JPS61204302A - Porous al sintered material - Google Patents

Porous al sintered material

Info

Publication number
JPS61204302A
JPS61204302A JP4532285A JP4532285A JPS61204302A JP S61204302 A JPS61204302 A JP S61204302A JP 4532285 A JP4532285 A JP 4532285A JP 4532285 A JP4532285 A JP 4532285A JP S61204302 A JPS61204302 A JP S61204302A
Authority
JP
Japan
Prior art keywords
porous
corrosion resistance
sintered
sintering
chromic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4532285A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakanishi
清 中西
Katsuhiro Kishida
岸田 勝弘
Hiroyoshi Kikuchi
菊地 宏佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP4532285A priority Critical patent/JPS61204302A/en
Publication of JPS61204302A publication Critical patent/JPS61204302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a porous Al sintered material having an excellent sound absorbing characteristic and corrosion resistance by sintering a mixture contg. Al, Mg, Mn, Ni, Cu, Si, etc. in a non-pressure and non-oxidative atmosphere and forming further a chromic acid film contg. no crystal water thereon. CONSTITUTION:The powder mixture consisting essentially of Al and contg. 1 or 2 kinds of Mg, Mn, Ni, Cu and Si as the additive components is sprayed in a vessel consisting of graphite or the like which does not react with Al and is sintered under no pressure in the non-oxidative atmosphere of the decomposed gas of NH3, gaseous N2, etc. The preferable sintering temp. is the temp. at which the liquid phase of the additive components is generated or above or the temp. below the m.p. of Al. The porous Al sintered body having 30-60% porosity is thus obtd. The sintered body is then immersed in a chromic acid soln. and after the excess treating liquid is removed by a centrifugal separator, the sintered body is calcined at about 300 deg.C by which the chromic acid film contg. no crystal water is formed on the sintered body. The porous Al sintered material having the excellent sound absorbing characteristic, corrosion resistance and heat resistance is thus obtd.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は多孔質AI系焼結材料に係り、詳しくは、騒音
、雑音等の吸音特性に優れ、かつ、耐蝕性に優れた多孔
質Al系焼結材料に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Application Field The present invention relates to a porous AI-based sintered material, and more specifically, it is a porous AI-based sintered material that has excellent sound absorption characteristics such as noise and noise, and excellent corrosion resistance. It concerns a porous Al-based sintered material.

従来の技術 多孔質AI系焼結材料はCuあるいはFe系の多孔質焼
結材料と比較して、 (1)比重が軽い。
Conventional Technology Porous AI-based sintered materials have (1) a lower specific gravity than Cu- or Fe-based porous sintered materials;

(2)展延性が良好であるため、曲げ加工が比較的容易
である。
(2) Since it has good malleability, bending is relatively easy.

(3)焼結温度が低く、比較的廉価で製造できる。(3) The sintering temperature is low and it can be manufactured at relatively low cost.

等の利点を有するため積極的に開発が進められてきた。Since it has the following advantages, its development has been actively promoted.

しかし、初期においては特公昭43−20884号、4
5−2420G号、45−24007号、47−321
63号の各公報に示されているように、主として機械部
品の含油軸受を目的として開発が進められたため、多孔
質焼結材料の強度が要求され、必然的に焼結成分として
焼結性が良く、強度が得られ易いCuを含有する焼結材
料が多く、また、技術的には焼結を阻害する表面酸化皮
膜を押圧して破り焼結を進行させる方法が一般的方法で
あったため、得られる焼結材料の多孔率はせいぜい10
〜20%であった。
However, in the early days, Tokuko No. 43-20884, 4
No. 5-2420G, No. 45-24007, 47-321
As shown in each publication of No. 63, since the development was mainly aimed at oil-impregnated bearings for mechanical parts, the strength of porous sintered materials was required, and sinterability was inevitably required as a sintered component. Many sintered materials contain Cu, which is easy to obtain good strength, and technically speaking, the common method was to press the surface oxide film that inhibits sintering to break it and allow sintering to proceed. The porosity of the resulting sintered material is at most 10
It was ~20%.

その後、特公昭5G−11373号公報によって無加圧
、非酸化性雰囲気下で焼結し、多孔質A/系焼結材料を
得る方法が開発され、吸音材、浦、過材等に広く応用さ
れるようになった。
Later, in Japanese Patent Publication No. 5G-11373, a method was developed to obtain a porous A/type sintered material by sintering in a non-pressure, non-oxidizing atmosphere, and it was widely applied to sound absorbing materials, ura, overlay materials, etc. It started to be done.

しかし、多孔質AI系焼結材料は、耐蝕性を要求される
用途、場所には、その使用が限定され、多孔質体の特長
である表面積が大きい為に従来の防錆処理に優れる表面
処理が要求された。
However, the use of porous AI-based sintered materials is limited to applications and locations that require corrosion resistance, and because of the large surface area that porous materials have, the surface treatment is superior to conventional rust prevention treatments. was requested.

発明が解決しようとする問題点 本発明はこれらの問題点の解決を目的とし、具体的には
、多孔質体の空孔を塞ぐことなく吸音特性および耐蝕性
に冨む多孔質Al系焼結材料を提供することを目的とす
る。
Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically, it aims to provide a porous Al-based sintered material that is rich in sound absorption properties and corrosion resistance without blocking the pores of the porous body. The purpose is to provide materials.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、AIを主成分とし、添加成分として旬、柿、
Ni%CUおよびSiより選ばれた1種若しくは2種を
含有する混合粉末をAIと反応しない容器中で無加圧、
非酸化性雰囲気下で焼結した多孔率30〜60%の多孔
質Al系焼結体に化学表面処理を施してなることを特徴
とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention contains AI as a main component and additional components such as shun, persimmon,
A mixed powder containing one or two selected from Ni%CU and Si is heated without pressure in a container that does not react with AI.
It is characterized in that it is made by chemically surface-treating a porous Al-based sintered body with a porosity of 30 to 60%, which is sintered in a non-oxidizing atmosphere.

以下、図面によって本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明による多孔質AI系焼結材料を製造する
製造工程の一例の説明図である。
FIG. 1 is an explanatory diagram of an example of a manufacturing process for manufacturing a porous AI-based sintered material according to the present invention.

第1図においてAIを主成分とし、添加成分としてMQ
、Mn%Ni%CuおよびSiより選ばれた1種若しく
は2種を含有する原料粉末1はホッパー2からAIと反
応しない容器3(例えば、グラファイト容器)中に所定
厚みに均一に散布される。
In Figure 1, AI is the main component and MQ is the added component.
A raw material powder 1 containing one or two selected from , Mn%Ni%Cu, and Si is uniformly scattered to a predetermined thickness from a hopper 2 into a container 3 (for example, a graphite container) that does not react with AI.

この時の散布厚みは容器の深さによって調整される。原
料粉末が自然充填された容器3は段積みされ、NH3分
解ガスやN2ガス雰囲気に保たれた焼結炉4中で焼結さ
れ、冷却ゾーン6で冷却された慢、容器3から外すこと
によって多孔質Al系焼結材料7が得られる。
The thickness of the spray at this time is adjusted depending on the depth of the container. Containers 3 naturally filled with raw material powder are stacked and sintered in a sintering furnace 4 maintained in an atmosphere of NH3 decomposed gas or N2 gas, cooled in a cooling zone 6, and removed from the containers 3. A porous Al-based sintered material 7 is obtained.

以上のように本発明においては容器3中のAIを主成分
とする原料粉末1は自然充填された状態にあり、通常の
焼結方法においては焼結を阻害する表面酸化皮膜を押圧
によって破壊するのに対し、焼結時のAj粉末粒子の内
部と酸化皮膜との熱膨張率の差によって破壊され、この
破壊部分を通して焼結が進行する。この際に、破壊され
露出したメタリックな部分および生成した液相部分は酸
化され易いので焼結炉の雰囲気は酸素の分圧を低く制御
する必要があり、露点が一30℃以下の雰囲気で焼結さ
れる。また、焼結温度は添加成分粉末の液相発生温度以
上で、しかも、AZの融点以下の温度で4a結される。
As described above, in the present invention, the raw material powder 1 containing AI as a main component in the container 3 is in a naturally packed state, and the surface oxide film that inhibits sintering in a normal sintering method is destroyed by pressing. On the other hand, during sintering, the Aj powder particles are destroyed due to the difference in thermal expansion coefficient between the inside of the particles and the oxide film, and sintering progresses through this destroyed portion. At this time, the destroyed and exposed metallic parts and the generated liquid phase parts are easily oxidized, so the atmosphere in the sintering furnace must be controlled to have a low partial pressure of oxygen, and the sintering furnace must be sintered in an atmosphere with a dew point of 130°C or less. tied. Further, the sintering temperature is higher than the liquid phase generation temperature of the additive component powder and lower than the melting point of AZ.

得られる多孔質Al系焼結材料の多孔率は粒度の細かい
粉末を使用し、添加成分の液相層を小さく制御すると多
孔率60%以上の焼結材を得ることができるが、この焼
結材は強度的に弱く、また、未焼結になり易いので実用
的でない。
The resulting porous Al-based sintered material can have a porosity of 60% or more by using fine-grained powder and controlling the liquid phase layer of the additive components to a small level. The material is not practical because it has low strength and tends to become unsintered.

また、焼結温度と添加成分量の制御によって多孔率30
%以下の焼結材も得ることができるが、多孔率30%以
下になると部分的に独立気孔が増加すると共に温度制御
の限界を越えてメタリックな焼結となり易い。従って、
多孔率は30〜60%が好ましい。
In addition, by controlling the sintering temperature and the amount of added ingredients, the porosity can be reduced to 30.
It is possible to obtain a sintered material with a porosity of 30% or less, but when the porosity is 30% or less, independent pores increase locally and the temperature control limit is exceeded, which tends to result in metallic sintering. Therefore,
The porosity is preferably 30 to 60%.

一般に、2相あるいはそれ以上の異相よりなる合金は異
相間の電気化学的作用により1相の合金より腐蝕を受は
易いのが普通であるが、特に、多孔質金属材料において
は通常の金属材料と比較して表面積が格段に大きく、ま
た、強度は小さいので腐蝕の影響は非常に太き(耐蝕性
の向上は重要な課題である。
In general, alloys consisting of two or more different phases are more susceptible to corrosion than single-phase alloys due to the electrochemical action between the different phases. Since the surface area is much larger and the strength is lower, the influence of corrosion is extremely large (improving corrosion resistance is an important issue).

多孔質AI系焼結材料の耐蝕性を向上する方法として我
々は既にAjの添加成分として、Ajとの固溶体若しく
は金属間化合物の電解電位が純AIの電解電位と近い金
属を選択することによって多孔質焼結材の耐蝕性を向上
する方法が可能であることを知り、添加成分どして旬、
Mn。
As a method to improve the corrosion resistance of porous AI-based sintered materials, we have already proposed a method for improving the corrosion resistance of porous AI-based sintered materials by selecting, as the additive component of Aj, a metal in which the electrolytic potential of a solid solution with Aj or an intermetallic compound is close to that of pure AI. Knowing that it is possible to improve the corrosion resistance of quality sintered materials, I decided to use additives to improve the corrosion resistance.
Mn.

Cu、Siから選ばれた1種若しくは2種を含有する系
、すなわち、Aj−MQ系、Al−Mn系、AI−Cu
系、kl−Si系、Aj −Mg−Si系%Aj−Mn
−8i系によって吸音特性および耐蝕性に優れた多孔質
AI系焼結材料について提案した。
A system containing one or two selected from Cu and Si, that is, Aj-MQ system, Al-Mn system, AI-Cu
system, kl-Si system, Aj-Mg-Si system%Aj-Mn
We proposed a porous AI-based sintered material with excellent sound absorption properties and corrosion resistance based on the -8i system.

しかし、多孔質Al系焼結材料の耐蝕性向上の方法とし
て、上記のような合金元素の選択による方法の他に、塗
装および化学表面処理による方法もある。
However, as a method for improving the corrosion resistance of porous Al-based sintered materials, in addition to the method by selecting alloying elements as described above, there are also methods by painting and chemical surface treatment.

本発明は、多孔質AJ系焼結体の化学表面処理によって
耐蝕性を向上する方法を提案するものであって、通常、
Ajの表面処理として常用されている表面処理方法、す
なわち、陽極酸化処理、燐酸塩処理、クロム酸処理によ
る方法では耐食性、作業性および吸音性において十分で
ない。多孔質材料の表面処理の必須条件としては、多孔
質材料の内部まで均一な表面処理ができることであって
、表面張力の小さい処理液を使用することが望ましく、
それによって多孔質材料の毛細管現象により細孔の内部
まで化学処理することができる。また、多孔質材料の細
孔の内部に入った処理液は水洗によっても除去が困難な
ので薬液を水洗処理する工程のある表面処理方法は、逆
に残留した薬液でAjが腐食するので、水洗工程を含む
処理方法は避けるべきである。
The present invention proposes a method for improving the corrosion resistance of a porous AJ-based sintered body by chemical surface treatment.
The surface treatment methods commonly used for surface treatment of Aj, ie, methods using anodizing treatment, phosphate treatment, and chromic acid treatment, are not sufficient in terms of corrosion resistance, workability, and sound absorption. An essential condition for surface treatment of porous materials is that uniform surface treatment can be performed to the inside of the porous material, and it is desirable to use a treatment liquid with low surface tension.
Thereby, chemical treatment can be carried out to the inside of the pores due to capillary action of the porous material. In addition, it is difficult to remove the treatment liquid that has entered the pores of a porous material even by washing with water, so surface treatment methods that include a step of washing the chemical solution with water will conversely corrode Aj with the remaining chemical solution, so the washing step is difficult. Processing methods involving this should be avoided.

本発明に近い表面処理方法としては、JISに−563
3に規格化されティるもので、Cry、 、 ZnO1
H3po、 、ブチラール樹脂が錯塩として金属表面を
被覆する事によって防錆効果を得るものやまたクロメー
ト処理と呼ばれるCrO3−H2304の基本処理液に
よるクロム酸防錆皮膜による防錆処理があるが、何れに
おいてもクロム酸皮膜構造は、−Cr203・CrO3
・nl+20−のような組成で、あり、皮膜中の6価の
クロムが水に溶けて抑制剤として働くことが耐食性の理
由とされている。
As a surface treatment method similar to the present invention, JIS-563
3, Cry, , ZnO1
There are rust-preventing effects obtained by coating the metal surface with H3po, butyral resin as a complex salt, and rust-preventing treatment with a chromic acid rust-preventing film using a basic treatment solution of CrO3-H2304 called chromate treatment. The chromic acid film structure is -Cr203・CrO3
- It has a composition like nl+20-, and the reason for its corrosion resistance is that the hexavalent chromium in the film dissolves in water and acts as an inhibitor.

本発明表面処理による皮膜構造は−Cr2O3・Cr0
3−の非晶質ポリマーで、結晶水を含まない事を特長と
するもので、耐食性の理由として、(1)皮膜が水に不
溶性である為、皮膜保護の為の樹脂コートなしで長期間
の防錆力を保つ。
The film structure obtained by the surface treatment of the present invention is -Cr2O3・Cr0
3. It is an amorphous polymer that does not contain water of crystallization, and the reasons for its corrosion resistance are: (1) The film is insoluble in water, so it can be used for a long time without a resin coating to protect the film. maintains its rust-proofing properties.

(2)クロム酸皮膜が結晶水を含まないので、皮膜が緻
密で且つ表面にクラックが入りにくい為、腐食作用が起
りにくい。
(2) Since the chromic acid film does not contain water of crystallization, the film is dense and difficult to crack on the surface, making it difficult for corrosion to occur.

(3)焼成処理によりクロム酸皮膜を形成するために従
来の結晶水を含む皮膜と異なり、熱による劣化、クラッ
ク発生が起りに〈<、耐熱性を要する用途にも防錆効果
を発揮できる。
(3) Since a chromic acid film is formed by firing, unlike conventional films containing crystal water, it does not deteriorate or crack due to heat, so it can exhibit rust prevention effects even in applications that require heat resistance.

ことが本発明による防錆皮膜の耐食性の理由である。This is the reason for the corrosion resistance of the rust preventive film according to the present invention.

本発明に使用する表面処理剤は、アメリカのDIAMO
NOS)IAMROK社で開発されたもので、日本では
ダクロメット#100の商品名で市販されている。
The surface treatment agent used in the present invention is manufactured by DIAMO of America.
NOS) was developed by IAMROK and is commercially available in Japan under the trade name Dacromet #100.

ダクロメット#100の液組成と皮膜形成について説明
すると、液組成は無水クロム酸、還元剤、還元触媒およ
び凌加剤の20%水溶液より成り、液のpHは約4でほ
とんど遊離酸を含まない比重的1.1のクロム酸液であ
る。結晶水の含まない−Cr203 、 Cr03−の
結晶質ポリマーの防錆皮膜を得るには、皮膜形成後、3
00℃では約15分、または、250℃では約60分焼
成する事によって得られ、皮膜から6価クロムが溶出し
ない。
To explain the liquid composition and film formation of Dacromet #100, the liquid composition consists of a 20% aqueous solution of chromic anhydride, a reducing agent, a reducing catalyst, and an additive, and the pH of the liquid is approximately 4 and the specific gravity contains almost no free acid. Target 1.1 is a chromic acid solution. In order to obtain a rust-preventing film of -Cr203, Cr03- crystalline polymer that does not contain crystal water, after forming the film, 3 steps are required.
It is obtained by firing for about 15 minutes at 00°C or about 60 minutes at 250°C, and hexavalent chromium does not dissolve from the film.

多孔質金属へのダクロメット#100のコーティングは
、浸漬法、スプレー法、ロールコート法等の従来の手法
によって実施できるが、何れの手法においても、過剰の
含浸を避ける必要があり、例えば、 (1)浸漬法の場合は遠心分離機で過剰に含浸した処理
液を除去する。
Coating Dacromet #100 onto porous metal can be carried out by conventional methods such as dipping, spraying, and roll coating, but in any method, it is necessary to avoid excessive impregnation. ) In the case of the immersion method, remove the excessively impregnated processing liquid using a centrifuge.

(2)スプレー法の場合は吐出量を定め、スプレーガン
の運行条件を多孔質体の厚さ等に合せて定める。
(2) In the case of the spray method, determine the discharge amount and determine the operating conditions of the spray gun according to the thickness of the porous body, etc.

(3)ロールコート法の場合は処理液の送り量とロール
スピードで調整すれば良い。
(3) In the case of the roll coating method, the amount of feed of the processing liquid and the roll speed may be adjusted.

以上の何れの公知方法によっても多孔質体の空孔を塞ぐ
ことなく、多孔質体内部の金属表面に防錆皮膜を形成す
る事ができる。
Any of the above-mentioned known methods can form a rust-preventing film on the metal surface inside the porous body without blocking the pores of the porous body.

次に実施例について更に説明する。Next, examples will be further explained.

実施例 厚さ3閣の多孔質焼結アルミニウム板をダクロメット#
100の溶液中に浸漬し、静かに動かしながら多孔質板
中の空気を追いだし約2分間保持した後、遠心分離機で
約1100RPの回転数で余滴を除去し、焼成炉で30
0℃、15分間焼成して防錆皮膜を得た。
Example: A porous sintered aluminum plate with a thickness of 3 mm is coated with Dacromet #
The porous plate was immersed in a solution of 100 RP, and kept for about 2 minutes while moving gently to expel the air in the porous plate. After that, the remaining drops were removed using a centrifuge at a rotation speed of about 1100 RP, and the plate was heated in a firing furnace at 30 RP.
A rust preventive film was obtained by firing at 0°C for 15 minutes.

処理後の通気抵抗は、未処理の場合の1.2倍で吸音性
能に影響する空孔部の目詰りは見られなかった。
The ventilation resistance after the treatment was 1.2 times that of the untreated case, and no clogging of the pores that would affect the sound absorption performance was observed.

防錆力を比較するため、未処理材および従来のクロメー
ト処理材と共に月S Z 2371に記載されている塩
水噴霧試験方法により耐食試験を行なった。その結果は
第1表に示す如く、本発明処理品は極めて耐食性が優れ
ていることが分る。
In order to compare the anti-corrosion ability, a corrosion resistance test was conducted using the salt spray test method described in Monthly SZ 2371 with untreated material and conventional chromate treated material. The results are shown in Table 1, and it can be seen that the products treated according to the present invention have extremely excellent corrosion resistance.

第1表 〈発明の効果〉 以上詳しく説明したように、本発明は多孔率30〜60
%の多孔質Al系焼結体に結晶水を含まないクロム酸皮
膜を施してなる吸音特性および耐蝕性に優れた多孔質A
I系焼結材料であって、耐蝕性に優れたAI系焼結体に
更に化学表面処理を加えることによって以下に示す効果
が生じ、従来問題のあった使用場所、用途に充分に使用
でき、利用範囲は一段と向上した。
Table 1 <Effects of the Invention> As explained in detail above, the present invention has a porosity of 30 to 60.
% porous Al-based sintered body with a chromic acid coating that does not contain water of crystallization. Porous A has excellent sound absorption properties and corrosion resistance.
By further applying chemical surface treatment to the AI-based sintered body, which is an I-based sintered material and has excellent corrosion resistance, the following effects are produced, and it can be used in locations and applications where there have been problems in the past. The scope of use has further improved.

(1y多孔質の欠点であった耐食性が、通常のアルミニ
ウム合金の陽極酸化皮膜の耐食性である塩水噴霧600
時間以上の耐食性があるので通常のアルミニウム合金と
同様の環境で使用することができる。
(The corrosion resistance, which was a disadvantage of 1y porous, is the same as that of the anodic oxide film of ordinary aluminum alloys,
Since it has corrosion resistance over time, it can be used in the same environment as ordinary aluminum alloys.

(2)耐熱性があるので、排気、吸気部等の腐食性、熱
環境での防音材料として使用できる。
(2) Since it is heat resistant, it can be used as a soundproofing material in corrosive and hot environments such as exhaust and intake sections.

(3)防錆皮膜はほとんど無色なので素材色を損なう事
がない。
(3) The anti-corrosion film is almost colorless, so it does not damage the color of the material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多孔質AI系焼結材料を製造する
製造工程の一例の説明図である。 符号1・・・・・・原料粉末   2・・・・・・ホッ
パー3・・・・・・容器     4・・・・・・焼結
炉5・・・・・・焼結ゾーン  6・・・・・・冷却ゾ
ーン7・・・・・・多孔質AI系焼結材料 特許出願人 工ヌデーシー株式会社 代 理 人 弁理士 松 下 義 勝 弁護士 副 島 文 雄
FIG. 1 is an explanatory diagram of an example of a manufacturing process for manufacturing a porous AI-based sintered material according to the present invention. Code 1... Raw material powder 2... Hopper 3... Container 4... Sintering furnace 5... Sintering zone 6... ...Cooling zone 7... Porous AI-based sintered material patent applicant KonuDC Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Attorney Deputy Fumiyu Shima

Claims (1)

【特許請求の範囲】[Claims] Alを主成分とし、添加成分としてMg、Mn、Ni、
Cu及びSiの中1種若しくは2種を含有する混合粉末
を、Alと反応しない容器中で、無加圧、非酸化性雰囲
気下で焼結した多孔率30〜60%の多孔質Al系焼結
体に結晶水を含まないクロム酸皮膜を施してなることを
特徴とする多孔質Al系焼結材料。
The main component is Al, and the additional components are Mg, Mn, Ni,
A porous Al-based sintered material with a porosity of 30 to 60% is produced by sintering a mixed powder containing one or two of Cu and Si in a container that does not react with Al under no pressure and in a non-oxidizing atmosphere. A porous Al-based sintered material characterized in that the body is coated with a chromic acid film that does not contain water of crystallization.
JP4532285A 1985-03-06 1985-03-06 Porous al sintered material Pending JPS61204302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4532285A JPS61204302A (en) 1985-03-06 1985-03-06 Porous al sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4532285A JPS61204302A (en) 1985-03-06 1985-03-06 Porous al sintered material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28106790A Division JPH03138303A (en) 1990-10-19 1990-10-19 Manufacture of porous al series sintered material

Publications (1)

Publication Number Publication Date
JPS61204302A true JPS61204302A (en) 1986-09-10

Family

ID=12716070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4532285A Pending JPS61204302A (en) 1985-03-06 1985-03-06 Porous al sintered material

Country Status (1)

Country Link
JP (1) JPS61204302A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514833A (en) * 1978-07-17 1980-02-01 Babcock Hitachi Kk Heat-treating method
JPS5887206A (en) * 1981-11-18 1983-05-25 N D C Kk Porous sintered metallic material and its production
JPS59166681A (en) * 1983-03-14 1984-09-20 Toshiba Corp Corrosion resistant member
JPS59170276A (en) * 1983-03-14 1984-09-26 Toshiba Corp Sintered member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514833A (en) * 1978-07-17 1980-02-01 Babcock Hitachi Kk Heat-treating method
JPS5887206A (en) * 1981-11-18 1983-05-25 N D C Kk Porous sintered metallic material and its production
JPS59166681A (en) * 1983-03-14 1984-09-20 Toshiba Corp Corrosion resistant member
JPS59170276A (en) * 1983-03-14 1984-09-26 Toshiba Corp Sintered member

Similar Documents

Publication Publication Date Title
US4228203A (en) Method of forming aluminum coating layer on ferrous base alloy workpiece
US5283131A (en) Zinc-plated metallic material
JPH04228579A (en) Method for treating metal surface with phosphate
US5260099A (en) Method of making a gas turbine blade having a duplex coating
JPH0774455B2 (en) Method for treating zinc or zinc alloy substrate by chemical conversion, and treatment bath therefor
US20030098092A1 (en) Ferrate conversion coatings for metal substrates
JPS61204302A (en) Porous al sintered material
CA1156523A (en) Reduction of loss of zinc by vaporization when heating zinc-aluminum coatings on ferrous metal base
KR100326653B1 (en) Manufacturing method of hot-dip galvanized steel sheet containing chromate treatment with excellent black resistance and whiteness
US5045130A (en) Solution and process for combined phosphatization
JPH0713242B2 (en) Surface treatment method for sintered machine parts
JPH08319557A (en) Method for modifying surface of steel utilizing diffusing dilution of aluminum
US2719095A (en) Production of corrosion-resistant coatings on copper infiltrated ferrous skeleton bodies
RU2036978C1 (en) Pieces protection cover application method
JPS59116381A (en) Surface treatment of zinc and zinc alloy
JPS6411112B2 (en)
US3948689A (en) Chromic-phosphoric acid coated aluminized steel
JPH03277761A (en) Aluminized steel sheet for engine exhaust gas system material excellent in corrosion resistance
JP3220012B2 (en) Hard plating film coated member and method of manufacturing the same
US5795662A (en) Zincate-treated article of Al-Mg-Si base alloy and method of manufacturing the same
JPS5826432B2 (en) Manufacturing method for corrosion-resistant parts for high-temperature halogen atmospheres
JP2002060959A (en) Galvanized steel sheet excellent in corrosion resistance and adhesive strength of coating, chemically treating solution and chemical conversion treating method
US2875111A (en) Method of forming phosphate coatings on drawn wire
JP3502332B2 (en) Molten metal plating bath member and manufacturing method thereof
SU1731875A1 (en) Method of complex alloying of steel products by thermal diffusion