JPS61204301A - Production of sintered body of heat resistant material - Google Patents

Production of sintered body of heat resistant material

Info

Publication number
JPS61204301A
JPS61204301A JP4363085A JP4363085A JPS61204301A JP S61204301 A JPS61204301 A JP S61204301A JP 4363085 A JP4363085 A JP 4363085A JP 4363085 A JP4363085 A JP 4363085A JP S61204301 A JPS61204301 A JP S61204301A
Authority
JP
Japan
Prior art keywords
resistant material
synthetic resin
degreasing
heat resistant
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4363085A
Other languages
Japanese (ja)
Other versions
JPH0617488B2 (en
Inventor
Hiroyuki Okamura
岡村 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP4363085A priority Critical patent/JPH0617488B2/en
Publication of JPS61204301A publication Critical patent/JPS61204301A/en
Publication of JPH0617488B2 publication Critical patent/JPH0617488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered body of a heat resistant material having good quality by mixing a small amt. of binder and short fibers of a synthetic resin having an adequate size with heat resistant material powder, subjecting the mixture composed thereof to injection molding and degreasing the molding then calcining the molding at a high temp. thereby degreasing easily a green compact having high strength. CONSTITUTION:A small amt. of org. binder such as wax and the short fibers of the synthetic resin having 10-40mum diameter and 0.3-2mm length are mixed with the heat resistant material powder such as ceramic raw material powder or metallic powder. The above-mentioned synthetic resin fibers made of PP, nylon, acrylic, etc. are more preferable. The above-mentioned mixture is injection-molded by a metallic mold and the injection molding is subjected to die blanking in succession thereto by which the green compact reinforced with the short fibers of the synthetic resin is obtd. without damage. The green compact is then degreased. The degreasing is easily executed as the org. binder is used in the smaller ratio. The gree compact after the degreasing is subjected to the high-temp. calcination and the sintered body of the heat resistant material having good quality without cracking, etc. is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度の高い耐熱材料粉末射出成形体を得ると
ともに該射出成形体の脱脂を容易にした、耐熱材料焼結
体のgl遣方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for glazing a heat-resistant material sintered body, which provides a heat-resistant powder injection-molded body with high strength and facilitates degreasing of the injection-molded body. Regarding.

(従来の技術及びその問題点) 従来、製品の強度を増強させるために、製品中に無機質
繊維や合成樹脂繊維をフィラーとして混入させたものは
FRPなどとして広く知られており、またセラミック製
品においてもその強度を高めるためにスチールなどの耐
熱性金属繊維、炭化珪素などのセラミック繊維を配合し
たもの(例えば、特開昭59−152258号広報参照
)が知られている。
(Prior art and its problems) Conventionally, products in which inorganic fibers or synthetic resin fibers are mixed as fillers in order to increase the strength of products are widely known as FRP, etc. In order to increase its strength, it is known that heat-resistant metal fibers such as steel and ceramic fibers such as silicon carbide are blended (see, for example, JP-A-59-152258).

しかしこれらは、はとんどの場合最終製品の強度を高め
ることを目的としている。
However, these are mostly intended to increase the strength of the final product.

他方、耐熱材料粉末から焼結体を製造する場合には、ま
ず耐熱材料粉末に有機バインダーを混合することによっ
て可塑性を付与させ、次いで一定形状に加圧成形し、同
時に該加圧成形体に強度を与え、そしてから囮、詣(m
jバインダー纂理)LThfi−高温焼成するのである
が、そ)した有機バインダーとしては、ポリプロピレン
、ポリエチレンなどの樹脂、更にパラフィン、ワックス
などが使用されている。しかし、こうした有機バインダ
ーの混合量は相当なものであり(30重量%に及ぶこと
もある)、従ってその脱脂には長時間を要し、脱脂後の
成形体は緻密度が低く、よって焼成品も優良なものが得
られない。
On the other hand, when producing a sintered body from a heat-resistant material powder, the heat-resistant material powder is first mixed with an organic binder to impart plasticity, then pressure-molded into a certain shape, and at the same time imparts strength to the pressed-formed body. give a decoy, a pilgrimage (m
J Binder Construction) LThfi - High temperature firing is performed, and the organic binders used include resins such as polypropylene and polyethylene, as well as paraffin and wax. However, the amount of such organic binder mixed is considerable (sometimes up to 30% by weight), so degreasing takes a long time, and the compact after degreasing has a low density, resulting in a fired product. I can't get anything of good quality either.

ところで、有機バインダーとしてポリエチレン、ポリプ
ロピレンなとの合成樹脂材料を使用した場合は、加圧成
形体(グリーン体)の強度は上がり、金型からの取り出
し時にグリーン体が破損する事故は少なくなるが、脱脂
工程においては分子量が大きいことのため分解しに(<
、脱脂時間も艮(なるばかりでな(、グリーン体にクラ
ックが発生することも多い、一方、パラフィン、ワック
スを使用した場合は、脱脂は良好に行えるが、グリーン
体の強度が低(なり、特に複雑形状品の金型からの取り
外しが困難である。
By the way, when a synthetic resin material such as polyethylene or polypropylene is used as an organic binder, the strength of the pressure-molded body (green body) increases and the number of accidents in which the green body is damaged when taken out from the mold is reduced. In the degreasing process, it is difficult to decompose (<
However, if paraffin or wax is used, degreasing can be done well, but the strength of the green material is low ( In particular, it is difficult to remove products with complex shapes from the mold.

従って業界では、強度があり、かつ脱脂し易いグリーン
体の提供が待望されていた。
Therefore, there has been a long-awaited demand in the industry for a green body that is strong and easy to degrease.

(問題を解決するための手段) 本発明は以上に鑑みなされたものであり、本発明によれ
ば有機バインダーの量を大幅に減少させたにも拘わらず
、グリーン体の強度を高めることができ、よって脱脂も
容易であって、焼成品も優良なものが得られるのである
(Means for Solving the Problem) The present invention has been made in view of the above, and according to the present invention, the strength of the green body can be increased even though the amount of organic binder is significantly reduced. Therefore, degreasing is easy, and baked products of good quality can be obtained.

本発明はすなわち、耐熱材料粉末に少量の有機パイング
ー及び直径10〜40/7m%長さ0.3〜2■の合成
樹脂短繊維を混合した後、該混合物を金型にて射出成形
し、引き継いで前記射出成形体を型抜きし、次いで該成
形体を脱脂した後、高温焼成することを特徴とする耐熱
材料焼結体の製造方法である。
Specifically, the present invention involves mixing a small amount of organic pineapple and short synthetic resin fibers with a diameter of 10 to 40/7 m and a length of 0.3 to 2 cm into a heat-resistant material powder, and then injection molding the mixture in a mold. The method for producing a heat-resistant material sintered body is characterized in that the injection-molded body is subsequently cut out, and then the molded body is degreased and then fired at a high temperature.

本発明では、耐熱材料粉末に有機バインダーと更に合成
樹脂短繊維を混合したことにより、グリーン体の強度が
高められただけでな(、脱脂処理が容易に実施できるの
である。
In the present invention, by mixing an organic binder and short synthetic resin fibers with the heat-resistant material powder, not only the strength of the green body is increased (but also degreasing treatment can be carried out easily).

合成樹脂繊維は艮いものであっては、耐熱材料粉末中に
隅々まで充分に混合されず、グリーン体の端部が弱(な
って金型から離型するときに欠損したり、また脱脂炉へ
搬入されるまでのグリーン体に割れ、欠けが生じたりす
る。また、微粒子のごとく径の短いものであっては、補
強効果が発揮されない。
If the synthetic resin fiber is thin, it will not be thoroughly mixed into the heat-resistant material powder, and the edges of the green body will be weak (and may break when released from the mold, or may be damaged in the degreasing furnace). The green body may be cracked or chipped before it is transported to the factory.Furthermore, if the green body is short in diameter, such as fine particles, the reinforcing effect will not be exhibited.

従ってその繊維は、耐熱材料粉末と容易に充分混合し得
、かつ補強材となり得るサイズであることが必要で、実
験の結果、直径10〜40μ11長さ0゜3〜2mmの
ものが好ましい。
Therefore, it is necessary that the fibers have a size that allows them to be easily and sufficiently mixed with the heat-resistant material powder and can be used as a reinforcing material, and as a result of experiments, it is preferable that the fibers have a diameter of 10 to 40 .mu.11 and a length of 0.degree. to 3 to 2 mm.

また、a雑の融点は、加熱成形時に有機パイングーとと
もに溶融しでしまうものであっては、成形体の補強材と
しての役割が果たし得ないので、それはバインダーより
も高融点のものでなければならない。
In addition, the melting point of the miscellaneous material must be higher than that of the binder, since if it melts together with the organic paint during heat molding, it cannot serve as a reinforcing material for the molded product. .

そしてまた該繊維は、脱脂工程においで分解消失するも
のが好ましく、高温焼成時に焼成体中に分解しないで残
るようなものであってはいけない。
Furthermore, it is preferable that the fibers decompose and disappear during the degreasing process, and should not remain undecomposed in the fired body during high-temperature firing.

以上の条件を備えた好適な繊維は、合成樹脂製、特にポ
リプロピレン、ナイロン、アクリル樹脂製のものである
Suitable fibers meeting the above conditions are those made of synthetic resin, particularly polypropylene, nylon, and acrylic resin.

(実施例) セラミック原料粉末、金属粉末などの耐熱材料粉末にワ
ックス、パラフィンなどの低融点有機バインダーを添加
し流動性を付与した後、ポリプロピレン、ナイロンなど
の短繊維を更に添加して混合体を造った。
(Example) After adding a low melting point organic binder such as wax or paraffin to heat-resistant material powder such as ceramic raw material powder or metal powder to give fluidity, short fibers such as polypropylene or nylon are further added to form a mixture. I built it.

次ぎに該混合体を短繊維が溶融せず、有機バインダーが
流動する温度範囲(ポリプロピレン使用の場合、80〜
120℃)で射出成形すると、グリーン体内部にはfJ
S1図(B)(グリーン体の一部拡大図)に示すごとく
繊維が成形型内における該混合体の供給流れ方向に沿っ
て略一様に並ぶ。
Next, the mixture is heated within a temperature range where the short fibers do not melt and the organic binder flows (in the case of polypropylene, 80 to
When injection molding is carried out at 120℃), fJ is formed inside the green body.
As shown in Figure S1 (B) (partially enlarged view of the green body), the fibers are arranged substantially uniformly along the supply flow direction of the mixture in the mold.

なお、図中1はグリーン体、2は耐熱材料粒子、3は有
機バインダー、4は合成樹脂短繊維を示す。
In the figure, 1 is a green body, 2 is a heat-resistant material particle, 3 is an organic binder, and 4 is a synthetic resin short fiber.

また、第2図は合成樹脂短繊維が配合されていない従来
例を示す。
Moreover, FIG. 2 shows a conventional example in which short synthetic resin fibers are not blended.

以下に、アルミナ粉末及び窒化珪素粉末を用いて射出成
形によりグリーン体を製造した例を挙げる。
An example in which a green body was manufactured by injection molding using alumina powder and silicon nitride powder will be given below.

例1: アルミナ粉末100重量部にパラフィン(融点50〜7
0℃)15重量部、ポリプロピレン繊維(直径20〜3
0μm1長さ0.5〜1m+e) 5重量部を添加、混
合し、これを金型中で70〜90℃で射出成形した。
Example 1: Add paraffin (melting point 50 to 7) to 100 parts by weight of alumina powder.
0°C) 15 parts by weight, polypropylene fiber (diameter 20-3
0 μm 1 length 0.5 to 1 m + e) 5 parts by weight were added and mixed, and the mixture was injection molded in a mold at 70 to 90°C.

例2: 窒化珪素粉末100重量部にポリエチレン(融点105
℃)18重量部、アクリル繊維(直径20〜30μ鴫、
長さ0.5〜lll111)5重量部を添加、混合し、
これを金型中で120〜150℃で射出成形した。
Example 2: 100 parts by weight of silicon nitride powder and polyethylene (melting point 105
℃) 18 parts by weight, acrylic fiber (diameter 20-30 μm,
Add and mix 5 parts by weight (length 0.5 to lll111),
This was injection molded in a mold at 120-150°C.

例1.2によるグリーン体は、合成樹脂短繊維無添加の
従来品に比べ、強度が非常に向上し、射出成形においで
金型から成形品を取り出す際、エジェクタービンにより
それが破損されることは無かった。
The green body according to Example 1.2 has greatly improved strength compared to conventional products without the addition of short synthetic resin fibers, and when taking out the molded product from the mold during injection molding, it will not be damaged by the ejector turbine. There was no.

(発明の効果) 以上のとおり本発明によれば、有機バインダーの添加量
を非常に少なくすることができたのでグリーン体の脱脂
を容易にし得たばかりでなく、合成樹脂短繊維を配合し
たため、グリーン体の強度が非常に向上されているので
エジェクタービンによる金型からのグリーン体取出し時
にグリーン体が破損されることは無(なった。
(Effects of the Invention) As described above, according to the present invention, the amount of organic binder added can be extremely reduced, making it easy to degrease green bodies. Since the strength of the green body has been greatly improved, there is no chance of the green body being damaged when it is removed from the mold by an ejector turbine.

本来バイングー使用量は、脱脂が容易でないため極力少
量としたいのであるが、余りに少なくすると成形時のグ
リーン体での流動性不足の問題発生のほか、グリーン体
がもろくなり取り扱い時に損傷が生じ易(なるので、従
来有機パイングーの量を削減するには自ずと一定の限界
があった。
Normally, the amount of bangu used should be kept as small as possible since degreasing is not easy. However, if it is too small, not only will the green body have insufficient fluidity during molding, but the green body will become brittle and easily damaged during handling ( Therefore, there was naturally a certain limit to reducing the amount of organic pine goo in the past.

しかし本発明では、合成樹11w短繊維を添加すること
によで、従来の限界を打ち破り、良品質の耐熱材料焼結
体の製造を容易としたのである。
However, in the present invention, by adding synthetic 11w short fibers, the conventional limitations have been overcome and it has become easier to produce a high quality heat-resistant material sintered body.

そして更に、金型から取り出されたグリーン体の脱脂処
理(脱バイングー処理)においては、グリーン体を有機
バインダーの沸点付近へ急昇温しでも、グリーン体に割
れが生じる危険は無いので、従来法の約2/3程度の時
間で脱脂ができるという優れた有利性がある。
Furthermore, in the degreasing treatment (debinding treatment) of the green body taken out from the mold, there is no risk of cracking in the green body even if the temperature of the green body is rapidly raised to near the boiling point of the organic binder, so conventional methods are used. It has the great advantage of being able to degrease in about two-thirds of the time.

従来法では脱脂時間を短縮しようとして有機バインダー
の沸点付近へ急昇温すると、有機バイングーの気化膨張
圧力などによりグリーン体に割れが生じるため、昇温こ
う配を低くしで脱脂しなければならず、よって長い脱脂
時間を要したのであるが、本発明では合成樹mt短繊維
でグリーン体が補強されているために急昇温脱脂処理を
しても、グリーン体に割れが生じないのである。
In the conventional method, when the temperature is rapidly raised to near the boiling point of the organic binder in an attempt to shorten the degreasing time, cracks occur in the green body due to the vaporization expansion pressure of the organic binder, so it is necessary to degrease with a low temperature increase gradient. Therefore, a long degreasing time was required, but in the present invention, the green body is reinforced with synthetic resin mt staple fibers, so even if the green body is subjected to rapid temperature degreasing treatment, no cracks occur in the green body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例のグリーン体の形状(A)とその
一部断面拡大図を示し、第2図は従来例を示す。 1ニゲリ一ン体、   2:[熱材料粉末粒子、3:有
機バインダー、4:合成樹脂短繊維特許出願人 住友重
機械工業株式会社 第1図 第2図
FIG. 1 shows the shape (A) of a green body according to an embodiment of the present invention and an enlarged partial sectional view thereof, and FIG. 2 shows a conventional example. 1: Nigel integrally, 2: thermal material powder particles, 3: organic binder, 4: synthetic resin short fiber Patent applicant: Sumitomo Heavy Industries, Ltd. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)耐熱材料粉末に少量の有機バインダー及び直径1
0〜40μm、長さ0.3〜2mmの合成樹脂短繊維を
混合した後、該混合物を金型にて射出成形し、引き継い
で前記射出成形体を型抜きし、次いで該成形体を脱脂し
た後、高温焼成することを特徴とする耐熱材料焼結体の
製造方法。
(1) Heat-resistant material powder with a small amount of organic binder and diameter 1
After mixing synthetic resin short fibers with a length of 0 to 40 μm and a length of 0.3 to 2 mm, the mixture was injection molded in a mold, the injection molded body was subsequently cut out, and the molded body was then degreased. A method for producing a heat-resistant material sintered body, which is then fired at a high temperature.
(2)合成樹脂短繊維がポリプロピレン製である特許請
求の範囲第1項記載の耐熱材料焼結体の製造方法。
(2) The method for producing a heat-resistant material sintered body according to claim 1, wherein the short synthetic resin fibers are made of polypropylene.
(3)合成樹脂短繊維がナイロン製である特許請求の範
囲第1項記載の耐熱材料焼結体の製造方法。
(3) The method for producing a heat-resistant material sintered body according to claim 1, wherein the short synthetic resin fibers are made of nylon.
(4)合成樹脂短繊維がアクリル製である特許請求の範
囲第1項記載の耐熱材料焼結体の製造方法。
(4) The method for producing a heat-resistant material sintered body according to claim 1, wherein the synthetic resin short fibers are made of acrylic.
JP4363085A 1985-03-07 1985-03-07 Method for manufacturing heat-resistant material sintered body Expired - Lifetime JPH0617488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4363085A JPH0617488B2 (en) 1985-03-07 1985-03-07 Method for manufacturing heat-resistant material sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4363085A JPH0617488B2 (en) 1985-03-07 1985-03-07 Method for manufacturing heat-resistant material sintered body

Publications (2)

Publication Number Publication Date
JPS61204301A true JPS61204301A (en) 1986-09-10
JPH0617488B2 JPH0617488B2 (en) 1994-03-09

Family

ID=12669175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4363085A Expired - Lifetime JPH0617488B2 (en) 1985-03-07 1985-03-07 Method for manufacturing heat-resistant material sintered body

Country Status (1)

Country Link
JP (1) JPH0617488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070596A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including fragmented cellulose fibers
JP2014519546A (en) * 2011-04-13 2014-08-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing a component using powder injection molding, preferably based on the use of organic yarns or fibers together with the use of supercritical CO 2

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070596A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including fragmented cellulose fibers
JP2014519546A (en) * 2011-04-13 2014-08-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing a component using powder injection molding, preferably based on the use of organic yarns or fibers together with the use of supercritical CO 2

Also Published As

Publication number Publication date
JPH0617488B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
US4277539A (en) Refractory articles and composite metal-ceramic articles (cermets) prepared from a silicate-containing aluminum titanate
US5993726A (en) Manufacture of complex shaped Cr3 C2 /Al2 O3 components by injection molding technique
US4464192A (en) Molding process for fiber reinforced glass matrix composite articles
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
CN103406973B (en) A kind of alcohol aqueous gel-casting prepares the moulding process of porous or dense material
EP0125912A1 (en) Method of producing ceramic parts
JPH03232937A (en) Manufacture of metallic body by injection molding
CN112789128A (en) Method for producing a component of complex shape by pressure sintering starting from a preform
Frolova et al. Molding features of silicon carbide products by the method of hot slip casting
DD155145A5 (en) CASTED COMPOSITE PRODUCT FROM REFRACTORY MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP2019194009A (en) Binder for injection molding composition
JPS61204301A (en) Production of sintered body of heat resistant material
Ezugwu et al. Manufacture and properties of ceramic cutting tools: a review
US20020131886A1 (en) Method of manufacturing an object, such as a form tool for forming threaded fasteners
CN114907133B (en) Silicon-based ceramic core material, preparation method and silicon-based ceramic core
RU2707307C1 (en) Method of forming semi-finished articles of complex shape from silicon powder
EP0652855B1 (en) Method of producing powder-form moulding compounds for the injection-moulding of ceramic materials, and the use of such compounds
JPH0770610A (en) Method for sintering injection-molded product
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPH0224789B2 (en)
CA1273184A (en) Method for fabricating of large cross section injection molded ceramic shapes
JPH1150107A (en) Rapid powder compaction
JP3872714B2 (en) Method for producing molding composition for powder sintering, composition produced by the method, sintering method thereof, and powder sintered member thereof