JPS61205614A - Production of hexachlorodisilane - Google Patents

Production of hexachlorodisilane

Info

Publication number
JPS61205614A
JPS61205614A JP4470185A JP4470185A JPS61205614A JP S61205614 A JPS61205614 A JP S61205614A JP 4470185 A JP4470185 A JP 4470185A JP 4470185 A JP4470185 A JP 4470185A JP S61205614 A JPS61205614 A JP S61205614A
Authority
JP
Japan
Prior art keywords
fluidized bed
silicon tetrachloride
chlorine
piping
hexachlorodisilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4470185A
Other languages
Japanese (ja)
Other versions
JPH0688773B2 (en
Inventor
Atsuhiko Hiai
日合 淳彦
Kazuo Wakimura
脇村 和生
Tadaharu Use
羽勢 忠晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4470185A priority Critical patent/JPH0688773B2/en
Publication of JPS61205614A publication Critical patent/JPS61205614A/en
Publication of JPH0688773B2 publication Critical patent/JPH0688773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:In producing hexachlorodisilane by lowering chlorosilane with chlorine in a fluidized bed, to prevent clogging in a device and to raise yield, by feeding separately chlorine and silicon tetrachloride as a fluidizing gas at a specific temperature reaction and using inert particles as a fluidizing medium. CONSTITUTION:Silicon tetrachloride is fed from the piping 1 to the evaporator 4. Silicon tetrachloride vapor is introduced from the piping 5 through a distribution plate at the lower part of the fluidized bed 6. The fluidized bed 6 is filled with inert particles (e.g., alumina passing 60 meshes) as a fluidizing medium. A chloropolysilane (SinCl2n+2, n>=3) and chlorine of raw materials are fed from the piping 2, and the piping 3, respectively, through the lower side of the fluidized bed to the fluidized bed. Silicon tetrachloride used as a fluidizing gas is not premixed with chlorine and not fed to the fluidized bed, but they are separately fed to the fluidized bed, so clogging of a distribution plate of the fluidizing gas is prevented. Yield is raised by controlling the reaction temperature in the fluidized bed at 250-450 deg.C.

Description

【発明の詳細な説明】 技術分野 この発明は、ヘキサクロロジシランの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field This invention relates to a method for producing hexachlorodisilane.

更に詳しくはクロロポリ7ラン(5inC’2n+2 
+n≧3)を塩素化分解し低級化してヘキサクロロジシ
ランを得る方法に関するものである。
For more details, please refer to Chloropoly7ran (5inC'2n+2
+n≧3) to obtain hexachlorodisilane by chlorination decomposition and lowering.

従来の技術 近年、エレクトロニクス工業の発展に伴い、多結晶シリ
コンあるいはアモルファスシリコン等の半導体用シリコ
ンの需要が急激に増大している。
BACKGROUND OF THE INVENTION In recent years, with the development of the electronics industry, the demand for silicon for semiconductors such as polycrystalline silicon or amorphous silicon has increased rapidly.

これら半導体用シリコンの製造原料には、主にトリクロ
ロシラン、四塩化ケイ素、モノシランが用いられている
。一方高級塩素化ケイ素の利用も開発され、例えば5i
nCI2n+2 (nは2以上の数)の熱分解によるア
モルファスシリコンまたは多結晶シリコンの製造(ベル
ギー特許第889523号公報)、更にはへキサクロロ
ジシランの還元によるジシランの製造(ジャーナルオブ
ザケミカルフィジノクス(J、Chem、Phys、)
vol、22 、P939(1954))、(ジャーナ
ルオブインオーガニノクアンドニエクVアケミストリ−
(J 、Inorg 、Nuc l 。
Trichlorosilane, silicon tetrachloride, and monosilane are mainly used as raw materials for manufacturing silicon for semiconductors. On the other hand, the use of higher chlorinated silicon has also been developed, such as 5i
Production of amorphous silicon or polycrystalline silicon by thermal decomposition of nCI2n+2 (n is a number of 2 or more) (Belgium Patent No. 889523), and production of disilane by reduction of hexachlorodisilane (Journal of the Chemical Physinox (J ,Chem,Phys,)
Vol. 22, P939 (1954)), (Journal of Inorganic Chemistry)
(J, Inorg, Nucl.

Chem、)vol、25 、P2O3(1963))
等が報告されている。
Chem, ) vol, 25, P2O3 (1963))
etc. have been reported.

しかしてジシランSi2H6は、化学気相分解(CVD
)、グロー放電分解(GD)によりアモルファスシリコ
ン膜を形成する場合、モノシランSiH4に比較して、
基板上へ形成される膜の堆積速度がはるかに大きく、か
つ、該膜は電気特性に優れている等の利点があり、太陽
電池用半導体の原料等として今後大幅な需要増加が期待
されてい゛る(特開昭56−83929号公報)。
However, disilane Si2H6 can be produced by chemical vapor decomposition (CVD).
), when forming an amorphous silicon film by glow discharge decomposition (GD), compared to monosilane SiH4,
The film formed on the substrate has advantages such as a much faster deposition rate and excellent electrical properties, and demand is expected to increase significantly in the future as a raw material for semiconductors for solar cells. (Japanese Unexamined Patent Publication No. 56-83929).

従来、ヘキサクロロジシランはケイ素またはケイ素合金
を塩素により塩素化することによって得られている。し
かしながらこの場合、相当量の四塩化ケイ素およびオク
タクロロトリシラン以上の高級塩化物が不可避的に副生
ずるため目的物たるヘキサクロロジシランの収率が低い
という問題点があった。また、この高級塩化物は、その
ままアルカリ水等で処理し廃棄することも可能であるが
Conventionally, hexachlorodisilane is obtained by chlorinating silicon or silicon alloys with chlorine. However, in this case, a considerable amount of silicon tetrachloride and higher chlorides higher than octachlorotrisilane are inevitably produced as by-products, so there is a problem that the yield of hexachlorodisilane, which is the target product, is low. Further, it is also possible to treat this higher chloride with alkaline water or the like and dispose of it as it is.

その場合には廃棄処理設備を設けるため製造コストが上
昇するという欠点があった。
In that case, there was a drawback that manufacturing costs increased due to the provision of waste treatment equipment.

さらに、オクタクロロトリシラン以上の高級塩化物は、
容易にシリコオキザリンク系と推定される副生物固体を
生成するが、該固体は極めて加熱ないし衝撃に対し敏感
な物質であるため、僅かの衝撃等を加えただけで激しく
発火燃焼する非常に危険かつ厄介な物質なので安全上大
きな問題をはらんでいる。
Furthermore, higher chlorides higher than octachlorotrisilane,
A by-product solid, which is easily presumed to be silicooxalink, is produced, but since this solid is extremely sensitive to heat or impact, it is a very dangerous substance that will ignite and burn violently even with the slightest impact. Since it is a dangerous and troublesome substance, it poses a major safety problem.

発明が解決しようとする問題点 金属硅素合金又は硅素を塩素化して、ヘキサクロロシフ
ランを得るに当り、副生ずるクロロポリ7ラン(5ln
c12n4−2 n≧3)を塩素化分解する際に、装置
内の閉塞トラブルを解消し、高操業を維持すること及び
高収率でヘキサクロロシフランを得ることは難しかった
Problems to be Solved by the Invention When a metal silicon alloy or silicon is chlorinated to obtain hexachlorosifuran, chloropoly7ran (5ln) is produced as a by-product.
When chlorinating and decomposing c12n4-2 n≧3), it was difficult to eliminate clogging troubles within the apparatus, maintain high operation rate, and obtain hexachlorosifuran in high yield.

発明の開示 本発明者は、前記問題点を解決するため鋭意研究を行い
1本発明を完成するに至ったものである。
DISCLOSURE OF THE INVENTION The present inventor has conducted extensive research to solve the above-mentioned problems and has completed the present invention.

すなわち、本発明のへキサクロロジシランの製造方法は
、クロロポリシラン(”nc12n+2n≧3)を流動
層内で塩素により低級化しヘキサクロロジシランを製造
するに当り反応温度250〜450℃の温度条件下で不
活性粒子を流動媒体に利用し、四塩化硅素蒸気を流動ガ
スに使用し塩素を流動ガスたる四塩化硅素蒸気とは別に
単独に流動層に導入して塩素化することを特徴とするヘ
キサクロロジシランの製造方法である。
That is, the method for producing hexachlorodisilane of the present invention involves lowering chloropolysilane ("nc12n+2n≧3) with chlorine in a fluidized bed to produce hexachlorodisilane under reaction temperature conditions of 250 to 450°C. A method for producing hexachlorodisilane which is characterized in that active particles are used as a fluidizing medium, silicon tetrachloride vapor is used as a fluidizing gas, and chlorine is introduced into the fluidized bed separately from the silicon tetrachloride vapor as the fluidizing gas for chlorination. This is the manufacturing method.

図面の説明 本発明を図面により説明する。Drawing description The present invention will be explained with reference to the drawings.

第1図は、本発明のへキサクロロジシランの製造方法の
1例を示すものである。
FIG. 1 shows one example of the method for producing hexachlorodisilane of the present invention.

四塩化硅素は配管のより導入され、蒸発器■に供給され
る。ここで四塩化硅素は全1蒸発させられ。
Silicon tetrachloride is introduced through the piping and is supplied to the evaporator (2). Here, all silicon tetrachloride is evaporated.

蒸気となる。四塩化硅素蒸気は配管■より流動層■の下
部より分散板を通して導入される。
It becomes steam. Silicon tetrachloride vapor is introduced from the lower part of the fluidized bed (2) through the pipe (2) through a dispersion plate.

流動層■は60メツシーパスのアルミナが充填されてお
り、伝熱ヒーターによって例えば350℃に制御されて
いる。
The fluidized bed (2) is filled with 60 mesh alumina and is controlled at, for example, 350° C. by a heat transfer heater.

原料のクロロポリシラン(5inc12n+2 、 n
 > 3 )と塩素はそれぞれ別々に配管■、■により
流動層の側面下部より層内導入される。
Raw material chloropolysilane (5 inc12n+2, n
> 3) and chlorine are introduced into the bed from the lower side of the fluidized bed via piping (■) and (■), respectively.

流動層内で低級化された反応ガスは配管のより層外に排
出する。
The lowered reaction gas within the fluidized bed is discharged to the outside of the layer through the piping.

本発明に使用するクロロポリシランとしては、オクタク
ロロトリシラン(S+3C16) 、デカクロロテトラ
7ラン(5i4C11o)、ドデカクロロペンタシラン
(5isChz)、テトラデカクロロへキサシラン(5
i6C114)等がありこれらは単独でも混合物として
も使用できる。
Examples of the chloropolysilane used in the present invention include octachlorotrisilane (S+3C16), decachlorotetra-7rane (5i4C11o), dodecachloropentasilane (5isChz), and tetradecachlorohexasilane (5i4C11o).
i6C114), etc., and these can be used alone or as a mixture.

本発明において反応温度が250℃未満では、クロロポ
リシラン(sin”2n+2 n > 3 )の分解率
が低く生産効率が悪く、450℃を越えると分解率は高
いが目的とするヘキサクロロジシランの選択率が悪くな
る。又流動ガスに使用する四塩化硅素と塩素を流動層内
に導入する際、先に混合して導入すると、四塩化硅素が
分解し、流動層の流動ガス分散板を閉塞する現象が生じ
るが、別々に流動層に導入することによって、閉塞のト
ラブルを回避出来る。さらにアルミナのごとき不活性粒
子を流動媒体として使用することによって、クロロポリ
7ラン(S r ICI 2n−) 2/ n” 3)
が釜残液テアッても、反応器を閉塞させずに運転が可能
である。
In the present invention, if the reaction temperature is less than 250°C, the decomposition rate of chloropolysilane (sin''2n+2n>3) is low and the production efficiency is poor, and if it exceeds 450°C, the decomposition rate is high but the selectivity of the target hexachlorodisilane is low. In addition, when silicon tetrachloride and chlorine used as fluidized gas are introduced into the fluidized bed, if they are mixed first, the silicon tetrachloride decomposes and blocks the fluidized gas distribution plate of the fluidized bed. However, by introducing them separately into the fluidized bed, the trouble of clogging can be avoided.Furthermore, by using inert particles such as alumina as the fluidizing medium, chloropoly7ran (S r ICI 2n-) 2/ n" 3)
The reactor can be operated without clogging even if the residual liquid in the reactor is leaked.

効果 本発明の方法を実施することによって用途もなく取扱い
が困難なりロロボリシランを原料にして有用なヘキサク
ロロジシランを製造することが可能となり工業的に極め
て価値がある。
Effects By carrying out the method of the present invention, it becomes possible to produce useful hexachlorodisilane from roloborisilane, which has no use and is difficult to handle, as a raw material, which is extremely valuable industrially.

実施例−1 直径40朋高さ500mHの流動層に100 mesh
〜250 meshのアルミナ150 CCを充填し、
毎時12、Okgの四塩化硅素を蒸発器を通し350℃
に予熱し、流動層下部に導入する。一方塩素は、流動層
の側面より内径8龍の配管を通し毎時100Nl供給す
る。更に流動層側面にもうけた別々の内径8fflLの
配管より毎時3.0kgのオクタクロロトリシランを供
給した流動層内の反応温度は350℃に保てるよう流動
層側面より電熱ヒーターで加熱した。運転が一定常状態
になったと思われる4時間後1反応器出ロガスを凝縮器
で凝縮したところ毎時12.7kgの四塩化硅素、1.
1時のへキサクロロシフラン、1.4kl?のオクタク
ロロトリ7ランが得られた。
Example-1 100 meshes in a fluidized bed with a diameter of 40 mm and a height of 500 mH
Filled with ~250 mesh alumina 150 CC,
12 kg of silicon tetrachloride is passed through an evaporator at 350°C per hour.
Preheat to 100% and introduce into the lower part of the fluidized bed. On the other hand, 100 Nl of chlorine was supplied per hour from the side of the fluidized bed through a pipe with an inner diameter of 8 mm. Further, 3.0 kg of octachlorotrisilane was supplied per hour through separate piping with an inner diameter of 8 fflL provided on the side of the fluidized bed, and the reaction temperature in the fluidized bed was heated using an electric heater from the side of the fluidized bed so as to maintain the reaction temperature at 350°C. Four hours after the operation was thought to have reached a steady state, the log gas from one reactor was condensed in a condenser, and 12.7 kg of silicon tetrachloride/hour was found.
1 hour hexachlorosifurane, 1.4kl? of 7 octachlorotrines were obtained.

実施例−2 実施例−1と全く同様な条件でオクタクロロトリシラン
のかわりにオクタクロロトリシラ/63チ、デカクロロ
テトラシラン21%その他高次のクロロポリシラ716
チの混合クロロポリシランを毎時3.0kg流動層に供
給し、流動層出口ガスを凝縮したところ毎時12.9k
gの四塩化硅素、0.8kgヘキテクaaジンラン1.
3kl/のオクタクロロトリシラン、o、1kgその他
クロロポリシランが得られた。
Example-2 Under exactly the same conditions as in Example-1, octachlorotrisilane/63% and decachlorotetrasilane 21% and other higher-order chloropolysilane 716 were used instead of octachlorotrisilane.
When 3.0 kg of the mixed chloropolysilane of
g of silicon tetrachloride, 0.8 kg of Hekitek aa Jinran 1.
3 kl/o of octachlorotrisilane and 1 kg of other chloropolysilane were obtained.

比較例−1 実施例−1の流動層に蒸発器を出た四塩化硅素と塩素を
混合し、350’Cに温度を保ち1反応器に導入したと
ころ、内径1朋個数16個の多孔板が3時間後閉塞し操
作を停止せざるを得なくなった。
Comparative Example-1 When silicon tetrachloride and chlorine from the evaporator were mixed in the fluidized bed of Example-1 and introduced into one reactor while maintaining the temperature at 350'C, a porous plate with an inner diameter of 1 mm and 16 pieces was formed. However, after 3 hours it became blocked and operations had to be stopped.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明のへキサクロロジアジンの製造方法の
1例を示すフローシートである。
FIG. 1 is a flow sheet showing one example of the method for producing hexachlorodiazine of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)クロロポリシラン(Si_nCl_2_n_+_
2、n≧3)を流動層内で塩素により低級化しヘキサク
ロロジシランを製造するに当り、反応温度250〜45
0℃の温度条件下で、不活性粒子を流動媒体に利用し、
四塩化硅素蒸気を流動ガスに使用し、塩素を流動ガスた
る四塩化硅素蒸気とは別に単独に流動層に導入して塩素
化することを特徴とするヘキサクロロジシランの製造方
法。
(1) Chloropolysilane (Si_nCl_2_n_+_
2, n≧3) in a fluidized bed with chlorine to produce hexachlorodisilane, the reaction temperature is 250-45
Utilizing inert particles as a fluidizing medium under a temperature condition of 0°C,
A method for producing hexachlorodisilane, characterized in that silicon tetrachloride vapor is used as a fluidizing gas, and chlorine is introduced into the fluidized bed separately from the silicon tetrachloride vapor as the fluidizing gas for chlorination.
JP4470185A 1985-03-08 1985-03-08 Method for producing hexachlorodisilane Expired - Lifetime JPH0688773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4470185A JPH0688773B2 (en) 1985-03-08 1985-03-08 Method for producing hexachlorodisilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4470185A JPH0688773B2 (en) 1985-03-08 1985-03-08 Method for producing hexachlorodisilane

Publications (2)

Publication Number Publication Date
JPS61205614A true JPS61205614A (en) 1986-09-11
JPH0688773B2 JPH0688773B2 (en) 1994-11-09

Family

ID=12698720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4470185A Expired - Lifetime JPH0688773B2 (en) 1985-03-08 1985-03-08 Method for producing hexachlorodisilane

Country Status (1)

Country Link
JP (1) JPH0688773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512838A (en) * 2009-12-02 2013-04-18 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Method for producing hexachlorodisilane
JP2013512843A (en) * 2009-12-04 2013-04-18 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Kinetically stable chlorinated polysilane, its production and use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512838A (en) * 2009-12-02 2013-04-18 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Method for producing hexachlorodisilane
US9278865B2 (en) 2009-12-02 2016-03-08 Spawnt Private S.À.R.L. Method for producing hexachlorodisilane
JP2013512843A (en) * 2009-12-04 2013-04-18 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Kinetically stable chlorinated polysilane, its production and use
US9040009B2 (en) 2009-12-04 2015-05-26 Spawnt Private S.à.r.1. Kinetically stable chlorinated polysilanes and production thereof
US9139702B2 (en) 2009-12-04 2015-09-22 Spawnt Private S.A.R.L. Method for producing halogenated polysilanes
US9458294B2 (en) 2009-12-04 2016-10-04 Spawnt Private S.À.R.L. Method for removing impurities from silicon

Also Published As

Publication number Publication date
JPH0688773B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP3518869B2 (en) Preparation method of polysilicon using exothermic reaction
US6827786B2 (en) Machine for production of granular silicon
JPH06171941A (en) Oxidation process for titanium tetrachloride
EP3053882B1 (en) Method for producing trichlorosilane
US7056484B2 (en) Method for producing trichlorosilane
JP5946835B2 (en) Fabrication of polycrystalline silicon in a substantially closed loop method and system
KR101392944B1 (en) Manufacturing method for trichlorosilane from silicon tetrachloride and Trickle bed reactor for the method
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
US9394180B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
US8449848B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
JP2890253B2 (en) Method for producing trichlorosilane
JPS61205614A (en) Production of hexachlorodisilane
US8528830B2 (en) Methods and system for cooling a reaction effluent gas
KR101580171B1 (en) Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same
JPH06127924A (en) Production of polycrystalline silicon
KR20110051624A (en) Method for producing high purity trichlorosilane for poly-silicon using chlorine gas or hydrogen chloride
Kojima et al. Kinetic study of monosilane pyrolysis for polycrystalline silicon production in a fluidized bed
JPH0680412A (en) Production of polycrystalline silicon
KR20160144541A (en) Method for producing trichlorosilane
JPH06127918A (en) Production of polycrystalline silicon
JPS59162121A (en) Production of high-purity polychlorosilane
JPS63129011A (en) Production of high-purity silicon
JPS6369707A (en) Production of silicon
JPH06127921A (en) Production of granular polycrystalline silicon
JPS63210013A (en) Production of gaseous silane