JPS61205331A - Air pressure control mechanism of variable turbocharger - Google Patents

Air pressure control mechanism of variable turbocharger

Info

Publication number
JPS61205331A
JPS61205331A JP60044602A JP4460285A JPS61205331A JP S61205331 A JPS61205331 A JP S61205331A JP 60044602 A JP60044602 A JP 60044602A JP 4460285 A JP4460285 A JP 4460285A JP S61205331 A JPS61205331 A JP S61205331A
Authority
JP
Japan
Prior art keywords
exhaust
turbine
flow
gas
scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044602A
Other languages
Japanese (ja)
Inventor
Isamu Nemoto
勇 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60044602A priority Critical patent/JPS61205331A/en
Publication of JPS61205331A publication Critical patent/JPS61205331A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To enable a flow of exhaust gas to be automatically controlled, by changing a Mach number of gas, which passes through Venturi tubes connected with a scroll inlet part of a divided type full circumferential inflow turbine in a turbocharger, in accordance with a change of a flow of exhaust and variably generating the total static pressure ratio. CONSTITUTION:When the captioned mechanism is applied to a four-cylinder engine, the engine, considering its firing order, arranges exhaust manifolds of two front and rear cylinders and two inner side cylinders to respectively join, connecting each exhaust duct D1, D2 with an inlet of an exhaust turbine T. This exhaust turbine T, being formed in a divided type full circumferential inflow turbine, provides a gas automatic control mechanism to be interposed between two flow paths S1, S2 of a turbine scroll S. Said control mechanism, communicating with each flow path S1, S2, is constituted by providing Venturi tubes V1, V2 while a communication hole H communicating with the both tubes V1, V2 in the narrowest part wall. In this way, the air pressure is automatically controlled by changing the total static pressure ratio in accordance with a Mach number of exhaust gas passing through the Venturi tubes V1, V2 and changing by a flow of exhaust.

Description

【発明の詳細な説明】 本発明は、ターボチャージャのタ−ビン容量を可変にす
る為の空圧制御機構に関する。   ゛タービンスクロ
ールまたはノズルベーン固定のターボチャージャは、作
動領域が狭(off−designの効率が低い。従っ
てエンジンの高速にマツチングさせると低速性能と部分
負荷性能が悪くなり、ウェイストゲートバルブの採用に
よシ低速にマツチングさせると、高速域に於いて排気エ
ネルギの損失を生じ燃費が悪化する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pneumatic control mechanism for varying the turbine capacity of a turbocharger. ``Turbine scroll or fixed nozzle vane turbochargers have a narrow operating range (off-design efficiency is low. Therefore, when matched to the high speed of the engine, low speed performance and part load performance will deteriorate, and the adoption of a wastegate valve will result in poor off-design efficiency. Matching at low speeds causes loss of exhaust energy at high speeds, resulting in poor fuel efficiency.

この点を解決する方法として、従来から可変ターボチャ
ージャが種々提案されている。しかし従来提案されてい
るものは、可変機構に於いて機械的な可動部分を有し、
これを動かす為の駆動系も必要である為、構造複雑にし
て高価であった。従って可変ターボチャージャは、エン
ジン高速回転域での燃費が改善されるにもかかわらず普
及するに至っ壬いない。
Various variable turbochargers have been proposed to solve this problem. However, the conventionally proposed ones have mechanically movable parts in the variable mechanism,
Since a drive system is also required to move this, the structure is complicated and expensive. Therefore, although variable turbochargers improve fuel efficiency in high engine speed ranges, they have not yet become widespread.

本発明は、上記の点に鑑みてなされたものであって、可
変機構に於い【機械的な可動部分をもたず、流体の挙動
をガスの流れ自体によって自動的に制御する、構造簡単
にして廉価な可変ターボチャージャを世に提供しようと
するものである。
The present invention has been made in view of the above points, and has a simple structure in which the variable mechanism has no mechanically moving parts and automatically controls the behavior of the fluid by the gas flow itself. The aim is to provide the world with an inexpensive variable turbocharger.

本発明は、タービン翼車の軸の長手方向にタービンスク
ロールの流路を分割したターボチャージャのスクロール
入口部に、ガス流量を自動制御する機構を設けたもので
ある。
The present invention provides a mechanism for automatically controlling the gas flow rate at the scroll inlet portion of a turbocharger in which the flow path of the turbine scroll is divided in the longitudinal direction of the axis of the turbine impeller.

該可変機構は、複数のスクロール流路に、それぞれベン
チ−り管を接続し、複数のベンチエリ管ののど部に、そ
れ等を流通させる連通穴を設けたものであり、機械的に
動く部分はない。個々のタービンスクロール流路に導入
されるガス流量の制御調整は、流体の全圧と静圧の比が
マツハ数によって著しく変化する現象を利用しており、
ガス流量の増減により実質的にタービンスクロールのス
ロート部断面積を変化させる事を特徴とする。
The variable mechanism has a plurality of scroll passages each connected to a bench pipe, and a throat of the plurality of bench pipes is provided with a communication hole for allowing them to flow, and the mechanically moving parts are do not have. The control adjustment of the gas flow rate introduced into each turbine scroll passage utilizes the phenomenon that the ratio between the total fluid pressure and the static pressure changes significantly depending on the Matsuha number.
It is characterized by substantially changing the cross-sectional area of the throat portion of the turbine scroll by increasing or decreasing the gas flow rate.

第1図に本発明の一実施例を示す。図に於いてEはエン
ジン、M+ 、 Meは排気マニホールド、 DI、D
、は排気ダクトである。図示の4気筒エンジンの例では
点火順序を考慮して前後2気筒と内側2気筒の排気マニ
ホールドを夫々結集させ、2つの排気ダクトD11D−
よシ別々に排気タービンTに排気ガスを供給し得るよう
になっている。
FIG. 1 shows an embodiment of the present invention. In the diagram, E is the engine, M+, Me is the exhaust manifold, DI, D
, is the exhaust duct. In the illustrated example of a four-cylinder engine, the exhaust manifolds of the two front and rear cylinders and the two inner cylinders are brought together in consideration of the ignition order, and two exhaust ducts D11D-
Exhaust gas can be supplied to the exhaust turbine T separately.

該排気タービンTは分割型全周流入タービンとtill
’れるもので、図示する如くタービンスクロールSの流
路は、タービン翼車の軸長手方向に、Stと88に分割
されている。従って前記排気ダクトD1よシ供給される
排気ガスはスクロールSの流路S、から、また排気ダク
トD、より供給される排気ガスは流路S、から、それぞ
れ排気タービンTに噴出する。Cは排気タービンTと同
軸のコンプレッサである。
The exhaust turbine T is a split type full-circle inflow turbine and till
As shown in the figure, the flow path of the turbine scroll S is divided into St and 88 in the axial longitudinal direction of the turbine wheel. Therefore, the exhaust gas supplied from the exhaust duct D1 is ejected from the passage S of the scroll S, and the exhaust gas supplied from the exhaust duct D is ejected from the passage S to the exhaust turbine T. C is a compressor coaxial with the exhaust turbine T.

本発明は、以上の如き動圧過給方式ターボチャージャに
於いて、2つの排気ダク) D、 、D、と、タービン
スクロールSの2つの流路S、、S、の間k、ガス流量
自動制御機構を介在させたものである。
The present invention provides a dynamic pressure supercharging turbocharger as described above, in which the gas flow rate is automatically controlled between the two exhaust ducts D, D, and the two flow paths S, S, of the turbine scroll S. A control mechanism is involved.

その構造は、流路の断面積を絞った2本のベンチエリ管
V、 、V、を並列に並べ、ベンチエリ管ののど部を長
めにして、最狭部壁にvI%V、を流通させる連通穴H
を穿ったものである。第1図に於いて円形内に引き出し
た部分は、ベンチュリ管v8のA−A断面であシ、のど
部と連通穴Hの配置を示しである。
Its structure consists of two Benchelli tubes V, , V, each with a narrowed cross-sectional area, arranged in parallel, the throat of the Benchelli tube being made longer, and a communication system that allows vI%V to flow through the narrowest wall. Hole H
It is worn with. In FIG. 1, the circular part drawn out is the A-A cross section of the Venturi tube v8, and shows the arrangement of the throat and the communication hole H.

では次に、本発明がどのようにして自動的に空圧制御を
行い得るのか、その原理を説明する。
Next, the principle of how the present invention can automatically control air pressure will be explained.

第1図に示す実施例の場合、タービン容量は2段階に変
化する。
In the embodiment shown in FIG. 1, the turbine capacity changes in two stages.

エンジン低速回転域に於いて、一方の排気ダクトから供
給される排気ガスが片方のベンチュリ管を流れる際、も
し、連通穴Hから相隣る流路にほとんど漏れる事なく、
通過する事ができるとすると、1気筒毎の排気ガスは、
大部分、タービンスクロールSの片方の流路から排気タ
ービンTVc噴出する事になる。
When the exhaust gas supplied from one exhaust duct flows through one venturi pipe in the low engine speed range, if there is almost no leakage from the communication hole H into the adjacent flow path,
Assuming that it can pass through, the exhaust gas from each cylinder is
Most of the exhaust gas is ejected from the exhaust turbine TVc from one of the flow paths of the turbine scroll S.

エンジン高速回転域に於いて、一方の排気ダクトから供
給される排気ガスが、もし、連通穴Hで相隣るベンチュ
リ管にも分配されるとすると、1気筒毎の排気ガスは、
タービンスクロールSの両方の流路S、 、S、から排
気タービンTK噴出する事になシ、実質的にはタービン
スクロールのスロート部断面積は2倍になる。
In the engine high speed range, if the exhaust gas supplied from one exhaust duct is distributed to the adjacent venturi pipe through the communication hole H, the exhaust gas for each cylinder will be:
Since the exhaust turbine TK is ejected from both flow paths S, , S, of the turbine scroll S, the cross-sectional area of the throat portion of the turbine scroll is substantially doubled.

このように排気流量の増減により、連通穴Hを流通する
ガスの流量を制御する事ができれば、タービン容量を2
段階に変化させる事が可能となる。
If the flow rate of gas flowing through the communication hole H can be controlled by increasing or decreasing the exhaust flow rate in this way, the turbine capacity can be increased by 2.
It is possible to change it in stages.

この連通穴Hを流通するガスの流量を制御する要素機器
は、形状が固定されたタービンスクロールS自体と、ペ
ンテエリ管V3. VPである。
The element devices that control the flow rate of gas flowing through this communication hole H are the turbine scroll S itself, which has a fixed shape, and the pentaeri tube V3. It is VP.

排気ガスの流速は、排気弁が開らいた直後は音速である
。つまプ排気ガス流量の大部分がシリンダから流出する
ブローダウン時のガス流速はマツハ1である。本発明に
於いてベンチュリ管を用いた理由は、ガス流速のマツノ
・数を上げる事にあシ、流体の全圧と静圧の比がマツハ
数によシ著しく変化する自然現象を利用する為である。
The flow velocity of the exhaust gas is the sonic velocity immediately after the exhaust valve opens. The gas flow rate during blowdown, when most of the exhaust gas flow flows out of the cylinder, is Matsuha 1. The reason for using a Venturi tube in the present invention is to increase the gas flow rate and to take advantage of the natural phenomenon that the ratio of the total pressure of the fluid to the static pressure changes significantly depending on the Matsusa number. It is.

流体の全圧Pと静圧Pの比は、ガス流速をマツハ数Mで
表わすと、次式で得られる。
The ratio of the total pressure P of the fluid to the static pressure P is obtained by the following equation when the gas flow velocity is expressed by the Matsush number M.

今、エンジン低速回転域(ガソリンエンジンの場合は高
速低負荷域も含む)に於いて、排気ガスがタービンスク
ロールSをスムーズに流れ、ベンチエリ管のthro 
tting効果によりのど部に於けるガスノ流速がマツ
ハ1.8に達したと仮定すると、全圧Pと静圧Pの比は
、比熱比を1.3とすればPO93 一部 (1+ −X 1.8” )    = 5.5
6P         2 従って上記の仮定では、ベンチュリ管をそのまま通過す
る排気ガスの流量と、連通穴Hから相隣るベンチ、 I
J管に漏れるガス流量の比は、圧力の方向から、5.5
6:1 になると考える事ができる。
Now, in the engine's low speed rotation range (including the high speed and low load range in the case of gasoline engines), exhaust gas flows smoothly through the turbine scroll S,
Assuming that the gas flow velocity at the throat reaches Matsuha 1.8 due to the tting effect, the ratio of total pressure P to static pressure P is, assuming the specific heat ratio to be 1.3, PO93 part (1+ -X 1 .8”) = 5.5
6P 2 Therefore, in the above assumption, the flow rate of exhaust gas that passes through the venturi pipe as it is, and the flow rate of the adjacent bench from the communication hole H, I
The ratio of gas flow rate leaking into the J pipe is 5.5 from the pressure direction.
It can be considered that the ratio is 6:1.

以上からブローダウン時に於いてガス流量の大部分はベ
ンチーリ管を直進するが、ガス流量の内6.56分の1
、約15%が無駄になる。
From the above, during blowdown, most of the gas flow goes straight through the Ventili tube, but 1/6.56 of the gas flow
, about 15% is wasted.

排気行糧後半に於いて、排気ガスの流速が低下すると、
漏れの比率は大きくなるのではあるが、排気の大部分が
シリンダから流出するブローダウン時での漏れ損失を、
評価しておく必要があろう。
In the latter half of the exhaust process, when the flow rate of exhaust gas decreases,
Although the leakage ratio increases, the leakage loss during blowdown, when most of the exhaust gas flows out of the cylinder, can be reduced.
It will need to be evaluated.

タービンスクロールの流路が1個である現用の静圧過給
ターボチャージャに於ける動圧エネルギ損失と本発明に
於ける漏れ損失を比較検討する事は、ひとつの目安にな
ると考える。
We believe that comparing and examining the dynamic pressure energy loss in the current hydrostatic supercharging turbocharger, in which the turbine scroll has one flow path, and the leakage loss in the present invention will serve as a guideline.

ブローダウン時の排気の流速は前述の如くマツハ1であ
る。動圧ΔPと静圧Pの比をマツハ数で表示すると に=1.3とすれば 従って動圧ΔPは全圧Pの39%に達し、低速ガスパル
スを利用していない従来の静圧過給ターボチャージャの
動圧損失は、ブローダウン時に於いては本発明より大き
い事が判る。
The flow rate of the exhaust gas during blowdown is Matsuha 1 as described above. If the ratio of dynamic pressure ΔP and static pressure P is expressed in Matsuh number = 1.3, then dynamic pressure ΔP reaches 39% of the total pressure P, which is compared to conventional static pressure supercharging that does not use low-speed gas pulses. It can be seen that the dynamic pressure loss of the turbocharger is larger than that of the present invention during blowdown.

尚、ベンチュリ管の絞りをよシ強めて、ガス流速をマツ
ハ2とした場合の全圧静圧比は7.65とな夛、マツハ
2.5とした場合の圧力比は17.53となって漏れ損
失が減少する事は云うまでもない。
In addition, when the venturi tube's restriction is strengthened and the gas flow velocity is set to Matsuha 2, the total pressure static pressure ratio is 7.65, and when the Matsuha is set to 2.5, the pressure ratio is 17.53. Needless to say, leakage loss is reduced.

次にエンジン高速回転域に於いては、排気ガスの流れは
定常状態に近く、大流量となる。
Next, in a high engine speed range, the flow of exhaust gas is close to a steady state and has a large flow rate.

タービンスクロールSの形状は固定であるので、小流量
時に設計点を置いてスロート部断面積が定められている
と、スクロール入口部の圧力が高まる。ツマ夛タービン
スクロールSはガス流量を感知し、圧力上昇と云う形で
ベンチュリ管に信号を送る。スクロール入口部の圧力が
高まるとベンチュリ管を流れるガスは非圧縮性流体とみ
なす事ができなくなシ、ベンチュリ管のthrotti
ng効果は喪失する。今、ガス流速がマツハ0.51C
なったと仮定すると、全圧Pと静圧Pの比は次の如く尾
変化する。
Since the shape of the turbine scroll S is fixed, if the throat cross-sectional area is determined by setting a design point at a small flow rate, the pressure at the scroll inlet increases. The turbine scroll S senses the gas flow rate and sends a signal to the venturi tube in the form of a pressure increase. When the pressure at the scroll inlet increases, the gas flowing through the Venturi tube can no longer be considered an incompressible fluid, and the throttle of the Venturi tube increases.
ng effect is lost. Now, the gas flow rate is Matsuha 0.51C
Assuming that, the ratio of total pressure P to static pressure P changes as follows.

上記の仮定では、排気ガスは連通穴Hでほぼ2分され、
タービンスクロールSの2つの流路81゜S、から同時
に排気タービンTK噴出する事が判る。
In the above assumption, the exhaust gas is roughly divided into two parts by the communication hole H,
It can be seen that the exhaust turbine TK is ejected from the two flow paths 81°S of the turbine scroll S at the same time.

つまりタービンスクロールSのスロート部断面積は実質
的には2倍になる。
In other words, the cross-sectional area of the throat portion of the turbine scroll S is substantially doubled.

大流量時に於ける排気ガスの流速をマツIO,Sとした
のはひとつの仮定に過ぎないので、全圧Pと静圧Pの比
が流体のマツハ数によりどのように変化するかを第2図
に示す。グラフはに=1.3で計算した。図示する如く
、J/>1とAf<1ではP/Pの変化率が著しく異る
のである。
Since it is only one assumption that the flow velocity of exhaust gas at a large flow rate is Matsuha IO,S, how the ratio of total pressure P to static pressure P changes depending on the Matsuha number of the fluid is a second assumption. As shown in the figure. The graph was calculated using 1.3. As shown in the figure, the rate of change in P/P is significantly different between J/>1 and Af<1.

以上から本発明は、排気流量の増減により、ペンチ為り
管を通るガスのマツハ数に変化を与え、マツハ数によっ
て全圧静圧比が変化する自然現象を利用して空圧制御を
行うので、機械的な可動部分をもた々い。よって構造簡
単にして廉価な可変ターボチャージャとなり、省エネル
ギに貢献できるのである。
From the above, the present invention performs pneumatic pressure control by utilizing the natural phenomenon that the Matsuha number of the gas passing through the pliers pipe changes by increasing or decreasing the exhaust flow rate, and the total pressure static pressure ratio changes depending on the Matsuha number. It has many mechanical moving parts. Therefore, the variable turbocharger has a simple structure and is inexpensive, contributing to energy saving.

尚、タービンスクロールを3分割した場合は、ベンチー
リ管も3本必要となシ、これ等3本を連通ずる連通穴を
のど部の壁に穿てばよい事は云うまでもない事である。
It goes without saying that if the turbine scroll is divided into three parts, three ventili tubes are not required, and a communication hole for communicating these three pipes can be bored in the throat wall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部縦断面概略図、第
2図はマツハ数と全圧静圧比のグラフである。 C:コンプレッサ、DI%D、:排気ダクト、E:エン
ジン、H:連通穴、Ml、 Me ”、排気マニホール
ド、S:タービンスクロール、S、、S、:Sの流路、
T:tlF気タービン V、 、 V、 :ベンチェリ
管。
FIG. 1 is a partial longitudinal cross-sectional schematic diagram showing an embodiment of the present invention, and FIG. 2 is a graph of the Matsuzha number and the total pressure static pressure ratio. C: Compressor, DI%D,: Exhaust duct, E: Engine, H: Communication hole, Ml, Me'', exhaust manifold, S: Turbine scroll, S, , S,: S flow path,
T: tlF air turbine V, , V, : Vencheri tube.

Claims (1)

【特許請求の範囲】[Claims] タービン翼車の軸長手方向にタービンスクロールの流路
を分割した分割型全周流入タービンのスクロール入口部
に、スクロールの流路と等しい数のベンチュリ管を接続
し、該ベンチュリ管ののど部を長めにして、最狭部壁に
相隣るベンチュリ管と連通する連通穴を穿ち、エンジン
作動状況によりベンチュリ管ののど部を通るガスのマッ
ハ数が変化し、マッハ数によってガスの全圧静圧比が変
わる自然現象を利用して、連通穴を流れるガスの流量を
制御調整する事によって、タービン容量を変化させる事
を特徴とする可変ターボチャージャの空圧制御機構。
The number of venturi tubes equal to the number of flow paths of the scrolls is connected to the scroll inlet of a split-type all-around inflow turbine in which the flow path of the turbine scroll is divided in the longitudinal direction of the turbine wheel axis, and the throat of the venturi tube is made longer. The Mach number of the gas passing through the throat of the Venturi pipe changes depending on the engine operating conditions, and the total pressure static pressure ratio of the gas changes depending on the Mach number. A variable turbocharger pneumatic control mechanism that uses changing natural phenomena to control and adjust the flow rate of gas flowing through a communication hole, thereby changing the turbine capacity.
JP60044602A 1985-03-08 1985-03-08 Air pressure control mechanism of variable turbocharger Pending JPS61205331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044602A JPS61205331A (en) 1985-03-08 1985-03-08 Air pressure control mechanism of variable turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044602A JPS61205331A (en) 1985-03-08 1985-03-08 Air pressure control mechanism of variable turbocharger

Publications (1)

Publication Number Publication Date
JPS61205331A true JPS61205331A (en) 1986-09-11

Family

ID=12695998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044602A Pending JPS61205331A (en) 1985-03-08 1985-03-08 Air pressure control mechanism of variable turbocharger

Country Status (1)

Country Link
JP (1) JPS61205331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150273B2 (en) 2004-08-19 2006-12-19 Perkins Engines Company Limited Exhaust manifold arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150273B2 (en) 2004-08-19 2006-12-19 Perkins Engines Company Limited Exhaust manifold arrangement

Similar Documents

Publication Publication Date Title
US4389845A (en) Turbine casing for turbochargers
US8281588B2 (en) Turbomachine system and turbine therefor
JP4625497B2 (en) Exhaust gas turbocharger for internal combustion engine and internal combustion engine equipped with the same
JP2557060B2 (en) Engine exhaust system
US7047739B2 (en) Exhaust-gas turbocharger for an internal combustion engine
US4367626A (en) Turbocharger systems
KR910010170B1 (en) Changable turbo charger device in internal combustion engine
US5533487A (en) Dynamic enhancement of EGR flow in an internal combustion engine
JP4965870B2 (en) Multi-cylinder engine
GB2062116A (en) Turbine Casing for Turbochargers
CN104024600A (en) Twin-scroll turbocharger
US4286430A (en) Gas turbine engine
JP2007231906A (en) Multi-cylinder engine
JPS5982526A (en) Supercharger for internal-combustion engine
US20080104956A1 (en) Turbocharger having inclined volutes
CN104334853B (en) Waste gas system for internal combustion engine
JPS63302134A (en) Exhaust gas turbine supercharger
JPS61205331A (en) Air pressure control mechanism of variable turbocharger
JPS591332B2 (en) Turbine compartment for turbocharger
JPH01190920A (en) Twin turbo type internal combustion engine
JPS59185822A (en) Over-charge type 4-cycle engine
WO2018073608A1 (en) Method of design of a turbine
US3748850A (en) Exhaust system for a diesel engine
JPH0223229A (en) Twin-type exhaust turbocharger
SU1296737A1 (en) Internal combustion engine