JPS61207189A - Rectification compensator of dc machine - Google Patents

Rectification compensator of dc machine

Info

Publication number
JPS61207189A
JPS61207189A JP60045738A JP4573885A JPS61207189A JP S61207189 A JPS61207189 A JP S61207189A JP 60045738 A JP60045738 A JP 60045738A JP 4573885 A JP4573885 A JP 4573885A JP S61207189 A JPS61207189 A JP S61207189A
Authority
JP
Japan
Prior art keywords
rectification
amount
current
magnitude
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60045738A
Other languages
Japanese (ja)
Other versions
JP2622371B2 (en
Inventor
Haruo Oharagi
春雄 小原木
Kazuo Tawara
田原 和雄
Noriyoshi Takahashi
高橋 典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60045738A priority Critical patent/JP2622371B2/en
Publication of JPS61207189A publication Critical patent/JPS61207189A/en
Application granted granted Critical
Publication of JP2622371B2 publication Critical patent/JP2622371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/2805Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To always compensate a rectification by correcting a current flowed to an auxiliary winding in response to excess or insufficient value of a rectification compensating amount and the magnitude of the value. CONSTITUTION:The outputs of a current detector 13 and a rotating speed detector 14 are input to a multiplier 15, and the result is input to a gate signal generator 16. The switching frequency and the conduction rate of a current controller are controlled by the obtained gate signal to control a current flowed to an auxiliary winding 8. The position of a sparkless zone varies as the operating time is elapsed, and when exceeding a rectification compensating range, a spark is generated from a brush 11. The excess or insufficient value of the rectification compensating amount and the magnitude of the amount are detected by a search coil 19, and a rectification compensating amount correcting circuit 20 outputs a correcting voltage in response to the output of the coil 19. Thus, the optimum rectification compensation can be always performed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は整流子及びブラシを備えた電動機や発電機の如
き直流機の整流補償装置に係り、特に補極起磁力を調整
する補助巻線を有するものに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a rectification compensator for a DC machine such as a motor or a generator equipped with a commutator and brushes, and particularly relates to a rectification compensator for a DC machine such as a motor or a generator equipped with a commutator and brushes, and particularly relates to a rectification compensation device for a DC machine such as a motor or a generator equipped with a commutator and brushes. Concerning what you have.

〔発明の背景〕[Background of the invention]

直流機の整流性能は機械の性能及び寿命を左右するとい
っても過言ではなく、従来から多くの研究がなされてい
る。この整流性能の良否は、実機につき無火花帯を測定
することにより判定している。一方、直流機には回転数
により無火花帯が移動する現象があり、この無火花帯の
移動量が大きいと無火花整流で運転することが不可能に
なる。
It is no exaggeration to say that the rectification performance of a DC machine affects the performance and life of the machine, and a lot of research has been done in the past. The quality of this rectification performance is determined by measuring the no-spark zone of the actual machine. On the other hand, in a DC machine, there is a phenomenon in which a non-sparking band moves depending on the rotational speed, and if the amount of movement of this non-sparking band is large, it becomes impossible to operate with non-sparking commutation.

この対策として、従来、第6図〜第8図に示す整流補償
方式が提案されている(実開昭50−99408号公報
参照)。
As a countermeasure against this problem, a rectification compensation system shown in FIGS. 6 to 8 has been proposed (see Japanese Utility Model Application No. 50-99408).

第6図は従来の整流補償装置を備えた直流機の要部展開
図である。同図において、1は環状をなす継鉄、2,3
はその内周側に形成された主極及び補極、4,5は主極
2を構成する主極鉄心及び主極巻線、6,7.8は補極
3を構成する補極鉄心、補極巻線及び補助巻線、9は回
転する電機子。
FIG. 6 is an exploded view of the main parts of a direct current machine equipped with a conventional rectification compensator. In the figure, 1 is a ring-shaped yoke, 2, 3
4 and 5 are the main pole iron core and the main pole winding that constitute the main pole 2, and 6, 7.8 are the commutator core that constitutes the commutator pole 3, A commutator winding, an auxiliary winding, and a rotating armature.

10はその電機子巻線である。主極2は電機子巻線10
に主磁束を与え、補極3は電機子巻線10内を流れる電
流が反転する時に整流起電力を発生させるための補極磁
束を与えるものである。また。
10 is its armature winding. Main pole 2 is armature winding 10
The commutator 3 provides a commutator magnetic flux for generating a rectified electromotive force when the current flowing in the armature winding 10 is reversed. Also.

補極鉄心6の先端部に設けられた補助巻線8は、補極巻
線7とは差動的に巻装されており、第7図に示すように
、無火花帯が回転数の増加に従って過整流側に移動する
(補極磁束が過剰である)ので、その起磁力を調整して
負荷軸を無火花帯中心の0−P線上に移動させる働きを
する。
The auxiliary winding 8 provided at the tip of the commutating pole iron core 6 is wound differentially with respect to the commuting pole winding 7, and as shown in FIG. Therefore, the magnetomotive force is adjusted to move the load shaft onto the 0-P line at the center of the sparkless zone.

第8図は補助巻線の電流量を回転数と電機子電流に応、
じて制御し、無火花帯移動現象を補償する装置のブロッ
ク回路図であり、第6図に対応する部分には第6図と同
一符号を付しである。その他の符号は次のとおりである
。11はブラシ、12は整流子、13は電流検出器、1
4は回転数検出器、15は掛算器、16はゲート信号発
生器、17は外部直流電源、18はサイリスタ、G i
’ 0サイリスタ、パワートランジスタ等の半導体スイ
ッチング素子で構成される電流側−回路である。
Figure 8 shows the amount of current in the auxiliary winding depending on the rotation speed and armature current.
FIG. 6 is a block circuit diagram of a device for controlling the spark zone movement phenomenon and compensating for the no-spark band movement phenomenon, in which parts corresponding to FIG. 6 are given the same reference numerals as in FIG. 6. Other symbols are as follows. 11 is a brush, 12 is a commutator, 13 is a current detector, 1
4 is a rotation speed detector, 15 is a multiplier, 16 is a gate signal generator, 17 is an external DC power supply, 18 is a thyristor, G i
'0 This is a current-side circuit composed of semiconductor switching elements such as thyristors and power transistors.

即ち、この装置は、補極巻線7に電機子電流IMを流す
一方、外部直流電源17から補助巻線8に供給する電流
iCを次のようKして制御している。
That is, this device controls the current iC supplied from the external DC power supply 17 to the auxiliary winding 8 by K as follows, while passing the armature current IM through the commutator winding 7.

つまり、電流検出器13と回転数検出器14の出力を掛
算器15に入力し、その結果をゲート信号通流率等を制
御し、補助巻線8に流れる電流な制御するのである。こ
れにより、補助巻線8の電流icが回転数及び電機子電
流に応じて変化するので、補極起磁力が変化し、負荷軸
は第7図に示したように、無火花帯中心のO−P線上に
移動する。この結果、直流機は無火花整流で運転できる
ことになる。
That is, the outputs of the current detector 13 and the rotational speed detector 14 are input to the multiplier 15, and the results are used to control the gate signal conduction rate, etc., and the current flowing through the auxiliary winding 8. As a result, the current IC in the auxiliary winding 8 changes according to the rotational speed and the armature current, so the interpolation magnetomotive force changes, and the load axis is shifted to the center of the non-spark zone as shown in FIG. -Move onto the P line. As a result, the DC machine can be operated with sparkless rectification.

しかしながら、直流機の運転時間経過に伴って整流子の
ブラシ摺接面に生成される酸化被膜が次第に厚くなり、
整流子とブラシ間の接触抵抗も次第に増大するため、整
流コイルに流れる短絡電流が減少して直流機の無火花帯
の位置が変化する現象のあることが判った。
However, as the operating time of the DC machine passes, the oxide film formed on the brush sliding surface of the commutator gradually becomes thicker.
It was found that as the contact resistance between the commutator and the brushes gradually increases, the short-circuit current flowing through the rectifier coil decreases, causing a change in the position of the non-sparking zone of the DC machine.

そして、この酸化被膜による無火花帯の位置変化が大き
い場合には、ブラシから火花が発生するため、上述した
整流補償装置でその都度、補助巻線8に流す電流icの
量を調整しなければならないという問題がある。
If there is a large change in the position of the spark-free zone due to this oxide film, sparks will be generated from the brush, so the amount of current IC flowing through the auxiliary winding 8 must be adjusted each time using the rectification compensator described above. The problem is that it doesn't.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、無火花帯の位置が運転時間経過に伴っ
て変化しても、常に良好な整流補償を行い得る直流機の
整流補償装置を提供することにある。
An object of the present invention is to provide a rectification compensation device for a DC machine that can always perform good rectification compensation even if the position of the non-sparking zone changes with the passage of operating time.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、整流補償量の過不
足とその大きさを検出する整流状態検出手段1、電機子
及び整流子検出された整流補償量の過不足とその大きさ
に応じて補助巻線に流す電流を補正する整流補償量補正
手段とを設け、運転時間経過に伴って無火花帯の位置が
変化し、ブラシから火花が発生した場合K、整流補償量
の過不足とその大きさに応じて補助巻線に流す電流を自
動的に補正するようにしたことを特徴とする。
In order to achieve this object, the present invention provides a rectification state detection means 1 for detecting the excess or deficiency of the amount of rectification compensation and its magnitude; A rectification compensation amount correction means for correcting the current flowing through the auxiliary winding is provided, and if the position of the non-sparking zone changes with the passage of operating time and sparks are generated from the brush, the rectification compensation amount is determined to be excessive or insufficient. The present invention is characterized in that the current flowing through the auxiliary winding is automatically corrected according to its magnitude.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の実施例に基づいて詳細に説明する
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明の一実施例に係る整流補償装置のブロッ
ク回路図である。同図において、第8図に対応する部分
には第8図と同一符号を付しである。
FIG. 1 is a block circuit diagram of a rectification compensator according to an embodiment of the present invention. In the figure, parts corresponding to those in FIG. 8 are given the same reference numerals as in FIG. 8.

この実施例が第8図の従来例と異なる点は、主極鉄心4
に整流状態検出用サーチコイル19が巻装されると共に
、このサーチコイル19の出力を入力して補正電圧を発
生する整流補償量補正回路201、電機子及び整流子こ
の補正電圧を掛算器15の出力に加える加算器21が設
けられていることである。
The difference between this embodiment and the conventional example shown in FIG. 8 is that the main pole iron core 4
A search coil 19 for detecting the rectification state is wound around the rectification compensation amount correction circuit 201 which inputs the output of the search coil 19 and generates a correction voltage, and the armature and commutator. An adder 21 is provided to add to the output.

したがって、ブラシ11かも火花が発生していないとき
には、従来と同様にして補助巻線8に電流iCが流れ、
良好な整流補償が行なわれる。
Therefore, when no spark is generated in the brush 11, the current iC flows through the auxiliary winding 8 in the same way as in the conventional case.
Good rectification compensation is performed.

しかし、無火花帯の位置が運転時間経過に伴って変化し
、整流補償範囲を越える1、電機子及び整流子ブラシ1
1から火花が発生する。この火花の発生は整流補償量の
過不足に起因するが、主極鉄心4に整流状態検出用サー
チコイル19が巻装されているため、この整流補償量の
過不足とその大きさがサーチコイル19により検出され
る。すなわち、整流補償量の過不足によって整流コイル
に流れる短絡電流の方向が変化し、かつ過不足の大きさ
に応じて短絡電流の大きさが変化するため、この短絡電
流によって作られる磁束ψαが主極鉄心4を通過する1
、電機子及び整流子?−チコイル19には整流補償量の
過不足と七の大きさに応じた電圧が発生し、これが整流
補償量補正回路20に入力される。整流補償量補正回路
20では、火花が不足整流側で発生していれば、負の補
正電圧を出力し、これが加算器21で掛算器15の出力
と加算されてこの出力を減少させる。したがって、補助
巻線8に流れるt Ri cが減少して補極起磁力が強
くなる。また、逆に火花が退寮流側で発生していれば、
正の補正電圧を出力し、これが加算器21で掛算器15
の出力と加算されてこの出力を増大させる。したがって
、補助巻線8に流れる電流i、2が増大して補極起磁力
が弱くなる。その結果、ブラシ11から火花が発生して
も速やかに補助巻線8に流れる電流i(2が火花を発生
しない方向に補正されるので、良好な整流補償を行なう
ことができる。
However, the position of the spark-free zone changes with the passage of operating time and exceeds the commutation compensation range 1, armature and commutator brush 1
Sparks are generated from 1. This generation of sparks is caused by an excess or deficiency in the amount of rectification compensation, but since the search coil 19 for rectification state detection is wound around the main pole iron core 4, the excess or deficiency of this amount of rectification compensation and its size are determined by the search coil 19. Detected by 19. In other words, the direction of the short-circuit current flowing through the rectifier coil changes depending on the amount of rectification compensation, and the magnitude of the short-circuit current changes depending on the amount of excess or deficiency, so the magnetic flux ψα created by this short-circuit current is the main 1 passing through pole core 4
, armature and commutator? - A voltage is generated in the coil 19 according to the magnitude of the rectification compensation amount, and is input to the rectification compensation amount correction circuit 20. In the rectification compensation amount correction circuit 20, if a spark is generated on the under-rectification side, a negative correction voltage is outputted, and this is added to the output of the multiplier 15 in the adder 21 to reduce this output. Therefore, tRi c flowing through the auxiliary winding 8 decreases, and the interpolation magnetomotive force becomes stronger. On the other hand, if the spark is generated on the exit side,
A positive correction voltage is output, and this is applied to the adder 21 and the multiplier 15.
is added to the output of , increasing this output. Therefore, the current i,2 flowing through the auxiliary winding 8 increases and the interpolation magnetomotive force becomes weaker. As a result, even if sparks are generated from the brush 11, the current i(2) flowing through the auxiliary winding 8 is immediately corrected in a direction that does not generate sparks, so that good rectification compensation can be performed.

また、第2図は本発明を四象限運転される直流機に適用
した場合の更に具体的な実施例を示す整流補償装置のブ
ロック回路図である。同図において、第1図及び第8図
に対応する部分にはこれらの図と同一符号を付しである
Moreover, FIG. 2 is a block circuit diagram of a rectification compensator showing a more specific embodiment when the present invention is applied to a DC machine operated in four quadrants. In this figure, parts corresponding to FIGS. 1 and 8 are designated by the same reference numerals as those in these figures.

第2図において、22は83図に示すよ5な特性を有す
る関数発生器、23は動作判定回路、24は電流方向判
定回路である。25は比例回路からなる整流状態検出器
、26は第4図に示すような特性を有する比例回路から
なる補正量設定回路で、これらにより前記の整流補償量
補正回路20が構成されている。27A〜27Dはアナ
ログスイッチ、Trl ” Tf4はパワートランジス
タで、四象限運転に対応してH型に接続され℃、前記の
電流制御回路18が構成されている。
In FIG. 2, 22 is a function generator having five characteristics as shown in FIG. 83, 23 is an operation determination circuit, and 24 is a current direction determination circuit. 25 is a rectification state detector consisting of a proportional circuit, and 26 is a correction amount setting circuit consisting of a proportional circuit having characteristics as shown in FIG. 4. These constitute the rectification compensation amount correction circuit 20. 27A to 27D are analog switches, and Trl'' Tf4 is a power transistor, which is connected in an H type corresponding to four-quadrant operation, and the current control circuit 18 described above is configured.

第5図は正転、正転回生、逆転、逆転回生からなる四象
限運転時における回転数、電機子IIc流の運転パター
ン1、電機子及び整流子アナログスイッチ27A〜27
Dの0N−OFFパターンを示す。
Figure 5 shows the rotation speed during four-quadrant operation consisting of forward rotation, forward rotation regeneration, reverse rotation, and reverse rotation regeneration, armature IIc flow operation pattern 1, armature and commutator analog switches 27A to 27
The ON-OFF pattern of D is shown.

第2図に示すように構成された整流補償装置において、
ブラシ11から火花が発生していないときは、従来と同
様にして補助巻線8に電流iCが流れる。すなわち、電
機子電流I、が実線の矢印方向に流れる正転の場合には
、電流方向判定回路24によってその一方の出力端αの
経路のアナログスイッチ2フA、2フDKON信号が与
えられる。
In the rectification compensator configured as shown in FIG.
When no spark is generated from the brush 11, current iC flows through the auxiliary winding 8 in the same manner as in the conventional case. That is, in the case of normal rotation in which the armature current I flows in the direction of the solid arrow, the current direction determination circuit 24 provides the DKON signal to the analog switches 2A and 2F on the path of one output terminal α.

一方、電流検出器13及び回転数検出器14で検出され
た直流機の電機子電流及び回転数が所定値以上である1
、電機子及び整流子動作判定回路23から電圧が出力さ
れるため、電流制御回路18内のトランジスタTflが
ONする。また、掛算器15の出力vHが関数発生器2
2に入力されているため、関数発生器22は、第3図に
示すように、掛算器15の出力V、に応じた電圧Vθを
出力する。このため、ゲート信号発生器16により出力
Vθに応じてトランジスタTr4の0N−OFFが制御
され、電機子電流と回転数の大きさに応じて実線矢印方
向に流れる補助巻線8の電流icが外部直流電源17よ
り供給される。電機子電流I、の方向のみが反転する正
転回生の場合には、電流方向判定回路24の他方の出力
端すの経路のアナログスイッチ27B、27CがONし
てトランジスタTf2 * ’rrsが動作するため、
破線矢印に示すように、逆方向に補助巻線80電流ic
が流れる。また、逆転の場合には正転回生の動作状態を
維持し、逆転回生の場じて、補助巻線8に流れる電RI
 cの方向と大きさが制御されるので、良好な整流補償
が行なわれる。
On the other hand, the armature current and rotation speed of the DC machine detected by the current detector 13 and the rotation speed detector 14 are greater than or equal to a predetermined value.
Since a voltage is output from the armature and commutator operation determination circuit 23, the transistor Tfl in the current control circuit 18 is turned on. Also, the output vH of the multiplier 15 is
2, the function generator 22 outputs a voltage Vθ corresponding to the output V of the multiplier 15, as shown in FIG. Therefore, the ON-OFF state of the transistor Tr4 is controlled by the gate signal generator 16 according to the output Vθ, and the current ic of the auxiliary winding 8 flowing in the direction of the solid arrow according to the magnitude of the armature current and the rotational speed is It is supplied from a DC power supply 17. In the case of forward rotation regeneration in which only the direction of the armature current I is reversed, the analog switches 27B and 27C in the path of the other output terminal of the current direction determination circuit 24 are turned on, and the transistor Tf2*'rrs is operated. For,
The auxiliary winding 80 current IC in the opposite direction as shown by the dashed arrow
flows. In addition, in the case of reverse rotation, the operating state of normal rotation regeneration is maintained, and in the case of reverse rotation regeneration, the electric current RI flowing to the auxiliary winding 8 is
Since the direction and magnitude of c are controlled, good rectification compensation is achieved.

一方、無火花帯の位置が運転時間経過と共に変化し、整
流補償範囲を越える1、電機子及び整流子前述したよう
に、整流補償量の過不足に起因してブラシ11から火花
が発生するが、この整流補償量の過不足とその大きさが
サーチコイル19により検出される。この検出出力は整
流補償量補正回路20の整流状態検出器25に入力して
いるため、整流補償量の過不足とその大きさに応じた検
出電圧■Iが整流状態検出器25から出力され、これが
整流補償量補正回路20の補正量設定回路26に入力さ
れる。
On the other hand, the position of the spark-free zone changes with the passage of operating time and exceeds the commutation compensation range (1).The armature and commutator As mentioned above, sparks are generated from the brush 11 due to excess or deficiency in the amount of commutation compensation. The search coil 19 detects the excess or deficiency of this rectification compensation amount and its magnitude. Since this detection output is input to the rectification state detector 25 of the rectification compensation amount correction circuit 20, a detection voltage ■I corresponding to the excess or deficiency of the rectification compensation amount and its magnitude is output from the rectification state detector 25. This is input to the correction amount setting circuit 26 of the rectification compensation amount correction circuit 20.

補正量設定回路26では、第4図に示すように、前記検
出電圧vIに応じて設定された補正電圧Vδを出力する
。ここで、回転数の大きさに対応して無火花帯が狭くな
り、同じ火花の大きさ、つまり同じ検出電圧Vtの大き
さでもその補正量を変化させる(回転数が増大すると同
じ火花の大きさでも補正量を減少させる)必要があるた
め、補正電圧■δは回転数の大きさに対応して同じ検出
電圧■Iに対し複数の補正電圧val〜VJsが設定さ
れている。補正量設定回路26から出力された補正電圧
Vδは加算器21で関数発生器22の出力Vθとつき合
わされているため、火花が不足整流側で発生していれば
、その合成値は小さくなって補極起磁力が増大し、また
火花が退寮流側で発生していれば、前記合成値は大きく
なって補極起磁力が減少する。その結果、ブラシ11か
ら火花が発生しても速やかに補助巻線8に流れる電流i
(yが火花を発生しない方向に補正されるので、良好な
整流補償を行なうことができる。
As shown in FIG. 4, the correction amount setting circuit 26 outputs a correction voltage Vδ set according to the detected voltage vI. Here, the spark-free zone becomes narrower in accordance with the magnitude of the rotation speed, and the correction amount changes even for the same spark magnitude, that is, the same detection voltage Vt (as the rotation speed increases, the same spark magnitude Therefore, a plurality of correction voltages val to VJs are set for the same detection voltage (I) in accordance with the magnitude of the rotational speed. Since the correction voltage Vδ outputted from the correction amount setting circuit 26 is matched with the output Vθ of the function generator 22 in the adder 21, if a spark is generated on the under-rectification side, the combined value will be small. If the copole magnetomotive force increases and sparks are generated on the retreating flow side, the composite value increases and the copole magnetomotive force decreases. As a result, even if a spark is generated from the brush 11, the current i immediately flows to the auxiliary winding 8.
(Since y is corrected in a direction that does not generate sparks, good rectification compensation can be performed.

なお、前記各実施例では、整流状態検出手段としてサー
チコイルを用いているが、これに代えて、光電管方式で
火花の大きさを検出し、界磁巻線端子間や正負ブラシ間
に現われる火花ノイズで整流補償量の過不足を検出する
方式など、その他の検出手段を用いることもできる。
In each of the above embodiments, a search coil is used as a rectification state detection means, but instead of this, a phototube method is used to detect the size of a spark, and detect the spark that appears between the field winding terminals or between the positive and negative brushes. Other detection means can also be used, such as a method of detecting excess or deficiency in the amount of rectification compensation using noise.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、ブラシから火花
が発生した場合K、整流補償量の過不足とその大きさに
応じて補助巻線に流す電流を自動的に補正するようにし
たので、運転時間経過に伴って無火花帯の位置が変化し
ても、自動的に鍾適な整流補償量に補正され、常に良好
な整流補償を行なうことができる。
As explained above, according to the present invention, when a spark is generated from the brush, the current flowing through the auxiliary winding is automatically corrected according to the excess or deficiency of the rectification compensation amount and its magnitude. Even if the position of the no-spark zone changes with the passage of operating time, the rectification compensation amount is automatically corrected to an appropriate amount, and good rectification compensation can always be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る整流補償装置のブロッ
ク回路図%第2図は本発明の他の実施例に係る整流補償
装置のブロック回路1凶、第3図は関数発生器の特性図
、第4図は補正量設定回路の特性図、第5図は第2図に
示した整流補償装置の動作説明図、第6図は従来の直流
機の要部展開図。 第7図は回転数に対する無火花帯の移動現象を示す特性
図、第8図は従来の整流補償装置のブロック回路図であ
る。 1・・・・・・継鉄、2・・・・・・主極、3・・・・
・・補極、4・・・・・・主極鉄心、5・・・・・・主
極巻線、6・・・・・・補極鉄心、7・・・・・・補極
巻線、8・・・・・・補助巻線、9・・・・・・電機子
、11・・・・・・ブラシ、12・・・・・・整流子□
、13・・・・・・電流検出器、14・・・・・・回転
数検出器、15・・・・・・掛算器、16・・・・・・
ゲート信号発生回路、17・・・・・・直流電源、18
・・・・・・電流制御回路、19・・・・・・整流状態
検出用サーチコイル、20・・・・・・整流補償量補正
回路。 第3図 第4図 第5図 第6図
FIG. 1 is a block circuit diagram of a rectification compensation device according to an embodiment of the present invention. FIG. 2 is a block circuit diagram of a rectification compensation device according to another embodiment of the present invention. FIG. 4 is a characteristic diagram of a correction amount setting circuit, FIG. 5 is an explanatory diagram of the operation of the rectification compensator shown in FIG. 2, and FIG. 6 is an exploded view of the main parts of a conventional DC machine. FIG. 7 is a characteristic diagram showing a movement phenomenon of the spark-free zone with respect to the rotational speed, and FIG. 8 is a block circuit diagram of a conventional rectification compensator. 1...Yoke, 2...Main pole, 3...
...Commuting pole, 4...Main pole iron core, 5...Main pole winding, 6...Commuting pole iron core, 7...Commuting pole winding , 8... Auxiliary winding, 9... Armature, 11... Brush, 12... Commutator □
, 13... Current detector, 14... Rotation speed detector, 15... Multiplier, 16...
Gate signal generation circuit, 17... DC power supply, 18
... Current control circuit, 19 ... Search coil for rectification state detection, 20 ... Rectification compensation amount correction circuit. Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、電機子及び整流子を有する回転子と、主極鉄心及び
主極巻線からなる主極、補極鉄心、補極巻線及びこの補
極巻線とは差動的に巻装された補助巻線からなる補極、
並びにブラシを有する固定子と、電機子電流を検出する
手段と、前記回転子の回転数を検出する手段とを備え、
検出された電機子電流及び回転数に応じて前記補助巻線
に流す電流を制御するようにした直流機の整流補償装置
において、整流補償量の過不足とその大きさを検出する
整流状態検出手段と、検出された整流補償量の過不足と
その大きさに応じて前記補助巻線に流す電流を補正する
整流補償量補正手段とを設けたことを特徴とする直流機
の整流補償装置。 2、特許請求の範囲第1項において、前記整流状態検出
手段は前記主極鉄心に巻装されたサーチコイルからなる
ことを特徴とする直流機の整流補償装置。 3、特許請求の第1項において、前記整流補償量補正手
段は、検出された整流補償量の過不足とその大きさに応
じた方向と大きさの検出電圧を発生する整流状態検出器
と、この検出電圧に応じた補正電圧を発生する補正量設
定回路とからなることを特徴とする直流機の整流補償装
置。 4、特許請求の範囲第3項において、前記補正量設定回
路は前記回転子の回転数に反比例して前記補正電圧を変
化させるように構成したことを特徴とする直流機の整流
補償装置。
[Claims] 1. A rotor having an armature and a commutator, a main pole consisting of a main pole iron core and a main pole winding, a commutating pole iron core, a commutating pole winding, and this commutating pole winding are differentially connected. A commutative pole consisting of an auxiliary winding wound around the
and a stator having brushes, means for detecting armature current, and means for detecting the rotation speed of the rotor,
In a rectification compensation device for a DC machine that controls a current flowing through the auxiliary winding according to a detected armature current and rotation speed, a rectification state detection means for detecting excess or deficiency of the amount of rectification compensation and its magnitude. A rectification compensation device for a DC machine, comprising: and a rectification compensation amount correction means for correcting the current flowing through the auxiliary winding according to the detected excess or deficiency of the rectification compensation amount and its magnitude. 2. The rectification compensation device for a DC machine according to claim 1, wherein the rectification state detection means comprises a search coil wound around the main pole iron core. 3. In claim 1, the rectification compensation amount correction means includes a rectification state detector that generates a detection voltage in a direction and magnitude according to the detected excess or deficiency of the rectification compensation amount and its magnitude; A rectification compensation device for a DC machine, comprising a correction amount setting circuit that generates a correction voltage according to the detected voltage. 4. The rectification compensation device for a DC machine according to claim 3, wherein the correction amount setting circuit is configured to change the correction voltage in inverse proportion to the rotation speed of the rotor.
JP60045738A 1985-03-09 1985-03-09 Rectifier compensator for DC machines Expired - Lifetime JP2622371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045738A JP2622371B2 (en) 1985-03-09 1985-03-09 Rectifier compensator for DC machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045738A JP2622371B2 (en) 1985-03-09 1985-03-09 Rectifier compensator for DC machines

Publications (2)

Publication Number Publication Date
JPS61207189A true JPS61207189A (en) 1986-09-13
JP2622371B2 JP2622371B2 (en) 1997-06-18

Family

ID=12727655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045738A Expired - Lifetime JP2622371B2 (en) 1985-03-09 1985-03-09 Rectifier compensator for DC machines

Country Status (1)

Country Link
JP (1) JP2622371B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582096U (en) * 1978-12-04 1980-06-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582096U (en) * 1978-12-04 1980-06-06

Also Published As

Publication number Publication date
JP2622371B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JP3279457B2 (en) Control device for permanent magnet synchronous motor
JPS61207189A (en) Rectification compensator of dc machine
JPH0345622B2 (en)
CA1105988A (en) Synchronous machine drive apparatus
JP2529187B2 (en) Rectifier compensator for DC machines
JP2533485B2 (en) Rectifier compensator for DC machines
JPH0520988B2 (en)
JPH0368628B2 (en)
JPS59172963A (en) Rectification compensating device of dc electric machine
JPS60167697A (en) Commutation compensator of dc machine
JPS60144152A (en) Rectification compensating device of dc machine
JPH0519386B2 (en)
JPS60156296A (en) Commutation compensator of dc machine
JPS62239885A (en) Commutating compensator for dc machine
JPH01298937A (en) Stator for dc electric machine
JPS59194653A (en) Rectification compensator of dc electric machine
JPS6026494A (en) Rectification compensator of dc electric machine
JPH0218716Y2 (en)
JPH05308760A (en) Rectifier for dc machine
JPS6051347B2 (en) DC machine rectification compensation device
JPH099672A (en) Overload protector for motor
JPH0218717Y2 (en)
JPS6329506B2 (en)
JPS588677B2 (en) Control method of commutatorless motor
JPS6248289A (en) Rectification compensator for dc machine