JPS6120490B2 - - Google Patents

Info

Publication number
JPS6120490B2
JPS6120490B2 JP9661178A JP9661178A JPS6120490B2 JP S6120490 B2 JPS6120490 B2 JP S6120490B2 JP 9661178 A JP9661178 A JP 9661178A JP 9661178 A JP9661178 A JP 9661178A JP S6120490 B2 JPS6120490 B2 JP S6120490B2
Authority
JP
Japan
Prior art keywords
glass
group
phase separation
sio
necessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9661178A
Other languages
Japanese (ja)
Other versions
JPS5527803A (en
Inventor
Kazuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP9661178A priority Critical patent/JPS5527803A/en
Publication of JPS5527803A publication Critical patent/JPS5527803A/en
Publication of JPS6120490B2 publication Critical patent/JPS6120490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 本発明は、管球類の製作に利用するガラス成形
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass molded body used for manufacturing tubes.

発光部を取り囲むガラスが石英ガラスのような
石英製管球類の気密封止部の構造には、普通、大
別して「金属箔シール方式」(例えば特えば特公
昭35−8445)と「ロツドシール方式」(例えば実
公昭36−22231)とが知られている。
The structure of the airtight sealing part of quartz tubes, where the glass surrounding the light emitting part is quartz glass, is generally divided into two types: the metal foil seal method (for example, the Special Publication Publication No. 35-8445) and the rod seal method. ” (for example, Jitsukō 36-22231) is known.

前者は、大電流使用の管球類を得るには、金属
箔の電気容量からくる制限があるだけで、管球類
の機械化生産に適しているので、小電流使用の管
球で多用されている。後者は、大電流使用の管球
類に利用されるシール方式であつて、必要上種々
の改良が加えられて現在も使用されているが、シ
ール近傍に必ず「段継ぎガラス部」が設けられて
いる。
The former method is suitable for mechanized production of tubes, as it is only limited by the capacitance of the metal foil in order to obtain tubes that use large currents, and is therefore often used for tubes that use small currents. There is. The latter is a sealing method used for tubes that use large currents, and is still in use today with various improvements made as necessary, but it always requires a "step joint glass section" near the seal. ing.

この「段継ぎガラス部」は殆ど「手加工」に頼
る作業部分が多く、品質のバラツキ、著しい生産
コストアツプの原因となり、ロツドシール方式を
採用する石英製管球類の最大の弱点とされてい
る。
This ``step-jointed glass section'' is mostly a work part that relies on ``hand-processing'', which causes variations in quality and a significant increase in production costs, and is considered the biggest weakness of quartz tubes that use the rod seal method.

また、この「段継ぎガラス部」に対応する部分
を形成するために、ガラス材料の成分組成が異る
混合粉末を複数種類用意し、この混合粉末を順次
圧縮用型に充填して熱膨張係数が順次異るガラス
成形体を形成することが知られている。しかし、
この方法も成分組成が異る混合粉末を複数種類用
意するのに手間を要し、生産性が悪いという問題
点がある。
In addition, in order to form the part corresponding to this "step joint glass part", we prepared multiple types of mixed powders with different glass material compositions, and sequentially filled the mixed powders into compression molds to increase the coefficient of thermal expansion. It is known that different glass molded bodies can be formed in sequence. but,
This method also has the problem of poor productivity because it takes time and effort to prepare multiple types of mixed powders with different component compositions.

そこで本発明は、従来の段継ぎガラス部に代つ
て利用できるようなガラス成形体を簡単に製造で
きる方法を提供することを目的とし、その特徴と
するところは、 Na2O−B2O3−SiO2、もしくはK2O−B2O3
SiO2、もしくはLi2O−B2O3−SiO2を主成分と
し、必要に応じて添加物としてAl2O3もしくは
CaO、もしくはBaO、もしくはMgOを加えた硼
硅酸ガラスをガラス素材として、 (イ) ガラス塊を粉砕してから分相処理するかもし
くは分相処理してから粉砕する第1の工程と、 (ロ) 酸処理によつて、分相の溶出量の程度の異な
つた複数のグループを作り、必要に応じて各グ
ループを洗滌乾燥して仮焼して収縮させ、再粉
砕する第2の工程と、 (ハ) 各グループを程度の異なつた順に、成形容器
に充填して、焼成する第3の工程と、 を含むことにある。
Therefore, an object of the present invention is to provide a method for easily producing a glass molded body that can be used in place of the conventional step-jointed glass part, and its characteristics are as follows: Na 2 O−B 2 O 3 −SiO 2 or K 2 O−B 2 O 3
The main component is SiO 2 or Li 2 O−B 2 O 3 −SiO 2 , and if necessary, Al 2 O 3 or
Using borosilicate glass to which CaO, BaO, or MgO is added as a glass material, (a) a first step of pulverizing the glass lump and then subjecting it to phase separation treatment, or pulverizing it after phase separation treatment; b) A second step in which multiple groups with different degrees of phase separation elution are created by acid treatment, each group is washed and dried as necessary, calcined to shrink, and re-pulverized. , (c) a third step of filling each group into a molded container in order of varying degree and firing.

以下、図面も参照しながら発明の詳細を説明す
る。
Hereinafter, details of the invention will be explained with reference to the drawings.

原料として、炭酸ナトリウム、硼酸、シリカ等
を、ガラス化した時の膨脹率が40×10-7(m/
m/℃)程度になるように秤量、粉砕、混合す
る。上記膨脹率の場合、ガラス組成としては、重
量%で、大体、酸化ナトリウム5%、酸化硼素32
%、シリカ63%で、これらのことは、昭和38年に
朝倉書店から出版された「ガラス工学ハンドブツ
ク」を参照すると詳しく知ることができる。
When sodium carbonate, boric acid, silica, etc. are vitrified as raw materials, the expansion coefficient is 40×10 -7 (m/
Weigh, crush, and mix to approximately 200 m/°C. In the case of the above expansion rate, the glass composition is approximately 5% sodium oxide and 32% boron oxide by weight.
% and 63% silica.You can learn more about these things by referring to the ``Glass Engineering Handbook'' published by Asakura Shoten in 1963.

混合された原料はルツボに入れて熔融する。熔
融時間はしこみ量にも依存するが、均一にするた
めには少なくとも3〜4時間は必要である。これ
をルツボから取り出し急冷してガラス化する。
The mixed raw materials are put into a crucible and melted. Although the melting time depends on the amount of infiltration, at least 3 to 4 hours are required to make it uniform. This is removed from the crucible and rapidly cooled to vitrify it.

このガラス化にあたつては、急冷に代えて分相
処理を兼ねさせて徐冷しても良いし、急冷後、
600〜650℃約1〜2時間の分相処理をしても良
い。いずれもこの段階では、ガラスは「ガラス
塊」となつているので、1mm以下の大きさに粉砕
する。これは、酸処理によつて、分相を溶出する
のに都合のよいようにするためであり、3規定塩
酸、もしくは5規定硫酸で容易に分相を溶出する
ことができる。
In this vitrification, instead of rapid cooling, slow cooling may also be carried out with phase separation treatment, or after rapid cooling,
Phase separation treatment may be performed at 600-650°C for about 1-2 hours. At this stage, the glass is in the form of glass lumps, so it is crushed to a size of 1 mm or less. This is to make it convenient to elute the separated phase by acid treatment, and the separated phase can be easily eluted with 3N hydrochloric acid or 5N sulfuric acid.

こゝで、分相を溶出するにあたつては、上記粉
砕分相処理の終了したガラス粉を5グループに分
けて、夫々酸処理時間を、第1グループは0(未
処理)、第2グループは6、第3グループは12、
第4グループは18、第5グループは24時間処理
し、分相溶出程度の異なるものを作る。未処理の
ものを含めて、5グループである。この5グルー
プのガラスは、夫々、大体、第1グループ(未処
理)…40×10-7、第2グループ…32×10-7、第3
グループ…25×10-7、第4グループ…17×10-7
第5グループ…8×10-7の膨脹率のものが得られ
る。
To elute the phase separation, the glass powder that has been subjected to the pulverized phase separation treatment is divided into five groups, and the acid treatment time for each group is set to 0 (untreated) for the first group and 0 (untreated) for the second group. Group 6, third group 12,
The fourth group was treated for 18 hours, and the fifth group was treated for 24 hours to create samples with different degrees of phase separation elution. There are 5 groups including untreated ones. These five groups of glasses are approximately 40×10 -7 in the first group (untreated), 32×10 -7 in the second group, and 32×10 -7 in the third group, respectively.
Group...25× 10-7 , 4th group...17× 10-7 ,
5th group...Those with an expansion rate of 8×10 -7 are obtained.

上記の5グループの内、未処理以外の4グルー
プに属するガラス粉は、分相溶出後に残る微細な
穴をもつた多孔質体となつており、この穴に酸液
などが残留しているので水洗処理、乾燥処理をす
る。
Among the five groups mentioned above, glass powder belonging to the four groups other than untreated is a porous material with fine holes that remain after phase separation and elution, and acid solution remains in these holes. Wash with water and dry.

多孔質体となつたガラス粉は、後にパイプ、容
器として成形しようとすると収縮現象が発生する
ので、必要に応じ、各グループ毎に仮焼結、再粉
砕などして、成形用素材として適したものとして
おくと良い。最大、体積にして20〜40%程度収縮
することもある。この仮焼結温度は1100℃ぐらい
で良い。
Glass powder that has become a porous material will shrink when it is later molded into pipes or containers, so if necessary, each group is pre-sintered and re-pulverized to create a material suitable for molding. It's good to keep it. At maximum, the volume may shrink by 20 to 40%. This temporary sintering temperature may be about 1100°C.

以上の工程を経た5グループのガラス粉を、第
1図に示すような成形容器に分相溶出程度の差の
順序で充填していく。
The five groups of glass powders that have undergone the above steps are filled into a molded container as shown in FIG. 1 in the order of the difference in phase separation and elution degree.

第1図は、充填されたガラス粉の説明図であつ
て、1は円筒凹形容器、2は円柱状凸形容器、3
はパイプ状粉末圧縮蓋、4aは第1グループ、4
bは第2グループ、4cは第3グループ、4dは
第4グループ、4eは第5グループのガラス粉を
夫々示す。容器類はグラフアイト製で良く、これ
を1200℃程度で焼成すると、第2図に示すような
パイプ状の成形体が得られる。
FIG. 1 is an explanatory diagram of filled glass powder, in which 1 is a cylindrical concave container, 2 is a cylindrical convex container, and 3 is a cylindrical convex container.
is a pipe-shaped powder compression lid, 4a is the first group, 4
b represents the second group, 4c represents the third group, 4d represents the fourth group, and 4e represents the fifth group, respectively. The containers may be made of graphite, and when fired at about 1200°C, a pipe-shaped molded body as shown in FIG. 2 is obtained.

第2図において、端部5は、第1グループのガ
ラス粉によつて作られているので、膨脹率は大体
40×10-7程度、端部6は、第5グループのガラス
粉によつて作られているので、膨脹率は大体8×
10-7程度である。中間部7は、段階的に膨脹率が
変化していて、成形体は丁度、従来技術で言えば
「段継ぎガラス部」に対応する。
In Figure 2, the end portion 5 is made of glass powder of the first group, so the expansion rate is approximately
Since the end portion 6 is made of glass powder of the 5th group, the expansion rate is approximately 8×
It is about 10 -7 . The expansion rate of the intermediate section 7 changes stepwise, and the molded body corresponds to a "step-jointed glass section" in the conventional art.

上記実施例からも理解できるように、上記成形
体の場合、キセノンシヨートアークランプにおけ
る気密封止において、膨脹率46×10-7のタングス
テン導入棒と膨脹率5×10-7の石英製バルブとの
中間段継ぎガラス部として利用できる。
As can be understood from the above examples, in the case of the above molded body, a tungsten introduction rod with an expansion rate of 46 x 10 -7 and a quartz valve with an expansion rate of 5 x 10 -7 were used for airtight sealing in a xenon shot arc lamp. It can be used as a middle step joint glass section.

こゝにおいて、グループ数を増加することによ
つて、結局、中間部7の膨脹率が実質上連続的に
変化する成形体が得られること、しかも、それが
機械化生産で作れることなどの重要な利点があり
従来の品質のバラツキやコストアツプを大巾に解
消できる。
In this case, by increasing the number of groups, it is possible to obtain a molded product in which the expansion rate of the intermediate portion 7 changes substantially continuously, and moreover, it is important that it can be produced by mechanized production. It has the advantage of being able to largely eliminate the conventional quality variations and cost increases.

前記実施例は、Na2O−B2O3−SiO2系ガラスを
示したが、基本的には、硼硅酸ガラスから、分相
処理を利用して、高硅酸ガラスを得る高硅酸ガラ
ス製造法を利用するものであつて、Na2O−B2O3
−SiO2系ガラス以外にも、特許請求の範囲に明
示した通り、他の組成でも良い。
Although the above examples showed Na 2 O-B 2 O 3 -SiO 2 glass, basically high-silicate glass is obtained from borosilicate glass by phase separation treatment. It uses the acid glass manufacturing method, and Na 2 O−B 2 O 3
In addition to -SiO 2 -based glass, other compositions may be used as specified in the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形容器に充填されたガラス粉の説明
図、第2図は成形体の説明図である。 図において、4a,4b,4c,4d,4eは
夫々第1,第2,第3,第4,第5グループのガ
ラス粉を示す。
FIG. 1 is an explanatory diagram of glass powder filled in a molded container, and FIG. 2 is an explanatory diagram of a molded body. In the figure, 4a, 4b, 4c, 4d, and 4e indicate the first, second, third, fourth, and fifth groups of glass powder, respectively.

Claims (1)

【特許請求の範囲】 1 NaO−B2O3−SiO2、もしくはK2O−B2O3
SiO2、もしくはLi2O−B2O3−SiO2を主成分と
し、必要に応じて添加物としてAl2O3もしくは
CaO、もしくはBaO、もしくはMgOを加えた硼
硅酸ガラスをガラス素材として、 (イ) ガラス塊を粉砕してから分相処理するかもし
くは分相処理してから粉砕する第1の工程と、 (ロ) 酸処理によつて、分相の溶出量の程度の異な
つた複数のグループを作り、必要に応じて各グ
ループを洗滌乾燥して仮焼して収縮させ、再粉
砕する第2の工程と、 (ハ) 各グループを程度の異なつた順に、成形容器
に充填して、焼成する第3の工程と、 を含むことを特徴とするガラス成形体の製造方
法。
[Claims] 1 NaO−B 2 O 3 −SiO 2 or K 2 O−B 2 O 3
The main component is SiO 2 or Li 2 O−B 2 O 3 −SiO 2 , and if necessary, Al 2 O 3 or
Using borosilicate glass to which CaO, BaO, or MgO is added as a glass material, (a) a first step of pulverizing the glass lump and then subjecting it to phase separation treatment, or pulverizing it after phase separation treatment; b) A second step in which multiple groups with different degrees of phase separation elution are created by acid treatment, each group is washed and dried as necessary, calcined to shrink, and re-pulverized. , (c) a third step of filling a molding container with each group in order of varying degree and firing them. A method for manufacturing a glass molded body.
JP9661178A 1978-08-10 1978-08-10 Molded glass and production thereof Granted JPS5527803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9661178A JPS5527803A (en) 1978-08-10 1978-08-10 Molded glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9661178A JPS5527803A (en) 1978-08-10 1978-08-10 Molded glass and production thereof

Publications (2)

Publication Number Publication Date
JPS5527803A JPS5527803A (en) 1980-02-28
JPS6120490B2 true JPS6120490B2 (en) 1986-05-22

Family

ID=14169650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9661178A Granted JPS5527803A (en) 1978-08-10 1978-08-10 Molded glass and production thereof

Country Status (1)

Country Link
JP (1) JPS5527803A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665510B2 (en) * 1999-06-28 2005-06-29 株式会社小糸製作所 Arc tube for discharge lamp equipment

Also Published As

Publication number Publication date
JPS5527803A (en) 1980-02-28

Similar Documents

Publication Publication Date Title
US3006775A (en) Ceramic material and method of making the same
US4336338A (en) Hollow microspheres of silica glass and method of manufacture
US3450546A (en) Transparent glass-ceramic articles and method for producing
US3941604A (en) Fast-firing ceramic composition and ceramic article made therefrom
US2466849A (en) Molded glass article
US3019116A (en) Ceramic body and method of making the same
US3945816A (en) Method for forming a refractory cellular product
US3378431A (en) Method of making carbon-containing glass and product thereof
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
US4209421A (en) Method of preparing bodies containing radioactive substances
US3121628A (en) Manufacture of glass for electron tube envelopes
JPS6120490B2 (en)
US2937100A (en) Glass compositions and glass-to-metal seals
US3715220A (en) Ceramic article and method of making it
JPH0432020B2 (en)
CN112897885B (en) High-purity silica glass ceramic material and preparation method thereof
US3516810A (en) Glass-bonded crystalline minerals and method of production
US3215543A (en) Vitreous body including mica in finely divided state
US3486872A (en) Method for producing a crystallized sintered glass article with a nonporous surface
US2973278A (en) Manufacture of sintered vitreous silica
US2803554A (en) Low loss ceramic insulators and method of manufacture
US3145090A (en) Method of making body from glass particles
US2219331A (en) Vitreous body
US4292080A (en) Cesium-stuffed cordierite ceramics
US3374076A (en) Method for producing hermetic glass to metal seals