JPS6120647A - Production of clad billet by continuous casting - Google Patents

Production of clad billet by continuous casting

Info

Publication number
JPS6120647A
JPS6120647A JP14071784A JP14071784A JPS6120647A JP S6120647 A JPS6120647 A JP S6120647A JP 14071784 A JP14071784 A JP 14071784A JP 14071784 A JP14071784 A JP 14071784A JP S6120647 A JPS6120647 A JP S6120647A
Authority
JP
Japan
Prior art keywords
mold
molten steel
laminate
clad
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14071784A
Other languages
Japanese (ja)
Inventor
Kozo Yano
矢野 幸三
Shinobu Miyahara
忍 宮原
Mikio Mugita
麦田 幹雄
Makoto Suzuki
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14071784A priority Critical patent/JPS6120647A/en
Publication of JPS6120647A publication Critical patent/JPS6120647A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product

Abstract

PURPOSE:To reduce the cost of production by heating cladding metals to a specific temp., supplying continuously said metals into a vertical mold, pouring a molten steel to the inside of the cladding metals and cooling forcibly the molten steel upon lapse of prescribed time. CONSTITUTION:The cladding metals 3a, 3b are continuously supplied into the vertical multi-stage mold 11 so as to contact with the inside surface of the mold. The metals 3a, 3b are formed by welding to a rectangular square cylinder and are heated to 400-1,200 deg.C preheating temp. by a quick heater 14. The molten steel 4 in a tundish 1 is poured through a nozzle 15 into the cavity formed of the metals 3a, 3b. The molten steel in the mold 11 is weakly cooled and begins to solidify in the upper stage part 11a. The molten steel is then quickly cooled in the lower stage part 11b of the mold to form an unsolidified clad billet 5 after the prescribed time. The billet is drawn while the billet is cooled by a cooling nozzle 21. The cost is considerably reduced by the above-mentioned method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、連続鋳へによるクラッド鋳片の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a clad slab by continuous casting.

〔従来技術とその問題点〕[Prior art and its problems]

一般に、クラツド鋼板は、切羽板にステンレス鋼等の合
せ材を圧延等種々の加工手段1(より圧着して、製造さ
れている。しかし、これらの方法は。
Generally, clad steel plates are manufactured by crimping a laminate material such as stainless steel onto a face plate using various processing methods such as rolling.

時間と手間がかかり、クラツド鋼板の製造コストが高く
なる難点があった。
This method takes time and effort, and has the disadvantage of increasing the manufacturing cost of clad steel sheets.

そこで1本発明者Alj、は、クラツド鋼板を安価に得
ることを可能にするものとして、連続鋳造によるクラッ
ド91片の製造方法を、先項I特願昭58−284、9
1号として提案した。
Therefore, the inventor Alj proposed a method for manufacturing 91 pieces of cladding by continuous casting in order to make it possible to obtain clad steel plates at low cost, in the above-mentioned Japanese Patent Application No. 58-284, 9.
I proposed this as number 1.

この提案し/ζクラッド鋳片の製造方法は、第6図に示
すように、タンディツシュ]の直下に設けた垂直モール
ド2内に、モールド2の内面に接するように1例えば一
対の長辺側合せ材3aど一対の短辺側合せ材3bとを溶
接しながら、垂直に連続的に供給し、これと同時にモー
ルド2内の合せ4J’ ””13b  に囲まれた空域
に、タンディツシュlから溶’A44を連続的に注入し
て、未凝固鋳片の外面が合せ材3a、3bに溶着した未
凝固クラッド鋳片5を形成させ、この未凝固クラッド鋳
片5を垂直モールド2から連続的に引抜き、冷却して、
クラッド鋳片1例えば合せ材を四面に有する三層のクラ
ッド鋳片を得るようにしだものである。
As shown in FIG. 6, this proposed method for manufacturing ζ-clad slabs consists of placing a mold, for example, a pair of long sides together, in a vertical mold 2 provided directly under the tundish. While welding the material 3a and the pair of short-side mating materials 3b, the material 3a is continuously supplied vertically, and at the same time, the molten material is supplied from the tundish l to the air space surrounded by the mating material 4J' 13b in the mold 2. A44 is continuously injected to form an unsolidified clad slab 5 in which the outer surface of the unsolidified slab is welded to the mating materials 3a and 3b, and this unsolidified clad slab 5 is continuously pulled out from the vertical mold 2. , cooled,
Clad slab 1 For example, a three-layer clad slab having cladding materials on all four sides is obtained.

このようにして製造されたクラッド鋳片を所望の板厚に
圧延すれば、容易にクラツド鋼板が得られる。板厚の薄
いクラッド鋳片を製造すれば、圧延することなくそのま
まで、クラツド鋼板を得ることが可能となる。
By rolling the clad slab produced in this way to a desired thickness, a clad steel plate can be easily obtained. If a thin clad slab is manufactured, it becomes possible to obtain a clad steel plate as it is without rolling it.

ところで、上記製造方法においては、長辺側合せ材3a
を、矯正ロール6による矯正と溶鋼4との溶液とをし易
くするために、加熱器7によシ予熱するものとし、短辺
側合せ材3bについても予熱することが望ましいとして
いたが、これら合せ材3a。
By the way, in the above manufacturing method, the long side side joining material 3a
In order to facilitate the straightening by the straightening roll 6 and the solution with the molten steel 4, the heater 7 is used to preheat the material, and it is also desirable to preheat the short side mating material 3b. Laminating material 3a.

3b  を、溶鋼4と溶着し易くするだめの予熱温度に
ついては、必ずしも明らかでなかった。
The preheating temperature that makes it easier to weld 3b to molten steel 4 was not necessarily clear.

本発明者等は、上記製造方法に基づき、小型連続鋳造試
験装置を使用して、クラッド鋳片を試験的に製造する過
程で、モールド内に供給する合せ材の予熱温度が、母材
と合せ材間の溶着性を大きく支装置−ており1合せ材の
溶着性に優れたクラッド鋳片を製造するためには1合せ
材の予熱温度と合せ材の強冷開始時期とが適切で“なけ
ればならないことを知見(7だ。特願昭58−284.
91号の製造方法では、合せ材の予熱ちるいは冷却が不
適切であったために1合せ材の溶着性が不良になったと
いうことになりかねず1合せ材の溶着性に優れたクラッ
ド鋳片を安定して製造することができない。
The present inventors discovered that, in the process of experimentally manufacturing clad slabs based on the above-mentioned manufacturing method using a small continuous casting test device, the preheating temperature of the cladding material supplied into the mold was equal to that of the base material. In order to manufacture clad slabs that greatly support the weldability between materials and have excellent weldability of the first laminate, the preheating temperature of the laminate and the timing of the start of hard cooling of the laminate must be appropriate. Knowledge of what must be done (7. Patent application 1984-284.
In the manufacturing method of No. 91, improper preheating or cooling of the laminate material may result in poor weldability of the laminate material. It is not possible to stably produce pieces.

〔発明の目的〕[Purpose of the invention]

この発明は、上記観点に鑑み1合せ材の溶着性に優れた
クラッド鋳片を安定して製造することの゛できる。連続
Uj造によるクラッド鋳片の製造方法を提供することを
目的とする。
In view of the above points, the present invention makes it possible to stably produce a clad slab with excellent welding properties for one laminate. The object of the present invention is to provide a method for manufacturing clad slabs by continuous Uj forming.

〔発明の概要〕[Summary of the invention]

この発明は、タンディツシュの直下に設けた垂直モール
ド内に、400〜1200℃の温度に加熱した合せ拐を
、前記合せ材の外面を前記モールドの内面に接するよう
に、垂直に連続的に供給し。
In this invention, a composite material heated to a temperature of 400 to 1200°C is continuously fed vertically into a vertical mold provided directly below a tundish so that the outer surface of the composite material is in contact with the inner surface of the mold. .

これと同時に、前記タンディツシュ内の溶鋼を。At the same time, the molten steel in the tanditshu.

前記モールド内の前記合せ材の内側に注入して。Inject into the inside of the laminate in the mold.

前記溶鋼が凝固して前記合せ材の外面に溶着したからの
前記合せ材について定められた時間の経過後に1強冷す
ることに特徴を有する。
The method is characterized in that the molten steel is solidified and welded to the outer surface of the laminate, and then the laminate is strongly cooled once a predetermined time has elapsed.

〔発明の構成〕[Structure of the invention]

上述したように、本発明者等は、先に提案した蒔願昭5
8−28491号の製造方法に基づき。
As mentioned above, the present inventors have proposed the
Based on the manufacturing method of No. 8-28491.

小型連続鋳造試験装置を使用して、クラッド鋳片を試験
的に製造する過程で、合せ劇の予熱温度と強冷開始時期
とが、母材と合せ材間の溶着性を大きく支配しているこ
とを知見した。
In the process of experimentally manufacturing clad slabs using a small continuous casting test device, we found that the preheating temperature of the welding process and the start time of intense cooling largely control the weldability between the base material and the cladding material. I found out that.

第3図(a)〜(d)は、小型連続鋳造試験装置の垂直
モールド内に、予熱温度を変えて合せ材を供給したとき
の1合せ材と溶鋼の界面の様子を伝熱計算により求め1
図示したものである。
Figures 3 (a) to (d) show the state of the interface between 1 laminate and molten steel when the laminate is supplied into the vertical mold of a small continuous casting test device at different preheating temperatures, determined by heat transfer calculations. 1
This is what is illustrated.

ここで、8は合せ材、9はモールド内の溶鋼、10は溶
銅りの湯面、21は凝固界面の液相線(fB=o ) 
−fSld凝固界面の固相線(f、 = 1.0)−T
は合せ材10の予熱温度である。合せ材8の予熱温度T
i−]ニー予熱した合せ材8がd鋼の湯面1゜に達した
時点での合せ材8の温度で表示しである。
Here, 8 is the laminate material, 9 is the molten steel in the mold, 10 is the surface of the molten copper, and 21 is the liquidus line at the solidification interface (fB=o)
-fSld Solidus line of solidification interface (f, = 1.0) -T
is the preheating temperature of the laminate 10. Preheating temperature T of laminating material 8
i-] The temperature of the preheated laminate 8 is indicated when the molten metal level of the d steel reaches 1°.

第3図(a)l−111合せ材8に予熱を行なわなかっ
た場合である。合せ材8の外面の冷却は、空冷程度の弱
冷と1通常、連続鋳造で行なわれる直接まだは間接の水
冷、仔度の強冷とについて求めたが1図にはこれらを区
別することなく図示しである。
FIG. 3(a) shows the case where the l-111 laminated material 8 was not preheated. The cooling of the outer surface of the laminated material 8 was determined by weak cooling such as air cooling, direct or indirect water cooling usually performed in continuous casting, and strong cooling at a secondary degree, but Figure 1 does not distinguish between these. It is illustrated.

第3図(a)では、湯面10下で立ち上っだ「・1相腺
2s  は、鋳片引抜き方向に行くに従ってそのまま上
昇しており、合せ材8の溶鋼9との界面は溶融温度に達
することがない。
In Fig. 3(a), the 1-phase gland 2s rising below the molten metal level 10 continues to rise as it goes in the slab drawing direction, and the interface between the laminate material 8 and the molten steel 9 reaches the melting temperature. Never.

第3図(mlから1合せ材8の予熱を行なわない場合に
は1合ぜ材8の冷却を大幅に緩和しても1合せ材8の溶
鋼9との界面が溶融温度に達することがなく、従って、
溶鋼9から形成される母材に合せ材8が溶着し得ないこ
とが予想されるが、挙実−そのことが鋳造試験でも確認
されている。
Figure 3 (If the first laminate material 8 is not preheated from ml, the interface between the first laminate material 8 and the molten steel 9 will not reach the melting temperature even if the cooling of the first laminate material 8 is greatly relaxed. , therefore,
Although it is expected that the laminate material 8 cannot be welded to the base material formed from the molten steel 9, this has actually been confirmed in casting tests.

第3図(b)は1合せ材8を400℃に予熱した場合、
第3図(c)は、同じく1200℃に予熱した場合で1
合せ材8の冷却は、両者とも弱冷としである。
Fig. 3(b) shows the case where the first laminated material 8 is preheated to 400°C.
Figure 3(c) shows 1 when preheated to 1200℃.
Both of the laminates 8 were cooled slightly.

これらの場合には、固相線2sが湯面10下の所定領域
で合せ材B内に入り込んでおり1合せ材8の溶鋼9との
界面がaまたはbの地点で溶融温度に達し、固液共存状
態が作り出されている。
In these cases, the solidus line 2s enters into the laminate B in a predetermined area below the molten metal level 10, and the interface between the laminate 8 and the molten steel 9 reaches the melting temperature at point a or b, and becomes solid. A liquid coexistence state is created.

従って1合せ材8を400〜]200℃に予熱した場合
には、母材と合せ材とが良好に溶着することが予想され
る。しかし5合せ材8を]、2010℃に予熱した場合
は、第3図(C)の地点Cで示すように1合せ材8の溶
融が進んで溶断や破断が生じ。
Therefore, when the first laminate material 8 is preheated to 400 to 200[deg.] C., it is expected that the base material and the laminate material will be well welded. However, when the 5th laminate 8 is preheated to 2010° C., the 1st laminate 8 melts and breaks, as shown at point C in FIG. 3(C).

未凝固クラッド鋳片の引抜きができなくなる。そのため
、この場合には1合せ材8の強度が存在する時点で1合
せ材8の外面の冷却を強化してやることが必要である。
Unsolidified clad slab cannot be pulled out. Therefore, in this case, it is necessary to strengthen the cooling of the outer surface of the first laminated material 8 when the strength of the first laminated material 8 is present.

第3図(d)は1合せ材8を1000℃に予熱した場合
で、ここでは1合せ材8の外面の冷却を、初め弱冷とし
1合せ材8に半分の厚みの強度が保証される地点dで1
強冷に切替えて因る。
Fig. 3(d) shows the case where the first laminate 8 is preheated to 1000°C. Here, the outer surface of the 1st laminate 8 is initially cooled gently to ensure that the 1st laminate 8 has the strength of half the thickness. 1 at point d
This depends on switching to strong cooling.

第3図(d)では、同相線2sがeの地点で合せ材8に
入り込んで1合せ材8の溶鋼9との界面が溶融温度に達
しだあと、冷却を強冷に切替えた地点dから固相線ys
が」二昇して、合せ材8の溶融が止まり回復している。
In Fig. 3(d), after the in-phase line 2s enters the laminate 8 at point e and the interface between the laminate 8 and the molten steel 9 reaches the melting temperature, the cooling is switched to strong cooling from point d. solidus line ys
has risen to 2, the melting of the laminated material 8 has stopped and recovery has occurred.

従って、この場合に幻−母相と訃せ材8の(容部性を充
分に保証でき、かつ、未凝固クラツド1?片の引抜きに
も支障がないようにできる。
Therefore, in this case, the capacity of the phantom matrix and the dead material 8 can be sufficiently guaranteed, and there will be no problem in pulling out the unsolidified crust 1 piece.

第4図は、合せ材として、厚さ5 msのオーステナイ
ト系ステンレス1sUs304を用い、母材の溶鋼とし
て、40に機械構造用鋼相当の溶鋼を用いて、クラッド
鋳片を鋳造したときの、溶着開始線島と溶断発生限界線
L2  とを1合せ材の予熱i昆II Tと溶鋼注入後
の経過時間tとに対して図示したものである。
Figure 4 shows the results of welding when a clad slab was cast using austenitic stainless steel 1sUs304 with a thickness of 5 ms as the cladding material and molten steel equivalent to machine structural steel 40 as the base metal. The start line island and the limit line L2 for the occurrence of fusing are illustrated with respect to the preheating time of one laminate material and the elapsed time t after pouring the molten steel.

なお1合せ材外面の一次冷却は、空冷の他、黒鉛耐化物
による方式、間接弱冷構造の高融点金属体やサーメット
による方式など種々の冷却方式により行なった。
In addition to air cooling, the primary cooling of the outer surface of the laminated material 1 was performed by various cooling methods such as a method using a graphite resistant material, a method using a high melting point metal body with an indirect weak cooling structure, or a method using a cermet.

ここで、溶着開始線11の溶着開始とは1合せ材の溶鋼
との界面が溶融塩J¥になって固液共存状態に達したこ
とを、溶断発生限界線12の溶断発生限界とは1合せ材
が外面まで溶融温度に達して、剛性がなくなったことを
表わす。
Here, the start of welding at the welding start line 11 means that the interface between the laminate material and the molten steel becomes molten salt J and a solid-liquid coexistence state is reached, and the limit of fusing occurrence at the fusing occurrence limit line 12 means 1. This indicates that the outer surface of the laminate has reached the melting temperature and has lost its rigidity.

従って、合せ材の予熱温度Tと1合せ材の強冷開始時期
として溶鋼注入後の経過時間tとを、第4図の曲1腺1
1と12 で挾まれる領域A内で適宜選べば1合せ材の
溶着性に優れたクラッド鋳片が得られることになる。
Therefore, the preheating temperature T of the laminate material and the elapsed time t after injection of molten steel as the start time of strong cooling of the laminate material 1 are defined as
If a suitable selection is made within the region A between 1 and 12, a clad slab with excellent weldability for the 1st laminate material can be obtained.

合せ材として5US304を、母材の溶二刷として40
KSi−Aeキルド鋼相蟲の溶鋼を用いて、小型連続鋳
造試験装置により製造したときのクラッド調片の、母材
と合せ材との接合面の金属組織の顕微鏡写真を、第5図
(、、) 、 (b)に示す。
5US304 as the laminating material and 40US as the base material.
Figure 5 shows a microscopic photograph of the metallographic structure of the joint surface between the base material and the cladding material of a cladding piece produced using molten steel of KSi-Ae killed steel using a small continuous casting test device. , ), shown in (b).

第5図(a)は、第4図の点fで表わされる予熱温度T
に合せ材を予熱し、溶鋼注入後の経過時間tで合せ材の
強冷を開始した場合で、合せ材と母材とが溶着してい身
いことがわかる。第5図(b)超:。
FIG. 5(a) shows the preheating temperature T represented by point f in FIG.
It can be seen that when the cladding material is preheated and strong cooling of the cladding material is started at the elapsed time t after pouring the molten steel, the cladding material and the base metal are welded together. Figure 5(b):.

第4図の点2で表わされる予熱温度Tに合せ材を予熱し
、溶鋼注入後の経過時間tで合せ材の強冷を開始した場
合で、合せ材と母材とが完全に溶着していることがわか
る。
When the cladding material is preheated to the preheating temperature T indicated by point 2 in Fig. 4, and strong cooling of the cladding material is started at the elapsed time t after pouring the molten steel, the cladding material and the base metal are completely welded together. I know that there is.

以上のようなことから、この発明においては。Based on the above, in this invention.

合せ材の予熱温度を400〜1200℃とする。The preheating temperature of the laminated material is 400 to 1200°C.

これは、母材と合せ材の組合ぜとして、母材に低、中炭
素鋼、低合金鋼を1合せ材に高炭素鋼、高合金鋼を用い
る通常の組合せであるかぎり、400〜1200℃の予
熱温度で、合せ材の溶着性を保証できるからである。合
せ材の温度が400℃未満になると1合せ材の溶着性が
得られなくなり。
As long as the combination of base material and laminate is a normal combination of low-, medium-carbon, and low-alloy steel for the base material and high-carbon steel, high-alloy steel for the laminate, the temperature is 400 to 1200℃. This is because the weldability of the laminate can be guaranteed at a preheating temperature of . If the temperature of the laminated material is less than 400°C, the welding properties of one laminated material cannot be obtained.

寸だ、1200℃を越えると1合せ利の引張り強Itが
著しく低下して1合せ材が変形したり破断する問題が生
ずる。
However, when the temperature exceeds 1200°C, the tensile strength It of the first laminate material decreases significantly, causing a problem that the first laminate material deforms or breaks.

この発明においては1合ぜ材の冷却開始時期を溶鋼の注
入から所定時間経過後とするが、この冷却開始時期は1
合せ材の溶鋼との界面が溶融温度に達して、固液共存状
態が充分に作り出され、かつ。
In this invention, the cooling start time of one composite material is set after a predetermined time has elapsed from the injection of molten steel;
The interface between the laminate and the molten steel reaches a melting temperature, and a solid-liquid coexistence state is sufficiently created.

合せ材の剛性か末だ失なわれない時点に定めることが必
要である。この場合1合せ材の溶鋼との界面が溶融温度
に達す、る時期が1合せ材の予熱温度の他、合せ材の板
厚や溶鋼の注入条件(注入時の溶鋼温度、注湯部での溶
鋼の攪拌強度)、母材と合せ材の組合せの種類によって
変わるので、これらを考慮して、合せ材の冷却開始時期
を定める。
It is necessary to determine the point at which the stiffness of the laminate will not be lost forever. In this case, the timing at which the interface between the 1st laminate and the molten steel reaches the melting temperature depends on the preheating temperature of the 1st laminate, the thickness of the laminate, and the molten steel injection conditions (molten steel temperature at the time of pouring, molten steel temperature at the pouring section, etc.). The stirring intensity of the molten steel) and the type of combination of the base metal and the cladding material vary, so the timing to start cooling the cladding material is determined by taking these into consideration.

第1図は、この発明の詳細な説明図である。FIG. 1 is a detailed explanatory diagram of the present invention.

第1図において、1]はタンディツシュ]の直下に設置
された矩形状の垂直多段モールド、 3aはモールド1
1に、その長辺側内面に接するように連続的に供給され
る長辺側合せ材、 3bはモールド11に、その短辺側
内面に接するように連続的に供給される短辺側合せ材で
ある。一対の長辺側合せ材3aと一対の短辺側合せ材3
bは、各々矯正ロール6.12で下方向に直角に折曲さ
れたのち、溶接器13での溶接によって矩形の角筒に成
形され、次いで急速加熱器14の加熱コイルにより、 
400〜1200℃の所定予熱温度に加熱されて、モー
ルドココ内に案内される。なお、7は長辺(1411合
せ材3aを加熱して、矯正し易くする加熱器で、同様な
加熱器によって短辺側合せ材3bも加熱するとと75:
よい。
In Fig. 1, 1] is a rectangular vertical multi-stage mold installed directly under the tandish, and 3a is the mold 1.
1 is a long side lining material that is continuously supplied to the mold 11 so as to be in contact with the inner surface of the long side, and 3b is a short side lining material that is continuously supplied to the mold 11 so as to be in contact with the inner surface of the short side thereof. It is. A pair of long side mating materials 3a and a pair of short side mating materials 3
b are each bent downward at right angles by straightening rolls 6 and 12, and then formed into a rectangular square cylinder by welding with a welder 13, and then heated by a heating coil of a rapid heater 14.
It is heated to a predetermined preheating temperature of 400 to 1200°C and guided into the mold coco. Note that 7 is a heater that heats the long side (1411) laminate material 3a to make it easier to straighten, and if a similar heater is used to also heat the short side laminate material 3b, 75:
good.

モールドll内に合せ材3a、3bが案内されると。When the laminate materials 3a and 3b are guided into the mold ll.

これと同時にタンディツシュ1内の溶鋼4が、タンティ
ッシュ1底部の注入ノズル]5を通して。
At the same time, the molten steel 4 in the tongue tissue 1 passes through the injection nozzle]5 at the bottom of the tongue tissue 1.

合せ材3a +’ 3bが形成する空域内に注入される
The laminate material 3a +' 3b is injected into the air space formed.

なお、配管16から不活性ガスを合せ材3a、3bが形
成する空域内に導入して、酸素濃度を〕Oチリ下とし1
合せ4i’ 3a 、  3bの内面と湯面の溶鋼とが
酸化されるのを防ぐことが好ましい。
Note that an inert gas is introduced from the pipe 16 into the air space formed by the composite materials 3a and 3b to reduce the oxygen concentration to 1
It is preferable to prevent the inner surfaces of the joints 4i' 3a and 3b and the molten steel on the molten metal surface from being oxidized.

モールド11は、モールド内を弱冷可能とした上段部1
 j、aと、モールド内を強冷可能としだ下段部111
)とからなる。このようなモールドとしては。
The mold 11 has an upper part 1 that allows the inside of the mold to be cooled slightly.
j, a, and the lower part 111 that allows strong cooling of the inside of the mold.
). For such a mold.

第2図(a)に・tすように、上段部を間接水冷式のセ
ラミックモールド17とし、下段部を鋳鉄等からなるグ
リッド」8で形成して、その背面にスプレーノズル〕9
を設けた構造のモールドや、第2図(b)(示すように
、上段部、下段部ともグリッド18で形成して、その背
面にスプレーノズル19を、上下動可能に設けて、強冷
開始位置を調整可能にした構造のモールドを用いること
ができる。
As shown in Fig. 2(a), the upper part is made of an indirect water-cooled ceramic mold 17, the lower part is made of a grid made of cast iron, etc., and a spray nozzle is attached to the back of the mold.
As shown in FIG. 2(b), both the upper and lower parts are formed of a grid 18, and a spray nozzle 19 is provided on the back side of the grid so as to be movable up and down. A mold having a structure whose position is adjustable can be used.

なお、第1図で20はモールド11内の湯面近傍の溶鋼
を攪拌するための電磁コイルである。
In FIG. 1, reference numeral 20 denotes an electromagnetic coil for stirring the molten steel near the molten metal surface in the mold 11.

モールドll内で合せ材3a、、3bが形成する空域に
注入された溶鋼は、モールド9の弱冷を行なう上段部1
.laで緩つくりと凝固し始める。このとき、溶鋼と接
触した合せ材3a、3bは、溶鋼との界面が溶融温度に
達して、固液共存状態を経るの°  で、溶鋼が凝固し
たシェルと溶着する。次いで溶鋼は、モールド11の下
段部11bで強冷され、急速に凝固が進行して1合せ材
3a、、3bを表面に有する未凝固クラッド鋳片5とな
る。
The molten steel injected into the air space formed by the cladding materials 3a, 3b in the mold 11 is transferred to the upper stage 1 where the mold 9 is slightly cooled.
.. It starts to solidify loosely in la. At this time, the laminate materials 3a and 3b that have come into contact with the molten steel reach a melting temperature at the interface with the molten steel and undergo a solid-liquid coexistence state, so that they are welded to the shell in which the molten steel has solidified. Next, the molten steel is strongly cooled in the lower part 11b of the mold 11, and solidification progresses rapidly to form an unsolidified clad slab 5 having the first lamination materials 3a, 3b on the surface.

モールド11の下段部11bを経た未凝固クラッド鋳片
5は1次いでモールド11の下方に設置した冷却ノズル
2]から冷却水を吹付けられながら。
The unsolidified clad slab 5 that has passed through the lower part 11b of the mold 11 is then sprayed with cooling water from the cooling nozzle 2 installed below the mold 11.

サポートロール22を案内として、ピンチロール23に
よってモールド11から引抜かれる。モールド]1から
引抜かれた未凝固クラッド鋳“片5は。
It is pulled out from the mold 11 by the pinch rolls 23 using the support rolls 22 as a guide. The unsolidified clad cast piece 5 pulled out from the mold 1 is as follows.

完全に冷却さ五て、最終的に全面が合せ材で覆われたク
ラッド鋳片となる。
After it is completely cooled, it becomes a clad slab whose entire surface is covered with laminated material.

このようにして製造されたクラッド鋳片を所望の板厚に
圧延すれば、容易にクラツド鋼片が得られ、また板厚の
薄いクラッド鋳片を製造すれば。
By rolling the clad slab produced in this manner to a desired thickness, a clad steel slab can be easily obtained, and a thin clad slab can be manufactured.

圧延することなくその−ままで、クラツド鋼板を得るこ
とが可能となる。
It becomes possible to obtain a clad steel plate as is without rolling.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、この発明によれば、クラツド鋼
板が容易に得られ、クラツド鋼片の製造コストを大幅に
低減することが可能なりラッド鋳片を、安定して合せ月
の溶着性が良好なものとすることができる。
As explained above, according to the present invention, a clad steel plate can be easily obtained, the manufacturing cost of clad steel slabs can be significantly reduced, and clad slabs can be stably made and welded easily. can be made into a good one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明図、第2図(a)。 (b)il″1.それぞれこの発明の方法で用いられる
モールドの概略断面図、第3図(a)〜(d)は合せ材
と溶鋼の界面の様子を示した説明図、第4図6′:1、
台せ材の溶着開始線、1.1と溶断発生限界線12とを
図示したグラフ、第5図(aJ、(b) 1l−1:合
せ材と母材の接合部の金属組織を示゛す顕微鏡写真、第
6図は従呆の方法の説明図である。図面において、 トタンデイソ/ユ+  3a・・・長辺側合せ材、3b
・−炉辺41111合せ月、4,9・・溶;鋼。 5・・未凝1.’rlクラッド鋳6.]2・・・矯正ロ
ール。 片、        7・・−加熱器。 8・合せ材、10・・・湯面。 11・多段モールド−11a・・上段部。 IFb  下段部、13・・溶接器、 14・急速加熱’AL    15・・・注入ノズル。 2〕・スプレーノズル+ 22・・・サポートロール。 23・・ピンチロール。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 (a). (b) il'' 1. Schematic sectional views of the molds used in the method of the present invention, Figures 3 (a) to (d) are explanatory diagrams showing the state of the interface between the laminate and molten steel, and Figure 4 6. ':1,
Graph illustrating the welding start line 1.1 of the mounting material and the fusing occurrence limit line 12, Figure 5 (aJ, (b)) 1l-1: Showing the metallographic structure of the joint between the cladding material and the base material. Fig. 6 is an explanatory diagram of the method of mounting.
・-Heartside 41111 combined month, 4,9...melting; steel. 5. Uncured 1. 'rl clad casting6. ]2... Straightening roll. Piece 7...-heater. 8. Laminating material, 10... Hot water surface. 11.Multi-stage mold-11a...upper stage part. IFb Lower part, 13...Welder, 14.Rapid heating'AL 15...Injection nozzle. 2]・Spray nozzle + 22...Support roll. 23. Pinch roll.

Claims (1)

【特許請求の範囲】[Claims] タンデイツシユの直下に設けた垂直モールド内に、40
0〜1200℃の温度に加熱した合せ材を、前記合せ材
の外面を前記モールドの内面に接するように、垂直に連
続的に供給し、これと同時に、前記タンデイツシユ内の
溶鋼を、前記モールド内の前記合せ材の内側に注入して
、前記溶鋼が凝固して前記合せ材の外面に溶着した未凝
固クラッド鋳片を形成させ、次いで、前記モールド内の
前記未凝固クラッド鋳片を、前記溶鋼の注入時からの前
記合せ材について定められた時間の経過後に、強冷する
ことを特徴とする連続鋳造によるクラッド鋳片の製造方
法。
There are 40
A cladding material heated to a temperature of 0 to 1200°C is continuously supplied vertically so that the outer surface of the cladding material is in contact with the inner surface of the mold, and at the same time, the molten steel in the tundish is fed into the mold. The molten steel solidifies to form an unsolidified clad slab welded to the outer surface of the composite material, and then the unsolidified clad slab in the mold is injected into the molten steel. A method for manufacturing a clad slab by continuous casting, characterized in that the composite material is strongly cooled after a predetermined time has elapsed from the time of pouring.
JP14071784A 1984-07-09 1984-07-09 Production of clad billet by continuous casting Pending JPS6120647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14071784A JPS6120647A (en) 1984-07-09 1984-07-09 Production of clad billet by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14071784A JPS6120647A (en) 1984-07-09 1984-07-09 Production of clad billet by continuous casting

Publications (1)

Publication Number Publication Date
JPS6120647A true JPS6120647A (en) 1986-01-29

Family

ID=15275069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14071784A Pending JPS6120647A (en) 1984-07-09 1984-07-09 Production of clad billet by continuous casting

Country Status (1)

Country Link
JP (1) JPS6120647A (en)

Similar Documents

Publication Publication Date Title
EP3804874B1 (en) Metal compound plate strip continuous production equipment and method
US11697150B2 (en) Production apparatus and method for preparing metal clad plate in short process
JP2021526463A (en) Equipment and method for manufacturing metal composite plates by continuous casting and rolling method
US2515191A (en) Method of joining metals
JPS5832543A (en) Manufacture and device for clad ingot
JP3095417B2 (en) Metal composite material manufacturing method and apparatus
JPS6120647A (en) Production of clad billet by continuous casting
JPS6076263A (en) Production of composite metallic material
JPS6149748A (en) Continuous casting method of clad steel billet
JPS6149749A (en) Continuous casting method of clad steel billet
JPS6149750A (en) Continuous casting method of clad steel billet
JPH0452052A (en) Method and apparatus for continuously casting clad plate
US1826860A (en) Process of making products with welded faces of stable surface alloy
JPS63180347A (en) Water-cooled casting mold for continuous casting
JP2004188455A (en) Cooling method and water-cooling device for rail welding structure
JPS5828684Y2 (en) Surface plate for manufacturing composite steel ingots
JPS60244447A (en) Production of clad steel ingot
JPS61135463A (en) Method and device for continuous casting of metal-clad material
SU585033A1 (en) Method of making bimetallic packages
JPH0451010Y2 (en)
JPS62248546A (en) Production of continuously cast steel ingot without generation of central segregation
JPS62101368A (en) Production of clad ingot
JPS62101369A (en) Production of clad ingot
JPS60231502A (en) Method and device for joining rolling steel materials in hot rolling
JPS60255239A (en) Continuous casting method of clad steel slab