be omitted. Transformer 2! A current transformer 11 is inserted in the electrical path connecting L and the converter 6, and a current transformer 12 is inserted in the electrical path connecting the transformer 2b and the inverter 8.

変流器12の交流出力電流はAC/DC変換器13によ
って直流変換された後、第1つき合わせ回路14に導入
される。この第1′)き合わせ回路14は予め循環電流
設定器15で設定された循m電流設定値と前記変換器1
6の出力電流とをつき合わせる。増幅器16は、例えば
インバータ電流が循環電流設定値よシ小さい範囲では、
図示特性曲線のように所定電圧信号を発するとともに、
インバータ電流が循環電流設定値以上のとき零電圧信号
を出方する。
The AC output current of the current transformer 12 is converted into DC by the AC/DC converter 13 and then introduced into the first matching circuit 14 . This 1') matching circuit 14 connects the circulating current setting value set in advance by the circulating current setting device 15 to the converter 1.
Match the output current of 6. For example, in a range where the inverter current is smaller than the circulating current set value, the amplifier 16
While emitting a predetermined voltage signal as shown in the characteristic curve,
When the inverter current is above the circulating current setting value, a zero voltage signal is output.

変流器11の交流出力電流はAC/DCK換器17によ
って直流変換されfc後、第2つき合わせ回路18に導
入される。この#!2つき合わせ回路1Bは予め;ンバ
ータ電流設定躇19で設定されたコンバータ電流設定値
と前記変換器17の出方電流と金つき合わせる。増幅器
20は、゛例えば図示特性曲線のようにコンバータ電流
が設定値以上のとき所定電圧信号を発するとともに、コ
ンバータ電流“が設゛定値以下のとき零電圧信号を発す
る。増幅器”20゛の出°力はアナログスイッチ21を
介して後述の第4つき合わせ回路26に導入される。2
2は電車線′5の電圧を検出する為のDC/DC変換器
であシ、該変換器22の出力電圧は後述の第5つき合わ
せ回路28および第3つき合わせ回路26に導入される
。この第3つき合わせ回路23は、予めインバータ電圧
設定器24で設定されたインバータ電圧設定値と前記変
換器22の出力電圧とをつき合わせる。第3つき合わせ
回路23の偏差出力はコンパレータ25に入力され、こ
のコンパレータ25の動作に基づき前記アナログスイッ
チ21に開閉制御信号が供給される。第4つき合わせ回
路26は、予め回生電圧設定器27で設定された回生電
圧設定値と前記増幅器16および増幅器20の出力信号
とをつき合わせる。このつき合わせ回路26の偏差出力
は第5つき合わせ回路28にて前記DC/DC変換器2
2の出力電圧とつき合わせられる。第5つき会わせ回路
28の出力はアンプ29および移相器60から成る自動
電圧調整回路61に供給される。この自動電圧調整回路
61は第5つき合わせ回路28の出力信号に応じて前記
インバータ8の位相制御を行なう。尚前記設定電圧は、
インバータ電圧設定器24の設定電圧(VtNset)
 <回生設定電圧なる関係に設定しておく。
The AC output current of the current transformer 11 is converted into DC by an AC/DCK converter 17, fc, and then introduced into a second matching circuit 18. this#! The two matching circuit 1B matches the converter current setting value set in the inverter current setting parameter 19 and the output current of the converter 17 in advance. The amplifier 20 emits a predetermined voltage signal when the converter current is greater than or equal to a set value as shown in the characteristic curve shown in the figure, and also emits a zero voltage signal when the converter current is less than or equal to the set value. The force is introduced through an analog switch 21 to a fourth matching circuit 26, which will be described later. 2
2 is a DC/DC converter for detecting the voltage of the overhead contact line '5, and the output voltage of the converter 22 is introduced into a fifth matching circuit 28 and a third matching circuit 26, which will be described later. This third matching circuit 23 matches the output voltage of the converter 22 with the inverter voltage setting value set in advance by the inverter voltage setting device 24 . The deviation output of the third matching circuit 23 is input to a comparator 25, and based on the operation of the comparator 25, an opening/closing control signal is supplied to the analog switch 21. The fourth matching circuit 26 matches the regenerative voltage setting value set in advance by the regenerative voltage setter 27 and the output signals of the amplifiers 16 and 20. The deviation output of this matching circuit 26 is sent to the fifth matching circuit 28 to connect the DC/DC converter 2 to the DC/DC converter 2.
2 output voltage. The output of the fifth matching circuit 28 is supplied to an automatic voltage adjustment circuit 61 consisting of an amplifier 29 and a phase shifter 60. This automatic voltage adjustment circuit 61 controls the phase of the inverter 8 according to the output signal of the fifth matching circuit 28. Note that the set voltage is
Setting voltage of inverter voltage setter 24 (VtNset)
<Set the regeneration setting voltage.

次に上記のように構成され次装置の動作を第3図の電圧
・電流特性図とともに説明する。ま゛ず電気車6の力行
運転時において、DC/DC変換器22の出力電圧がイ
ンバータ電圧設定器24の設定電圧よシ低く、且つイン
バータ8に電流が流れていないとする。すると第3つき
合わせ回路23の出力によってコンパレータ25がrL
Jレベル信号を出力する友めアナログスイッチ21はオ
フ制御されるとともに、変流器12の出力は零となる。
Next, the operation of the device constructed as described above will be explained with reference to the voltage/current characteristic diagram shown in FIG. First, it is assumed that during power running of the electric vehicle 6, the output voltage of the DC/DC converter 22 is lower than the set voltage of the inverter voltage setter 24, and that no current flows through the inverter 8. Then, the output of the third matching circuit 23 causes the comparator 25 to become rL.
The companion analog switch 21 that outputs the J level signal is turned off, and the output of the current transformer 12 becomes zero.

こめ為制御系は働かず、コンバータ3のみによる運転が
なされる。これによって電車線5の電圧、iiE流は、
コンバータ入力電圧(商用電源電圧)が^いとき第3図
の領域lに示すB特性の如く変化し、低いときA%性の
如く変化する。いま、A%−に沿って運転中に電車線5
に流れる電流Idが減゛少してId+以下になっ九とす
る。このときAC/DC変換器13の出力電流(すなわ
ちインバータ8に流れる電流に比例した電流)が循環電
流設定器15の循環電流設定値↓シ小さい値であ五ば、
増幅′a16は図示増幅特性に応じた所定電圧信号を発
する。この為第4つき合わせ回路26は回生電圧設定器
27の回生電圧設定値と増幅器16の出力信号とをつき
合わせて得られる偏差信号を出力する。この第4つき合
わせ回路26の偏差出力は第5つき合わせ回路28にお
いてDC/DC変換器22の出力電圧(電車線5の電圧
に比例し、た電圧)とつき合わせられる。自動電圧調整
回路31は第5つき合わせ回路28の偏差出力に基づい
てインバータ80位相制御を行なう。このため電気車6
が第3図のA%性に沿ってカ行運転中であっても電車線
電圧が86人を超えた時点でインパータ8を動作状態に
することができる。これによって循環電流の一定制御が
なされる。
Because of this, the control system does not work and only the converter 3 operates. As a result, the voltage of the overhead contact line 5 and the iiE current are
When the converter input voltage (commercial power supply voltage) is low, it changes as shown in the B characteristic shown in region 1 of FIG. 3, and when it is low, it changes as in the A% characteristic. Now, while driving along A%-, the tram line 5
The current Id flowing through the current Id decreases to less than Id+ and is assumed to be 9. At this time, if the output current of the AC/DC converter 13 (that is, the current proportional to the current flowing through the inverter 8) is smaller than the circulating current setting value of the circulating current setting device 15,
Amplifier 'a16 generates a predetermined voltage signal according to the illustrated amplification characteristics. For this reason, the fourth matching circuit 26 outputs a deviation signal obtained by matching the regenerative voltage setting value of the regenerative voltage setting device 27 and the output signal of the amplifier 16. The deviation output of the fourth matching circuit 26 is matched with the output voltage of the DC/DC converter 22 (a voltage proportional to the voltage of the overhead contact line 5) in a fifth matching circuit 28. The automatic voltage adjustment circuit 31 performs phase control of the inverter 80 based on the deviation output of the fifth matching circuit 28. For this reason electric car 6
According to the A% characteristic shown in FIG. 3, the inverter 8 can be brought into operation when the contact line voltage exceeds 86 people even if the train is running in a row. This provides constant control of the circulating current.

次に電車線5の電圧が上昇し、DC/DC変換器22の
出力電圧がインバータ電圧設定器24の設定tJi圧よ
り祠くなりたとする。すると第3つき合わせ回路26の
偏差出力に基づいてコンパレータ25がIH」レベル信
号を出力するので、アナログスイヴチ21はオン制御さ
れる。ここで交流電源1の出力電圧が変動し、AC/D
C変換器17の出力電流(コンバータ6に流れる電流に
比例した電流)がコンバータ電流設定器19の設定邂流
工り大きくなっ次とする。すると増幅器20は図示増幅
特性に応じ次所定電圧信号を出力するので、回生電圧設
定器27の回生電圧設定値は該増幅器20の出力信号に
よって等倹約に補正される。このため第3図の電圧−′
!!!流特性はB特性に切換わす、インバータの動作開
始電圧はEd^からEdBに引き上げられる。これによ
って循環電流の増加を抑制することができる。すなわち
、もし第3図のB%性に沿って電圧、電流が変化してい
るどき(−、インバータの動作開始電圧が86人のまま
であるとすると、  Id、よシもはるかに大きな電流
1d、になった時点ですでにインバータ8が動作して多
大な循m*流が流れてしまう。こ、のように交流電源1
の出力電圧が変動してもAt#性の場合と同様に循環電
流の定電流制御が行なわれる。
Next, assume that the voltage of the overhead contact line 5 increases and the output voltage of the DC/DC converter 22 becomes lower than the set tJi pressure of the inverter voltage setter 24. Then, the comparator 25 outputs an "IH" level signal based on the deviation output of the third matching circuit 26, so that the analog switch 21 is controlled to be turned on. Here, the output voltage of the AC power supply 1 fluctuates, and the AC/D
Assume that the output current of the C converter 17 (current proportional to the current flowing through the converter 6) becomes larger than the setting current of the converter current setting device 19. Then, the amplifier 20 outputs a predetermined voltage signal in accordance with the illustrated amplification characteristic, so that the regenerative voltage setting value of the regenerative voltage setter 27 is equally frugally corrected by the output signal of the amplifier 20. Therefore, the voltage in Fig. 3 -'
! ! ! The current characteristics are switched to B characteristics, and the inverter operation start voltage is raised from Ed^ to EdB. This makes it possible to suppress an increase in circulating current. In other words, if the voltage and current are changing according to the B% characteristic in Figure 3 (-, if the inverter's starting voltage remains at 86, then Id and Yoshi will also have a much larger current of 1d). , the inverter 8 is already operating and a large amount of circulation m* current flows.As shown in this figure, the AC power supply 1
Even if the output voltage fluctuates, constant current control of the circulating current is performed as in the case of the At# type.

次に電気車6が回生運転を行なって電車線5の電圧がさ
らに上昇したとする。このときA C/DC変換器17
の出力電流(コンバータ3に流れる電流に比例した電流
)がコンバータ電流設定!19の設定電流エフ小となる
と増幅器20の出力は零とな9、またこのときAC/D
C変換器16の出力電流(インバータ8に流れる電流に
比例した電定器27の回生電圧設定値は全く補正されず
にそのまま第4つき合わせ回路26から出力される。
Next, it is assumed that the electric car 6 performs regenerative operation and the voltage of the overhead contact line 5 further increases. At this time, A C/DC converter 17
The output current (current proportional to the current flowing through converter 3) is the converter current setting! When the set current F of 19 becomes small, the output of the amplifier 20 becomes zero, and at this time, the AC/D
The output current of the C converter 16 (the regenerative voltage setting value of the voltage regulator 27, which is proportional to the current flowing through the inverter 8) is outputted as it is from the fourth matching circuit 26 without being corrected at all.

これによって自動電圧調整回路31は、電車線5の電圧
を一定に保つようインバータ8の位相制御を行なうので
、電気車6の発する回生電力はスムーズに回生される。
As a result, the automatic voltage adjustment circuit 31 controls the phase of the inverter 8 to keep the voltage of the overhead contact line 5 constant, so that the regenerative power generated by the electric car 6 is smoothly regenerated.

G、第2実施例 次に本発明の他の実施例を第2図とともにIt12FJ
Aする。第2図において第1図と同一部分は同一符号を
持って示し、その説明は省略する。第2図において第1
図と異なる点は、インバータ電圧設定器24の代わシに
インバータ電流設定器′64を設け、この設定器64で
予め設定し九電流と前記AC/DC変換器13の出力電
流(インバータ8に流れる電流に比例した電流)とを第
3つき合わせ回路26にてつき合わせるように構成した
ことである。
G. Second Embodiment Next, another embodiment of the present invention will be described with reference to FIG.
A. In FIG. 2, the same parts as in FIG. 1 are shown with the same reference numerals, and their explanation will be omitted. In Figure 2, the first
The difference from the figure is that an inverter current setter '64 is provided in place of the inverter voltage setter 24, and this setter 64 presets the nine current and the output current of the AC/DC converter 13 (flowing to the inverter 8). The third matching circuit 26 matches the current (proportional to the current).

尚前記設定電流は、循環電流設定器15の設定電流(I
jset ) <インバータ電流設定器64の設定電流
(llN5et) <コンバータ電流設定WM19の設
定電流(Icusat)なる関係に設定しておく。
The setting current is the setting current (I) of the circulating current setting device 15.
jset) <Set current of inverter current setter 64 (llN5et) <Set current of converter current setting WM 19 (Icusat).

次に上記のように構成された装置の動作を第3図の電圧
・電流特性図とともに説明する。まず電気車6の力行運
転時において、インバータ8に電流が流れておらずAC
/DC変換器16の出力電流がインバータ電流設定器3
4の設定電流よシ小さいとする。すると第3つき合わせ
回路23の出力によってコンパレータ25がrLJレベ
ル信号を出力するためアナログクイ1チ21はオフ制御
される。この為制御系は働かず、コンバータ3のみによ
る運転がなされる。これによって電車lf!A5の電圧
、電流は、コンバータ入力電圧(商用電源電圧)が高い
とき第3図の領域Iに示すB%性の如く変イビし、低い
ときA%性の如く変化する。いま、A%性に沿って運転
中に電車線5に流れる電流Idが減少してId、以下に
なり次とする。このときAC/DC変換器13の出力電
流(すなわちインバータ8に流れる電流に比例した電流
)が循環電流設定器15の循環電流設定値よシ小さい値
であれば、増幅器16は図示増幅特性に応じ次所定電圧
信号を発する。この為第4つき合わせ回路26は回生電
圧設定器27の回生電圧設定値と増幅器16の出力信号
とをつき合わせて得られる偏差信号を出力する。この第
4つき合わせ回路26の偏差出力は第5つき合わせ回路
28においてDC/DC変換器22の出力電圧(電車線
5の電圧に比例した電圧)とつき合わせられる。自動電
圧調整回路61は第5つき合わせ回路28の偏差出力に
基づいてインバータ8の位相制御を行なう。この九め電
気車6が第3図のAM性に沿ってカ行運転中であっても
電車線電圧がEdAを超えた時点でインバータ8を動作
状態にすることができる。これによって循環電流の一定
制御がなされる。
Next, the operation of the device configured as described above will be explained with reference to the voltage/current characteristic diagram shown in FIG. First, during power running of the electric vehicle 6, no current flows to the inverter 8 and the AC
/DC converter 16 output current is inverter current setting device 3
Assume that the current is smaller than the set current of 4. Then, the comparator 25 outputs the rLJ level signal based on the output of the third matching circuit 23, so that the analog quiet 21 is turned off. For this reason, the control system does not work, and only the converter 3 operates. By this train lf! When the converter input voltage (commercial power supply voltage) is high, the voltage and current of A5 vary as shown in the B% characteristic shown in region I in FIG. 3, and when the converter input voltage (commercial power supply voltage) is low, they vary as in the A% characteristic. Now, the current Id flowing through the overhead contact line 5 during operation according to the A% characteristic decreases to below Id, and the following is assumed. At this time, if the output current of the AC/DC converter 13 (that is, the current proportional to the current flowing through the inverter 8) is smaller than the circulating current setting value of the circulating current setting device 15, the amplifier 16 operates according to the illustrated amplification characteristics. Next, a predetermined voltage signal is generated. For this reason, the fourth matching circuit 26 outputs a deviation signal obtained by matching the regenerative voltage setting value of the regenerative voltage setting device 27 and the output signal of the amplifier 16. The deviation output of the fourth matching circuit 26 is matched with the output voltage of the DC/DC converter 22 (voltage proportional to the voltage of the overhead contact line 5) in the fifth matching circuit 28. The automatic voltage adjustment circuit 61 performs phase control of the inverter 8 based on the deviation output of the fifth matching circuit 28. Even when the ninth electric car 6 is running in line according to the AM characteristics shown in FIG. 3, the inverter 8 can be brought into operation when the contact line voltage exceeds EdA. This provides constant control of the circulating current.

次にAC/DC変換器13の出力電流がインバータ電流
設定器64の設定電流よ多大きくなったとする。すると
第3つき合わせ回路23の偏差出力に基づいてコンパレ
ータ25がrHJレベル信号を出力するので、アナログ
スイッチ21はオン制御される。こ仁で交流電源1の出
力電圧が変動し、AC/DC変換器17の出力電流(コ
ンバータ3に流れる電流に比例し九電流)がコンバータ
電流設定器19の設定電流より大きくなったとする。す
ると増幅器20は図示増幅゛特性に応じた所定電圧信号
を出力するので、回生電圧設定器27の回生電圧設定値
は該増幅器20の出力信号によって等倹約に補正される
。このため第3図の電圧−電流特性はB特性に切換わシ
、インバータの動作開始電圧はEdAからEd、に引き
上げられる。これによって循環電流の増加を抑制するこ
とができる。すなわち、もし第3図のB特性に沿って電
圧。
Next, assume that the output current of the AC/DC converter 13 has become much larger than the set current of the inverter current setting device 64. Then, the comparator 25 outputs an rHJ level signal based on the deviation output of the third matching circuit 23, so that the analog switch 21 is controlled to be turned on. Assume that the output voltage of the AC power supply 1 fluctuates due to this, and the output current of the AC/DC converter 17 (9 currents proportional to the current flowing through the converter 3) becomes larger than the set current of the converter current setting device 19. Then, since the amplifier 20 outputs a predetermined voltage signal according to the illustrated amplification characteristic, the regenerative voltage setting value of the regenerative voltage setting device 27 is corrected equally frugally by the output signal of the amplifier 20. Therefore, the voltage-current characteristic shown in FIG. 3 is switched to the B characteristic, and the operation start voltage of the inverter is raised from EdA to Ed. This makes it possible to suppress an increase in circulating current. That is, if the voltage follows the B characteristic in Figure 3.

電流が変化しているときに、インバータの動作開始電圧
がEdAのままであるとすると、■山よりもはるかに大
きな電流Iむになった時点ですでにインバータ8が動作
して多大な循環電流が流れてしまう。このように又流電
源1の出力電圧が変動してもA特性の場合と同様に循環
電流の定電流制御が行なわれる。
If the inverter's operation starting voltage remains at EdA while the current is changing, the inverter 8 will already be operating at the point where the current is much larger than the peak, causing a large amount of circulating current. flows away. In this way, even if the output voltage of the current power source 1 fluctuates, the constant current control of the circulating current is performed as in the case of the A characteristic.

次に電気車6が回生運転を行なって電車線5の電圧が上
昇したとする。このときAC/DC変換′a170出力
電流(コンバータ3に流れる電流に比例した電流)がコ
ンバータ電流設定器19の設定電流より小となると増幅
器20の出力は零となシ、またこのときAC/DC変換
器13の出力電流(インバータ8に流れる電流に比例し
た電流)が循環電流設定器15の設定電流よ多大となる
と増幅器16の出力は零となる。この為回生電圧設定器
270回生回生電圧設定器く補正されずにその11第4
つき合わせ回路26から出力される。
Next, it is assumed that the electric car 6 performs regenerative operation and the voltage of the overhead contact line 5 increases. At this time, when the output current of the AC/DC conversion 'a170 (current proportional to the current flowing through the converter 3) becomes smaller than the set current of the converter current setting device 19, the output of the amplifier 20 becomes zero, and at this time, the AC/DC When the output current of the converter 13 (current proportional to the current flowing through the inverter 8) becomes larger than the set current of the circulating current setting device 15, the output of the amplifier 16 becomes zero. For this reason, the regenerative voltage setting device 270 is not corrected and the 11th 4th
It is output from the matching circuit 26.

これに工っで自動電圧調整回路31は、電車線5の電圧
を一定に保つ工うインバータ80位相制御を行なうので
、電気$6の発する回生電力はスムーズに回生される。
Based on this, the automatic voltage adjustment circuit 31 performs phase control of the inverter 80 to keep the voltage of the overhead contact line 5 constant, so that the regenerated power generated by the electricity $6 is smoothly regenerated.

H1発明の効果 以上のように本発明によれば次のような効果が得られる
。すなわち、 (1)電気車がカ行運転中で且つ商用電源電圧に変動が
あった場合でも、循環電流を一定にする定電流制御を行
なうので、過大な循環電流は流れない。
H1 Effects of the Invention As described above, according to the present invention, the following effects can be obtained. That is, (1) Even if the electric vehicle is in continuous operation and there is a fluctuation in the commercial power supply voltage, constant current control is performed to keep the circulating current constant, so that no excessive circulating current flows.

また、循環電流が小さくて済むので、省エネルギー化が
図れる。
Furthermore, since the circulating current is small, energy can be saved.

(2)  を気車のカ行運転中であってもインバータは
動作するので、電気車の回生運転時には動作遅れを生じ
ること無く円滑に回生運転に移行することができる。
(2) Since the inverter operates even when the electric car is in power mode, the regenerative operation of the electric car can be smoothly shifted to regenerative operation without any delay in operation.

(3)  上記(2)項の理由によシミ車線の異常電圧
上昇を抑制することができ、これによって電気車の安全
が保次れる。
(3) Due to the reason mentioned in (2) above, it is possible to suppress abnormal voltage rises in stained lanes, thereby maintaining the safety of electric vehicles.

(4)  電気車は、回生運転時にスムーズに回生制動
を行なうことができるのでエアブレーキを用いる必要が
なく、円滑な運転が継続できる。
(4) Electric vehicles can perform regenerative braking smoothly during regenerative operation, so there is no need to use air brakes, and smooth operation can continue.

(5)電気車が回生運転時に発する電力を速やかに交流
電源側に回生できるので、回生電力を有効に利用するこ
とができる。
(5) Since the electric power generated by the electric vehicle during regenerative operation can be quickly regenerated to the AC power supply side, the regenerated electric power can be used effectively.

(6)回生運転からカ行運転への移行もスムーズに行な
える。
(6) The transition from regenerative operation to power operation can be performed smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は本発
明の他の実施例を示す回路図、第3図は本発明の制御パ
ターンを説明する為の電圧−電流特性図、第4図は従来
の回生変電所システムの一例を示す回路図、第5図およ
び第6図(IL)、(b)はともに従来の制御パターン
を説明する為の電圧−電流特性図である。 1・・・交流’trp、、3・・・コンバータ、5・・
・電車線、6・・・電気車、8・・・インバータ、11
.12・・・変流器、14・・・第1つき合わせ回路、
15・・・循環電流設定器、16.20・・・増幅器、
18・・・第2つき合わせ回路、19・・・コンバータ
電流設定器、21・・・アナログスイ噌チ、26・・・
第3つき合わせ回路、24・・・インバータ電圧設定W
、25・・・コンパレータ、26・・・第4つき合わせ
回路、27・・・回生電圧設定器、28・・・第5つき
合わせ回路、61・・・自動電圧調整回路、34・・・
インバータ電流設定器。 第4図 C]¥番図
Fig. 1 is a circuit diagram showing one embodiment of the invention, Fig. 2 is a circuit diagram showing another embodiment of the invention, and Fig. 3 is a voltage-current characteristic diagram for explaining the control pattern of the invention. , Fig. 4 is a circuit diagram showing an example of a conventional regenerative substation system, and Figs. 5 and 6 (IL) and (b) are both voltage-current characteristic diagrams for explaining the conventional control pattern. . 1...AC'trp, 3...Converter, 5...
・Train line, 6... Electric car, 8... Inverter, 11
.. 12... Current transformer, 14... First matching circuit,
15... Circulating current setting device, 16.20... Amplifier,
18... Second matching circuit, 19... Converter current setting device, 21... Analog switch, 26...
Third matching circuit, 24...Inverter voltage setting W
, 25... Comparator, 26... Fourth matching circuit, 27... Regeneration voltage setter, 28... Fifth matching circuit, 61... Automatic voltage adjustment circuit, 34...
Inverter current setting device. Figure 4C] ¥ number diagram

Claims (2)

【特許請求の範囲】[Claims] (1)交流電源の交流出力電力を直流変換し、該直流電
力を直流式電気鉄道の電車線に供給するコンバータと、
電気車が回生制動時に発する回生電力を前記電源側に回
生するインバータとを備えた回生変電所において、前記
インバータに流れる電流と所定の循環電流設定量との偏
差出力を所定の増幅特性によって増幅するとともに、該
増幅出力と所定の回生電圧設定量との偏差出力を前記電
車線電圧とつき合わせ、且つその偏差出力に基づいて前
記インバータを位相制御し、前記コンバータに流れる電
流と所定のコンバータ電流設定量との偏差出力を所定の
増幅特性によって増幅するとともに、該増幅出力に基づ
いて前記回生電圧設定量を補正するようにしたことを特
徴とする電鉄用回生インバータの制御方法。
(1) A converter that converts the AC output power of an AC power source into DC and supplies the DC power to the contact line of a DC electric railway;
In a regenerative substation equipped with an inverter that regenerates regenerative power generated by an electric vehicle during regenerative braking to the power source side, a deviation output between the current flowing through the inverter and a predetermined circulating current setting amount is amplified by a predetermined amplification characteristic. At the same time, the deviation output between the amplified output and a predetermined regenerative voltage setting amount is matched with the overhead line voltage, and the phase of the inverter is controlled based on the deviation output, so that the current flowing through the converter and the predetermined converter current setting are controlled. 1. A method for controlling a regenerative inverter for electric railways, characterized in that a deviation output from the regenerative voltage is amplified by a predetermined amplification characteristic, and the regenerative voltage setting amount is corrected based on the amplified output.
(2)交流電源の交流出力電力を直流変換し、該直流電
力を直流式電気鉄道の電車線に供給するコンバータと、
電気車が回生制動時に発する回生電力を前記電源側に回
生するインバータとを備えた回生変電所において、前記
インバータに流れる電流と予め設定した循環電流設定量
とをつき合わせる第1つき合わせ部と、前記コンバータ
に流れる電流と予め設定したコンバータ電流設定量とを
つき合わせる第2つき合わせ部と、前記電車線の電圧と
予め設定したインバータ電圧設定量とをつき合わせるか
、又は前記インバータに流れる電流と予め設定したイン
バータ電流設定量とをつき合わせる第3つき合わせ部と
、前記第1つき合わせ部の偏差出力を所定の増幅特性で
増幅する第1増幅部と、前記第2つき合わせ部の偏差出
力を所定の増幅特性で増幅する第2増幅部と、前記第1
および第2増幅部の出力信号と予め設定した回生電圧設
定量とをつき合わせる第4つき合わせ部と、この第4つ
き合わせ部と前記第2増幅部を結ぶ電路に介挿され、前
記第3つき合わせ部の偏差出力に基づいてオン、オフ制
御されるスイッチング回路と、前記第4つき合わせ部の
偏差出力と前記電車線電圧とをつき合わせる第5つき合
わせ部と、この第5つき合わせ部の偏差出力に基づいて
前記インバータの位相制御を行なう制御部とを備えたこ
とを特徴とする電鉄用回生インバータの制御装置。
(2) a converter that converts the AC output power of the AC power source into DC and supplies the DC power to the contact line of the DC electric railway;
In a regenerative substation comprising an inverter that regenerates regenerative power generated by an electric vehicle during regenerative braking to the power source side, a first matching unit that matches the current flowing through the inverter with a preset circulating current amount; a second matching unit that matches the current flowing through the converter with a preset converter current setting amount; and a second matching unit that matches the voltage of the overhead contact line with a preset inverter voltage setting amount, or matches the current flowing through the inverter with a preset converter current setting amount; a third matching section that matches a preset inverter current setting amount; a first amplification section that amplifies the deviation output of the first matching section with a predetermined amplification characteristic; and a deviation output of the second matching section. a second amplifying section that amplifies the signal with a predetermined amplification characteristic;
and a fourth matching section that matches the output signal of the second amplifier section with a preset regenerative voltage setting amount; a switching circuit that is turned on and off based on the deviation output of the matching section; a fifth matching section that matches the deviation output of the fourth matching section with the overhead line voltage; and the fifth matching section. 1. A control device for a regenerative inverter for an electric railway, comprising: a control section that performs phase control of the inverter based on a deviation output of the inverter.
JP60048781A 1985-03-12 1985-03-12 Control method and apparatus for regenerative inverter for electric railway Expired - Fee Related JPH0688509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048781A JPH0688509B2 (en) 1985-03-12 1985-03-12 Control method and apparatus for regenerative inverter for electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048781A JPH0688509B2 (en) 1985-03-12 1985-03-12 Control method and apparatus for regenerative inverter for electric railway

Publications (2)

Publication Number Publication Date
JPS61207236A true JPS61207236A (en) 1986-09-13
JPH0688509B2 JPH0688509B2 (en) 1994-11-09

Family

ID=12812788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048781A Expired - Fee Related JPH0688509B2 (en) 1985-03-12 1985-03-12 Control method and apparatus for regenerative inverter for electric railway

Country Status (1)

Country Link
JP (1) JPH0688509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306941A (en) * 1987-06-09 1988-12-14 Meidensha Electric Mfg Co Ltd Control device for railway regenerative inverter
FR3001417A1 (en) * 2013-01-25 2014-08-01 Alstom Technology Ltd Method for optimization of energy efficiency of regenerative sub-station in railway, involves arranging negative slope for limitation of current, and utilizing positive slope instead of negative or worthless slope in regeneration mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306941A (en) * 1987-06-09 1988-12-14 Meidensha Electric Mfg Co Ltd Control device for railway regenerative inverter
FR3001417A1 (en) * 2013-01-25 2014-08-01 Alstom Technology Ltd Method for optimization of energy efficiency of regenerative sub-station in railway, involves arranging negative slope for limitation of current, and utilizing positive slope instead of negative or worthless slope in regeneration mode

Also Published As

Publication number Publication date
JPH0688509B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US7723865B2 (en) Bidirectional buck boost DC-DC converter, railway coach drive control system, and railway feeder system
AU2009356390B9 (en) Propulsion control device
CN112165126A (en) Self-adaptive control method for loop current suppression in parallel operation of bidirectional converters
JP2003018702A (en) Drive system for electric vehicle
US20220302848A1 (en) Auxiliary pre-charging device of power converter, pre-charging method and power converter
US20220258593A1 (en) Electric Vehicle
US20200238835A1 (en) Power conversion controller
US20150333667A1 (en) Electric motor driving device
JPS61207236A (en) Controlling method of regenerative inverter for electric railway and device thereof
US20190100113A1 (en) Electric vehicle
WO2020125711A1 (en) Auxiliary power supply system of railway vehicle, and control method therefor
CN209813731U (en) Auxiliary power supply system for railway vehicle and railway vehicle
JPS63306941A (en) Control device for railway regenerative inverter
JPS61200039A (en) Control method of regenerative inverter for electric railroad and apparatus thereof
JPS61150844A (en) Method of controlling regenerative inverter for railway
CN111071875A (en) Decentralized power management in an elevator system
JP3257735B2 (en) Regenerative control reverse conversion device
JP2002369306A (en) Electric brake device of electric rolling stock
JP2002159104A (en) Controller for electric vehicle
KR20080057111A (en) Control method of regenerative inverter in current substation
JPS61146647A (en) Method of controlling railway regenerative inverter and control device therefor
JP2024053275A (en) Direct current feeding system
JP2021184690A (en) Electrical power system
JP2553782Y2 (en) Voltage suppression device for DC electric railway
JPS62221942A (en) Controlling method for regeneration substation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees