JPS61204327A - Production of as-rolled thin steel sheet for working having excellent ridging resistance and deep drawability - Google Patents

Production of as-rolled thin steel sheet for working having excellent ridging resistance and deep drawability

Info

Publication number
JPS61204327A
JPS61204327A JP4397885A JP4397885A JPS61204327A JP S61204327 A JPS61204327 A JP S61204327A JP 4397885 A JP4397885 A JP 4397885A JP 4397885 A JP4397885 A JP 4397885A JP S61204327 A JPS61204327 A JP S61204327A
Authority
JP
Japan
Prior art keywords
rolling
thin steel
rolled
deep drawability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4397885A
Other languages
Japanese (ja)
Other versions
JPH0227413B2 (en
Inventor
Susumu Sato
進 佐藤
Saiji Matsuoka
才二 松岡
Takashi Obara
隆史 小原
Kozo Sumiyama
角山 浩三
Toshio Irie
敏夫 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4397885A priority Critical patent/JPH0227413B2/en
Priority to US06/835,052 priority patent/US4861390A/en
Priority to EP86301470A priority patent/EP0196788B1/en
Priority to DE8686301470T priority patent/DE3672864D1/en
Priority to AT86301470T priority patent/ATE54950T1/en
Priority to CA000503250A priority patent/CA1271396A/en
Priority to AU54387/86A priority patent/AU566498B2/en
Priority to CN 86102191 priority patent/CN1013350B/en
Priority to BR8600962A priority patent/BR8600962A/en
Priority to KR1019860001578A priority patent/KR910000007B1/en
Publication of JPS61204327A publication Critical patent/JPS61204327A/en
Publication of JPH0227413B2 publication Critical patent/JPH0227413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a titled thin steel sheet having excellent ridging resistance and deep drawability with a new process without including cold rolling and recrystallization annealing by specifying rolling conditions in a stage for rolling a low carbon steel to a prescribed sheet thickness. CONSTITUTION:The low-carbon steel is rolled in the temp. range from the recrystallization temp. of ferrite to 300 deg.C and at >=35% draft and >=300 s<-1> strain rate in at least one pass in finish rolling in the stage of rolling the low- carbon steel to the prescribed sheet thickness. The thin steel sheet having the good deep drawability and excellent ridging resistance is thus obtd. as-rolled without executing not only the conventional cold rolling but also recrystallization annealing by the high draft and high strain rate rolling in the above-mentioned temp. range.

Description

【発明の詳細な説明】 (産業上の利用分野) 耐リジング性と深絞り性に優れた薄鋼板の製造に関して
この明細書で述べる技術内容は、圧延条件の規制により
冷間圧延および再結晶焼鈍工程を省略し得る新プロセス
についての開発成果を開示するところにある。
[Detailed Description of the Invention] (Industrial Application Field) The technical content described in this specification regarding the production of thin steel sheets with excellent ridging resistance and deep drawability includes cold rolling and recrystallization annealing by regulating rolling conditions. The purpose is to disclose the development results of new processes that can omit steps.

建材、自動車車体材、缶材ないしは各種表面処理原板な
どの用途に使用される板厚がおよそ2+++−以下の加
工用薄鋼板には以下のような特性が要求される。
Processing thin steel sheets with a thickness of approximately 2+++- or less and used for applications such as building materials, automobile body materials, can stock, and various surface-treated original sheets are required to have the following properties.

(1)機械的特性 良好な曲げ加工性、張り出し加工性および絞り加工性を
得るために、主として高い延性と高いランクフォード値
(r値)が必要である。
(1) Mechanical properties In order to obtain good bending workability, stretchability and drawing workability, high ductility and high Lankford value (r value) are mainly required.

とくに自動車のパネルおよびオイルパン、ガソリンタン
クなどの部品は、成形性の中でもとりわけ深絞り成形の
厳しい部品であり、部品形状にも依存するが、r値とし
て1.7以上が要求される。
In particular, parts such as automobile panels, oil pans, and gasoline tanks are particularly difficult to form by deep drawing, and are required to have an r value of 1.7 or more, although it depends on the shape of the part.

(2)表面特性 これら材料は主として最終製品の最外側に使用されるた
め、素材としての形状および表面美麗さはもちろんのこ
と、各種表面処理性も重要である。
(2) Surface properties Since these materials are mainly used on the outermost side of the final product, not only the shape and surface beauty of the material but also various surface treatments are important.

これら′a鋼板の一般的な製造手段は、次のとおりであ
る。
The general manufacturing method for these 'a steel plates is as follows.

まず鋼索材としては主に低炭素鋼を用い、造塊−分塊圧
延にて板厚200mm程度の綱片とした後、加熱炉にて
加熱−均熱処理し、ついで粗熱延工程により板厚約30
mmのシートバーとしてから、仕上温度がAr3変態点
以上の範囲における仕上熱延工程にて所定板厚の熱延鋼
帯とし、しかるのちそれを酸洗後、冷間圧延により所定
板厚(2,0mm以下)の冷延鋼帯とし、さらに再結晶
焼鈍を施して最終製品とする。
First, low carbon steel is mainly used as the steel cable material, and after being made into a piece of rope with a thickness of about 200 mm by ingot-forming and blooming rolling, it is heated and soaked in a heating furnace, and then a rough hot rolling process is performed to thicken the plate. Approximately 30
After forming a sheet bar into a hot-rolled steel strip with a predetermined thickness in a final hot rolling process at a finishing temperature of Ar3 transformation point or higher, the strip is then pickled and cold-rolled to a predetermined thickness (2 mm). , 0 mm or less), and then subjected to recrystallization annealing to produce the final product.

かかる慣行の最大の欠点は最終製品に至るまでの工程が
きわめて長いことにある。その結果、製品にするまでに
要するエネルギー、要員および時間が真人になるだけで
なく、これら長い工程中に、製品の品質とくに表面特性
上程々の問題を生じさせる不利も加わる。例えば冷間圧
延工程における表面欠陥の発生、あるいは再結晶焼鈍工
程における不純物元素の表面濃化および表面酸化に起因
する表面美麗さの劣化、さらには表面処理性の劣化など
が不可避的トラブルである。
The biggest drawback of this practice is the extremely long process required to reach the final product. As a result, not only does the amount of energy, personnel and time required to produce the product increase, but additional disadvantages are added during these long steps which can cause problems with the quality of the product, particularly its surface properties. For example, unavoidable troubles include the occurrence of surface defects in the cold rolling process, deterioration in surface beauty due to surface concentration of impurity elements and surface oxidation in the recrystallization annealing process, and deterioration in surface treatability.

ところで加工用薄鋼板の製造法としては、熱間圧延工程
にて最終製品とするものも考えられている。この方法に
よれば、冷間圧延および再結晶焼鈍工程が省略でき、そ
のメリットは大きい。
By the way, as a method of manufacturing thin steel sheets for processing, a method of producing the final product through a hot rolling process is also considered. According to this method, cold rolling and recrystallization annealing steps can be omitted, which is a great advantage.

しかしながら、熱間圧延のままで得られる薄鋼板の機械
的特性は、冷延−焼鈍工程を経たものに比べるとはるか
に劣る。とくに自動車の車体などに使用されるプレス加
工材には優れた深絞り性が要求されるのに対し、熱延鋼
板のr値は1.0前後と低く、そのためその加工用途は
きわめて限られたものになる。これは従来の熱延方法に
おいては、その仕上温度がAr、変態的以上であるため
、γ−α変態時に集合組織がランダム化するためである
However, the mechanical properties of a hot-rolled thin steel sheet are far inferior to those obtained through a cold rolling-annealing process. In particular, press-formed materials used for automobile bodies require excellent deep drawability, but hot-rolled steel sheets have a low r value of around 1.0, so their processing applications are extremely limited. Become something. This is because in the conventional hot rolling method, the finishing temperature is Ar, which is higher than the transformation temperature, so that the texture becomes random during the γ-α transformation.

加えて2.0mm以下の板厚の薄鋼板を熱延工程のみで
製造することはきわめて困難である。しかも寸法晴度の
問題の他に、薄くなることによる鋼板温度の低下は、低
炭素鋼のAr=変態点以下の圧延を余儀な(し、材質(
延性、絞り性)の著しい劣化をもたらす、またたとえA
r=変態点以下の圧延によって材質が確保できたとして
も、フェライト域で圧延された鋼板にはりジングが発生
しやすくなるという新たな問題が生じる。
In addition, it is extremely difficult to manufacture thin steel sheets with a thickness of 2.0 mm or less using only a hot rolling process. Moreover, in addition to the problem of dimensional clarity, the decrease in steel sheet temperature due to thinning forces the rolling of low carbon steel below the Ar = transformation point (and the material quality (
ductility, drawability), and even A
Even if the quality of the material can be ensured by rolling below r=transformation point, a new problem arises in that steel sheets rolled in the ferrite region are more likely to suffer from cringing.

ここにリジングとは製品の加工時に生じる表面の凹凸の
欠陥であって、加工製品の最外側に使用されることが主
であるこの種の鋼板にとっては致命的な欠陥である。
Here, ridging is a defect in surface irregularities that occurs during the processing of a product, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products.

リジングは、金属学的には加ニー再結晶過程を経ても容
易には分割されない結晶方位群(例えば(100)方位
粒群)が圧延方向に伸ばされたまま残留することに起因
するものであり、一般にフェライト(α)域の比較的高
温で加工された状況で生じやすく、とくにフェライト域
での圧下率が高い場合すなわち薄鋼板の製造のような場
合にはその傾向が強い。
In terms of metallurgy, ridging is caused by crystal orientation groups (for example, (100) oriented grain groups) that are not easily divided even after undergoing the annealing recrystallization process and remain stretched in the rolling direction. , generally tends to occur when processing is performed at a relatively high temperature in the ferrite (α) region, and this tendency is particularly strong when the reduction rate in the ferrite region is high, that is, when manufacturing thin steel sheets.

最近では、これら加工用薄鋼板は、加工製品の複雑化、
高級化に伴い厳しい加工を受けることが多くなったこと
もあり、優れた耐リジング性が要求されるようになって
きた。
Recently, these thin steel sheets for processing have become more complex,
As materials become more sophisticated, they are often subject to more severe processing, and excellent ridging resistance is now required.

ところで近年鉄鋼材料の製造工程は著しく変化しており
、加工用薄鋼板の場合も例外ではない。
Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception.

すなわち、近年まず連続鋳造プロセスの導入によって分
塊圧延工程が省略可能となり、また材質向上と省エネル
ギーを目的として綱片の加熱温度は従来の1200℃近
傍から1100℃近傍もしくはそれ以下に低下される傾
向にある。さらに溶鋼から直ちに板厚5抛l以下の鋼帯
を溶製することにより、熱延の加熱処理と粗圧延工程を
省略できるプロセスも実用化されつつある。
In other words, in recent years, the introduction of the continuous casting process has made it possible to omit the blooming process, and the heating temperature of the steel strip has tended to be lowered from the conventional 1200°C to around 1100°C or lower in order to improve material quality and save energy. It is in. Furthermore, a process is being put into practical use in which a steel strip having a thickness of 5 mm or less is produced immediately from molten steel, thereby omitting the heat treatment of hot rolling and the rough rolling process.

しかしながらこれらの新製造工程は、いずれも溶鋼が凝
固する際にできる組Va(鋳造組織)を破壊するという
点では不利である。とくに凝固時に形成された(100
) <uVW>を主方位とする強い鋳造集合組織を破壊
することはきわめて困難である。
However, these new manufacturing processes are disadvantageous in that they destroy the group Va (casting structure) formed when molten steel solidifies. Especially formed during solidification (100
) It is extremely difficult to destroy the strong casting texture whose main orientation is <uVW>.

その結果として、最終薄鋼板には、前述したりジングが
起こりやすかったのである。
As a result, the final thin steel sheet was prone to the aforementioned jinging.

(従来の技術) Ar、変態点以下の比較的低温域で所定板厚の薄鋼板と
し、その後は冷間圧延および再結晶焼鈍工程を施さない
加工用薄鋼板の製造方法もいくつか提示されている。例
えば特開昭48−4329号公報には、低炭素リムド鋼
をAr3変態点以下の温度で90%の圧延にて411I
I11板厚の鋼帯とすることによる降伏点26.1kg
/mm”、引張強さ37.3kg/mm!、伸び49.
7%。
(Prior art) Several methods have been proposed for manufacturing thin steel sheets for processing, which are formed into a thin steel sheet of a predetermined thickness in a relatively low temperature range below the Ar transformation point, and then are not subjected to cold rolling or recrystallization annealing steps. There is. For example, in JP-A-48-4329, low carbon rimmed steel is rolled to 411I by 90% rolling at a temperature below the Ar3 transformation point.
Yield point: 26.1 kg due to steel strip having thickness of I11
/mm”, tensile strength 37.3kg/mm!, elongation 49.
7%.

r=l。29の特性を有する製造例が示されている。r=l. A fabrication example with 29 properties is shown.

また特開昭52−44718号公報には同じく低炭素リ
ムド綱を熱延仕上温度800〜860℃(Ars変態点
以下)で2.0mm板厚とし、巻取温度600〜730
℃とすることによる、降伏点20kg/mm”以下の低
降伏点鋼板の製造法が示されている。しかしながら絞り
性の指標であるコニカルカップ値は得られる製品で60
.60〜62.18mm程度であり、この点従来例の6
0.58〜60.61に比べると絞り性は同等かそれ以
下である。さらに特開昭53−22850号公報には同
じく低炭素リムド綱を熱延仕上温度710〜750℃で
1.8〜2 、3mm板厚とし、巻取温度530〜60
0℃とすることによる低炭素熱延鋼板の製造法が示され
いる。しかしながらこの方法によって得られる製品のコ
ニカルカップ値も玉揚の特開昭52−44718号公報
の場合と同様に従来例よりも高く、絞り性は劣っている
。またさらに特開昭54−109022号公報には、低
炭素アルミキルド鋼を熱延仕上温度760〜820℃で
1 、6mm板厚とし、巻取温度650〜690°Cと
することによる降伏点14.9〜18.8kg/mm”
Furthermore, in JP-A-52-44718, a low carbon rimmed steel is hot-rolled to a thickness of 2.0 mm at a finishing temperature of 800 to 860°C (below the Ars transformation point), and a coiling temperature of 600 to 730°C is disclosed.
℃ has been shown to produce a low yield point steel plate with a yield point of 20 kg/mm or less. However, the conical cup value, which is an index of drawability, is 60.
.. It is about 60 to 62.18 mm, which is different from the conventional example 6.
Compared to 0.58 to 60.61, the drawability is the same or lower. Furthermore, in JP-A-53-22850, a low carbon rimmed steel is hot rolled to a thickness of 1.8 to 2.3 mm at a finishing temperature of 710 to 750°C, and a coiling temperature of 530 to 60°C is disclosed.
A method of manufacturing a low carbon hot rolled steel sheet by setting the temperature to 0°C is shown. However, the conical cup value of the product obtained by this method is also higher than that of the conventional example, as in the case of JP-A-52-44718, and the drawability is inferior. Furthermore, JP-A-54-109022 discloses that low carbon aluminum killed steel is hot-rolled to a thickness of 1.6 mm at a finishing temperature of 760 to 820°C and has a yield point of 14.6 mm at a coiling temperature of 650 to 690°C. 9~18.8kg/mm”
.

引張強さ27.7〜29.8kg/nun”、伸び39
.0〜44.8%の特性を有する低強度軟鋼板の製造例
が開示されている。その他特開昭59−226149号
公報にはC10,002゜5i10.02. Mn0.
23. Plo、009. S10.008. A l
 10.025゜N10.0021. Ti10.10
の低炭素Afiキルド鋼を500〜900℃で潤滑油を
施しつつ76%の圧延にて1.6mm板厚の調帯とする
ことにより、r=1.21の特性を有する薄鋼板の製造
例が示されている。
Tensile strength 27.7-29.8kg/nun”, elongation 39
.. An example of manufacturing a low strength mild steel plate having properties of 0 to 44.8% is disclosed. In addition, JP-A-59-226149 has C10,002°5i10.02. Mn0.
23. Plo, 009. S10.008. Al
10.025°N10.0021. Ti10.10
An example of manufacturing a thin steel plate having a property of r = 1.21 by rolling 76% of low carbon Afi killed steel at 500 to 900°C with lubricating oil to a plate thickness of 1.6 mm. It is shown.

しかしながら上記した公知技術にはいずれも、前述した
耐リジング性を向上させることについて何らの考慮も払
われていない。
However, none of the above-mentioned known techniques gives any consideration to improving the above-mentioned ridging resistance.

(発明が解決しようとする問題点) 冷間圧延のみならず再結晶焼鈍をも含まない新プロセス
によって、耐リジング性と深絞り性に優れる薄鋼板の製
造方法を与えることが、この発明の目的である。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing thin steel sheets with excellent ridging resistance and deep drawability by a new process that does not include not only cold rolling but also recrystallization annealing. It is.

(問題点を解決するための手段) この発明は、低炭素鋼を所定板厚に圧延する工程におい
て、少なくとも1パスを、 フェライトの再結晶温度から300℃までの温度範囲で
、圧下率=35%以上、ひずみ速度: 300(s”1
)以上で仕上げることを特徴とする耐リジング性と深絞
り性に優れるアズロールド薄鋼板の製造方法である。
(Means for Solving the Problems) This invention provides at least one pass in the process of rolling low carbon steel to a predetermined thickness in a temperature range from the ferrite recrystallization temperature to 300°C, and rolling reduction = 35. % or more, strain rate: 300 (s”1
) This is a method for manufacturing an azu-rolled thin steel sheet with excellent ridging resistance and deep drawability, which is characterized by completing the process as described above.

この発明の基礎となった研究結果からまず説明する。First, the research results that formed the basis of this invention will be explained.

表1に示す低炭素アルミキルド鋼の熱延鋼板を用い、こ
れを450℃に加熱均熱し、1バスで20%。
A hot-rolled low-carbon aluminum killed steel sheet shown in Table 1 was used, heated and soaked to 450°C, and heated to 20% in one bath.

40%、および60%の圧下率でそれぞれ圧延した。Rolling was performed at a rolling reduction of 40% and 60%, respectively.

このときのひずみ速度(ε)と圧延後の鋼板のりジング
指数との関係について調べた結果を第1図に示す。
Figure 1 shows the results of an investigation into the relationship between the strain rate (ε) and the rolling index of the steel sheet after rolling.

リジング指数はひずみ速度と圧下率に強く依存し、40
%、 60%の圧下率でかつ300s−’以上の高ひず
み、高圧下率圧延を施した場合に、耐リジング性は著し
く向上した。
The ridding index strongly depends on the strain rate and reduction ratio, and is 40
When high strain and high reduction rate rolling of 300 s-' or more was performed at a rolling reduction of 60% and 60%, the ridging resistance was significantly improved.

なおひずみ速度(ε)の計算は以下の式に従っn: 圧
延ロールの回転数(rpm) r: 圧下率(χ)/100 R: 圧延ロールの半径(mm) Ho:  圧延前の板厚(mm) 次に表1に示すA、 B鋼片い、圧延温度を種々に変化
させて、圧延板のr値について、調べた結果を第2図に
示す。このとき、; =852s−’、圧下率65χで
あった。また、A、 B111の再結晶温度は表1に示
すとおりであり、この再結晶温度は、室温にて75%の
冷間圧延を行ない加熱速度20℃/hで加熱したときの
硬度および組織の変化から求めたものである。
The strain rate (ε) is calculated according to the following formula: n: Number of rotations of rolling rolls (rpm) r: Reduction rate (χ)/100 R: Radius of rolling rolls (mm) Ho: Thickness of plate before rolling ( mm) Next, Fig. 2 shows the results of investigating the r-value of the rolled plates of A and B steel slabs shown in Table 1 and varying the rolling temperature. At this time, ; =852s-', the rolling reduction rate was 65χ. In addition, the recrystallization temperature of A and B111 is as shown in Table 1, and this recrystallization temperature is based on the hardness and structure when cold rolling is performed at room temperature by 75% and heated at a heating rate of 20°C/h. This is what we seek from change.

画調とも再結晶温度以下での圧延によってr値が急激に
上昇することがわかる。しかしながら約300℃以下の
温度における圧延では、アズロールドでは再結晶が生ぜ
ず、このためr値は急激に劣化する。
It can be seen that both the image quality and the r value sharply increase due to rolling below the recrystallization temperature. However, when rolled at a temperature of about 300° C. or lower, recrystallization does not occur in Azurold, and therefore the r value deteriorates rapidly.

発明者らはこれらの基礎的データに基づき研究を重ねた
結果、以下のように製造条件を規制することにより耐リ
ジング性と深絞り性に優れる薄鋼板が製造できることを
確認した。
As a result of repeated research based on these basic data, the inventors confirmed that a thin steel sheet with excellent ridging resistance and deep drawability can be manufactured by regulating the manufacturing conditions as described below.

(1)鋼組成 高ひずみ速度圧延の効果は本質的には鋼組成に依存しな
い。ただし、一定レベル以上の深絞り性を確保するため
には、侵入型固溶元素であるC、Nはそれぞれ0.10
%以下、 0.01%以下であることが好ましい。また
鋼中0をAI!の添加により低減することは、材質とく
に延性の向上に有利である。さらにより優れた深絞り性
を得るために、C,Nを安定な炭窒化物として析出固定
可能な特殊元素たとえばTt+Nb+ZrおよびB等の
添加も有効である。
(1) Steel composition The effects of high strain rate rolling do not essentially depend on the steel composition. However, in order to ensure deep drawability above a certain level, the interstitial solid solution elements C and N must each be 0.10
% or less, preferably 0.01% or less. Also, AI for Hagane Medium 0! Reduction by addition of is advantageous for improving material quality, especially ductility. Furthermore, in order to obtain even better deep drawability, it is also effective to add special elements such as Tt+Nb+Zr and B, which can precipitate and fix C and N as stable carbonitrides.

また高強度を得るためにP、SiおよびMn等を強度に
応じて添加することもできる。
Further, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength.

(2)圧延素材の製造法 従来方式、すなわち造塊−分塊圧延もしくは連続鋳造法
により得られた鋼片は当然に適用できる。
(2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can of course be applied.

鋼片の加熱温度は800〜1250℃が適当であり、省
エネルギーの観点から1100℃未満が好適である。連
続鋳造から鋼片を再加熱することなく圧延を開始するい
わゆるCC−DR(連続鋳造−直接圧延)法も勿論適用
可能である。
The heating temperature of the steel piece is suitably 800 to 1250°C, and preferably less than 1100°C from the viewpoint of energy saving. Of course, the so-called CC-DR (continuous casting-direct rolling) method, in which rolling is started without reheating the steel billet after continuous casting, is also applicable.

一方溶鋼から直ちに50mm以下の圧延素材を鋳造する
方法(シートバーキャスター法およびトリップキャスタ
ー法)も省エネルギー、省工程の観点から経済的メリッ
トが大きいので、圧延素材の製造法としてはとりわけ有
利である。
On the other hand, the method of immediately casting a rolled material of 50 mm or less from molten steel (sheet bar caster method and trip caster method) also has great economic merit from the viewpoint of energy saving and process saving, so it is particularly advantageous as a method for manufacturing rolled material.

(3)圧延工程 この工程が最も重要であり、低炭素鋼を所定の板厚に圧
延するに当り、仕上圧延において、少なくとも1バスを
、フェライトの再結晶温度から300℃までの温度範囲
で、圧下率35%以上でかつひずみ速度300s−’以
上の条件下に圧延することが必須である。
(3) Rolling process This process is the most important.When rolling low carbon steel to a predetermined thickness, at least one bath is performed in the finish rolling at a temperature ranging from the ferrite recrystallization temperature to 300°C. It is essential to roll under conditions of a rolling reduction of 35% or more and a strain rate of 300 s-' or more.

仕上圧延温度がフェライトの再結晶温度を超える高温域
ならびに300℃未満の低温域では、たとえ圧下率35
%以上、ひずみ速度300s−’以上で圧延を施したと
しても、前掲第2図に示したように深絞り性が劣るもの
しか得られないので、仕上圧延温度はフェライトの再結
晶温度〜300℃の範囲に限定した。
In the high temperature range where the finish rolling temperature exceeds the recrystallization temperature of ferrite and the low temperature range below 300°C, even if the rolling reduction is 35
% or more and at a strain rate of 300 s-' or more, only poor deep drawability can be obtained as shown in Figure 2 above, so the finish rolling temperature is between the ferrite recrystallization temperature and 300°C. limited to the range of

またひずみ速度については、300s−’に満たないと
目標とする材質が確保できないので、300s−’以上
とりわけ500〜2500s−’が好適である。
Regarding the strain rate, if the strain rate is less than 300 s-', the target material quality cannot be secured, so a strain rate of 300 s-' or more, particularly 500 to 2500 s-', is suitable.

圧延パス数、圧下率の配分は、上記の条件が満たされれ
ば任意でよい。
The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied.

圧延機の配列、構造や、張力、潤滑の有無などは本質的
な影響力を持たない。
The arrangement, structure, tension, presence or absence of lubrication of the rolling mill, etc. have no essential influence.

なお再結晶焼鈍処理については、原則として不要である
が、材質上の要請から、圧延後のランアウトテーブル上
および巻とり工程で保熱、均熱処理を施すこと、また必
要に応じて圧延後に多少の加熱処理を施すことを禁する
ものではない。
In principle, recrystallization annealing treatment is not necessary, but due to material requirements, heat retention and soaking treatment must be performed on the runout table after rolling and during the winding process, and if necessary, some heat treatment must be performed after rolling. Heat treatment is not prohibited.

(4)酸洗、調質圧延 上述の手順で得られた銅帯は、従来よりも低温域での圧
延であるため酸化層は薄く、酸洗性は極めて良好である
ので、酸洗せずに使用できる用途も広い。また脱スケー
ルは、従来の酸による除去の他に機械的除去も可能であ
る。さらに形状矯正、表面粗度調整などを目的として、
10%以下の調質圧延を加えることができる。
(4) Pickling and temper rolling The copper strip obtained by the above procedure is rolled at a lower temperature than conventional methods, so the oxidation layer is thinner and the pickling property is extremely good, so no pickling is required. It can also be used for a wide range of purposes. In addition to conventional acid removal, mechanical removal can also be used for descaling. Furthermore, for the purpose of shape correction, surface roughness adjustment, etc.
Temper rolling of 10% or less can be added.

(5)表面処理 かくして得られる銅帯は、亜鉛めっき(合金系を含む)
、錫めっきおよびほうろう性など表面処理性に優れるの
で、各種表面処理原板として適用できる。
(5) Surface treatment The copper strip thus obtained is galvanized (including alloy-based)
It has excellent surface treatment properties such as tin plating and enameling, so it can be used as various surface-treated base plates.

(作 用) この発明に従い、高圧下率、高ひずみ速度で圧延を行う
ことによって、耐リジングさらにはT値が格段に向上す
る理由については、まだ明確には解明されていないが、
圧延材の集合組織および加工ひずみの変化と密接な関係
にあるものと考えられる。
(Function) The reason why the ridging resistance and T value are significantly improved by rolling at a high reduction rate and high strain rate according to the present invention has not yet been clearly elucidated.
This is thought to be closely related to changes in the texture and processing strain of the rolled material.

(実施例) 表2に示す組成鋼をそれぞれ、表3に示す方法で板厚2
5〜40a+mのシートバーにした後、6列から成る圧
延機を用いて0.8〜1.0請−板厚の薄鋼板とした。
(Example) Each of the composition steels shown in Table 2 was processed to a thickness of 2 by the method shown in Table 3.
After forming the sheet bar into a sheet bar having a thickness of 5 to 40 a+m, a thin steel plate having a thickness of 0.8 to 1.0 cm was formed using a rolling mill consisting of 6 rows.

このとき等6スタンドを用いて高ひずみ高圧下率圧延を
行なった。なお、供試鋼の再結晶温度は前述した方法に
より求めた。
At this time, high strain and high reduction rolling was performed using six stands. Note that the recrystallization temperature of the test steel was determined by the method described above.

かくして得られた薄鋼板につき、酸洗、温室圧延(圧下
率0.5〜1.2χ)後の材料特性を表3に示す。なお
引張特性JISS号試験片として求めた。またリジング
性は、圧延方向から切り出したJIS5号試験片を用い
、15%の引張子ひずみを付加したものについて、表面
の凹凸を目視法にて1 (良)〜5 (劣)の評価をし
た。この評価は、在来の低炭素冷延鋼板の製造法による
ときりジングが事実上現れなかったので評価基準が確立
していない。従って、本発明では従来ステンレス鋼につ
いての目視法による指数評価基準をそのまま準用した。
Table 3 shows the material properties of the thus obtained thin steel sheet after pickling and greenhouse rolling (reduction ratio of 0.5 to 1.2x). The tensile properties were determined as a JISS No. test piece. In addition, the ridging property was evaluated using a JIS No. 5 test piece cut out from the rolling direction and subjected to 15% tensile strain by visually observing the surface unevenness from 1 (good) to 5 (poor). . No evaluation criteria have been established for this evaluation because virtually no shearing occurred using the conventional manufacturing method for low-carbon cold-rolled steel sheets. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are applied as they are.

評価1.2は実用上問題の ないリジング性を示す。An evaluation of 1.2 indicates ridging properties with no practical problems.

この発明に従って製造された鋼板は比較例よりもはるか
に優れた下値と耐リジング性とを示している。
Steel sheets manufactured according to the invention exhibit far superior lower values and ridging resistance than the comparative examples.

(発明の効果) かくしてこの発明によれば、フェライト再結晶温度から
300℃までの温度範囲における高圧下率、高ひずみ速
度圧延により、従来の冷間圧延のみならず再結晶焼鈍を
も省略したアズロールドのままで、良好な深絞り性と共
に優れた耐リジング性をもつ薄鋼板を得ることができ、
しかも圧延素材についてもシートバーキャスター法、ス
トリップキャスター法などに適合するなど、加工用薄鋼
板の製造工程の大幅な簡略化が実現できる。
(Effects of the Invention) Thus, according to the present invention, by rolling at a high reduction rate and high strain rate in the temperature range from the ferrite recrystallization temperature to 300°C, the azurolled steel sheet that not only omits conventional cold rolling but also recrystallization annealing can be achieved. It is possible to obtain a thin steel plate with good deep drawability and excellent ridging resistance without changing the process.
Moreover, the rolled material is compatible with the sheet bar caster method, strip caster method, etc., and the manufacturing process of thin steel sheets for processing can be greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、下値およびリジング指数に及ぼすひずみ速度
の影響を、圧下率をパラメータとして示したグラフ、 第2図は、圧延温度と下値との関係を示したグラフであ
る。 第1図 100   200    、!100   600ひ
ずtす−a11(S−リ
FIG. 1 is a graph showing the effect of strain rate on the lower value and ridging index using the rolling reduction as a parameter. FIG. 2 is a graph showing the relationship between rolling temperature and lower value. Figure 1 100 200,! 100 600 strain ts-a11 (S-re

Claims (1)

【特許請求の範囲】 1、低炭素鋼を所定板厚に圧延する工程において、少な
くとも1パスを、 フェライトの再結晶温度から300℃までの温度範囲で
、圧下率:35%以上、ひずみ速度:300(s^−^
1)以上で圧延することを特徴とする耐リジング性と深
絞り成形性に優れるアズロールド薄鋼板の製造方法。
[Claims] 1. In the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range from the recrystallization temperature of ferrite to 300°C, rolling reduction: 35% or more, strain rate: 300(s^-^
1) A method for manufacturing an as-rolled thin steel sheet having excellent ridging resistance and deep drawability, which comprises rolling at the above steps.
JP4397885A 1985-03-06 1985-03-06 TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO Expired - Lifetime JPH0227413B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP4397885A JPH0227413B2 (en) 1985-03-06 1985-03-06 TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO
US06/835,052 US4861390A (en) 1985-03-06 1986-02-28 Method of manufacturing formable as-rolled thin steel sheets
EP86301470A EP0196788B1 (en) 1985-03-06 1986-02-28 Method of manufacturing formable as rolled thin steel sheets
DE8686301470T DE3672864D1 (en) 1985-03-06 1986-02-28 METHOD FOR PRODUCING ROLLED DEFORMABLE THICK STEEL SHEETS.
AT86301470T ATE54950T1 (en) 1985-03-06 1986-02-28 PROCESS FOR THE MANUFACTURE OF ROLLED FORMABLE THIN STEEL PLATES.
CA000503250A CA1271396A (en) 1985-03-06 1986-03-04 Method of manufacturing formable as-rolled thin steel sheets
AU54387/86A AU566498B2 (en) 1985-03-06 1986-03-04 Producing thin steel sheet
CN 86102191 CN1013350B (en) 1985-03-06 1986-03-05 Method of mfg. formable as-rolled thin steel sheets
BR8600962A BR8600962A (en) 1985-03-06 1986-03-06 PROCESS OF MANUFACTURING THIN STEEL SHEETS, CONFORMING AS LAMINATES
KR1019860001578A KR910000007B1 (en) 1985-03-06 1986-03-06 Method of manufacturing formable ar-rolled thin steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4397885A JPH0227413B2 (en) 1985-03-06 1985-03-06 TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS61204327A true JPS61204327A (en) 1986-09-10
JPH0227413B2 JPH0227413B2 (en) 1990-06-18

Family

ID=12678804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4397885A Expired - Lifetime JPH0227413B2 (en) 1985-03-06 1985-03-06 TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227413B2 (en)

Also Published As

Publication number Publication date
JPH0227413B2 (en) 1990-06-18

Similar Documents

Publication Publication Date Title
JPS61204320A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistnace
JPS61204325A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance
JPS61204327A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and deep drawability
JPS6213534A (en) Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability
JPS61261434A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and tensile rigidity
JPS61204324A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and chemical convertibility
JPS6360232A (en) Manufacture of steel sheet for working having superior ridging resistance and deep drawability
JPS61204329A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and aging resistance
JPS61204328A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and corrosion resistance
JPS61204323A (en) Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS61204331A (en) Production of metal electroplated thin steel sheet for working having excellent ridging resistance and plating adhesiveness
JPS61204322A (en) Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance
JPS6360231A (en) Production of thin steel sheet for working having excellent ridging resistance and deep drawability
JPH0259848B2 (en)
JPH0333768B2 (en)
JPH0259845B2 (en)
JPH0257133B2 (en)
JPS6280250A (en) Warm-rolled sheet steel for working excellent in ridging resistance and its production
JPH0333767B2 (en)
JPH033731B2 (en)
JPS61204326A (en) Production of metal hot dipped thin steel sheet for working having excellent ridging resistance and plating adhesiveness
JPH0259847B2 (en)
JPH0259846B2 (en)
JPH04263022A (en) Production of hot rolled steel plate excellent in deep drawability
JPS61270341A (en) Manufacture of cold rolled steel sheet for deep drawing superior in ridging resistance and chemical conversion treatability