JPS61203670A - Production of solid-state image pick-up device - Google Patents

Production of solid-state image pick-up device

Info

Publication number
JPS61203670A
JPS61203670A JP60045131A JP4513185A JPS61203670A JP S61203670 A JPS61203670 A JP S61203670A JP 60045131 A JP60045131 A JP 60045131A JP 4513185 A JP4513185 A JP 4513185A JP S61203670 A JPS61203670 A JP S61203670A
Authority
JP
Japan
Prior art keywords
film
layer
region
well region
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60045131A
Other languages
Japanese (ja)
Inventor
Nobuo Suzuki
伸夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60045131A priority Critical patent/JPS61203670A/en
Publication of JPS61203670A publication Critical patent/JPS61203670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To dissolve the transfer loss of the charges caused by contamination, by a method wherein a two-layer construction buffer insulative film consisting of a heat-oxide film and an oxide-resistive layer is used as an insulation film for a mask material, a gate insulation film, and an insulation film of the transfer channel for charges so as not to expose the surface of a substrate. CONSTITUTION:An oxide film 22 and a silicon nitride film 23 are laminated on an N-type silicon substrate 21 to form a two-layer structure buffer film. Then, boron is ion-implanted to form a shallow P-well region 24a and a deep P-well region 24b. Then, the first N<+> layer 25 for the sensitive picture element section is formed on the P-well region 24a, and the second N<+> layer 26 for an embedded channel and a P<+> region 27 for separating the picture elements are formed on the other P-well region 24b respectively. And a field oxide film 28 is formed. Then, the first layer transfer electrodes 29a and 29b and the second layer transfer electrode 32 are formed on the nitride film 23 in the sensitive picture element region. Then, N<+> type source and drain regions 36 and 37 are formed on the P-well region 24b in the output transistor region so as to produce the desired image sensor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体撮像装置の製造方法に関し、特に画像欠陥
の減少対策に改善を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a solid-state imaging device, and particularly aims at improving measures for reducing image defects.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、固体撮像装置例えば縦型オーバーフa−ドレイン
構造を有するインターライン転送方式イメージセンサと
して第2図に示すものが知られている。
2. Description of the Related Art Conventionally, a solid-state imaging device, such as an interline transfer type image sensor having a vertical overflow A-drain structure, as shown in FIG. 2 is known.

図中の1は、N型のシリコン基板である。この基板lの
表面には、浅いPウェル領域2aと深いPウェル領域2
bが形成されている。一方の浅いPウェル領域2aの表
面には、感光画素用の第1ON @3が形成されている
。他方の深いPウェル領域2bの表面には、前記N 層
3からの信号電荷を読み出すための埋め込みチャネル用
の第2のN 層4及びチャ木ルストッパ用(画素分離用
)のP 領域5が形成されている。前記基板1上には絶
縁膜6が設けられ、この絶縁膜6の内部には第11fi
の転送電極7a。
1 in the figure is an N-type silicon substrate. The surface of this substrate l has a shallow P well region 2a and a deep P well region 2.
b is formed. A first ON@3 for a photosensitive pixel is formed on the surface of one of the shallow P well regions 2a. On the surface of the other deep P well region 2b, a second N layer 4 for a buried channel for reading signal charges from the N layer 3 and a P region 5 for a channel stopper (for pixel isolation) are formed. has been done. An insulating film 6 is provided on the substrate 1, and an eleventh fi
transfer electrode 7a.

7b及び第2層の転送電極8が設けられている。7b and a second layer transfer electrode 8 are provided.

前記絶縁膜6上には、感光画素用の第1のN+@3に対
応する部分が開口された例えばAIからなるシールド膜
9、及び保護膜IOが設けられている。
On the insulating film 6, a shield film 9 made of, for example, AI and having an opening corresponding to the first N+@3 for the photosensitive pixel, and a protective film IO are provided.

ところで、上記構造のイメージセンサを製造する場合、
以下の工程等でシリコン基板1の地肌が露出することが
ある。
By the way, when manufacturing an image sensor with the above structure,
The bare surface of the silicon substrate 1 may be exposed in the following steps.

■ Pウヱル領域2a、2bを形成するために打ち込ん
だ不純物を活性化するためのプランピング後の全面剥離
工程。
(2) Full-surface peeling process after plumping to activate impurities implanted to form P well regions 2a and 2b.

■ 第1層の転送電極7a、7b及び第2層の転送電極
8下の絶縁1lW6を形成する工程。
(2) Step of forming the insulation 11W6 under the first layer transfer electrodes 7a, 7b and the second layer transfer electrode 8.

しかしながら、こうした時にバクテリアに代表されるよ
うな有機物の死骸が基板1表面に付着した場合、大きな
問題が生ずる。即ち、上記有機物中には燐が含まれてい
るため、熱処理工程ではこの燐が拡散源となり、通常の
ウェハプロセス工程を完了した時点では大きさが数μm
でかつその表面濃度が約10  crn  と非常に高
濃度になっている場合がある。例えば、第2図に示す如
く有機物の死骸11が埋め込みチャ木ル用の第2のN 
 @4に付着1..た場合、通常のウェハプロセス工程
を完了した時点では、その地点での濃度は他の地点より
濃くなり、その地点での表面電位が深くなる。従って、
転送されてきた電荷は、そこで一部トラップされ電荷の
転送損失をもたらす。
However, in such a case, if dead organic matter such as bacteria adheres to the surface of the substrate 1, a big problem will occur. In other words, since the above organic matter contains phosphorus, this phosphorus becomes a diffusion source during the heat treatment process, and when the normal wafer processing process is completed, the size is several μm.
In some cases, the surface concentration is as high as about 10 crn. For example, as shown in FIG. 2, the dead organic matter 11 is buried in the second N
Attached to @4 1. .. In this case, when the normal wafer processing steps are completed, the concentration at that point is higher than other points, and the surface potential at that point becomes deeper. Therefore,
Some of the transferred charges are trapped there, resulting in a charge transfer loss.

また、例えばNa  等の金属不純物が基板1表面に付
着した場合、熱処理工程終了後ではそれらは結晶欠陥に
なる。そして、これらの結晶欠陥には、酸素イオンが供
給されると成長していく傾向があり、通常のウェハプロ
セス工程終了時点には数μm〜数十μmになる場合があ
る。
Furthermore, if metal impurities such as Na are attached to the surface of the substrate 1, they will become crystal defects after the heat treatment process is completed. These crystal defects tend to grow when oxygen ions are supplied, and may reach several micrometers to several tens of micrometers at the end of a normal wafer process.

その結果、こうした結晶欠陥12が感光画素用のN 層
3に存在した場合、再生画面上では白点となる。また、
結晶欠陥z2が埋め込みチャ木ル用の第2のN  11
14にあった場合には、再生画面上では白線となり画像
不良を招く。
As a result, if such a crystal defect 12 exists in the N layer 3 for the photosensitive pixel, it will appear as a white spot on the reproduced screen. Also,
The second N 11 for the crystal defect z2 is embedded
14, a white line appears on the playback screen, causing image defects.

こうしたことから、基板1の地肌は出来る限り露出しな
いようにし、なおかつ酸素イオンが基板表面に供給され
ないようにすることが望まれている。
For these reasons, it is desired to prevent the bare surface of the substrate 1 from being exposed as much as possible and to prevent oxygen ions from being supplied to the surface of the substrate.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、工程の途中
で半導体基板表面が露出するのを回避し、有機物等によ
る汚染に起因する電荷の転送損失をなくすとともに、基
板への酸素供給に起因する画像不良を回避1.得る固体
撮偉装置の製造方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and it avoids exposing the semiconductor substrate surface during the process, eliminates charge transfer loss caused by contamination with organic substances, etc., and eliminates charge transfer loss caused by oxygen supply to the substrate. Avoiding image defects 1. The object of the present invention is to provide a method for manufacturing a solid-state imaging device.

〔発明の概要〕[Summary of the invention]

本発明は、熱酸比換と耐酸化性膜からなる2層構造のバ
ッファ絶縁膜を、フィールド酸化膜を形成する際のマス
ク材として用い、かつ更に出力トランジスタ領域のゲー
ト絶縁膜及び電荷の転送路の絶縁膜として用いることに
より、画像不良に関連する基板表面を通常のウェハ工程
で露出しないようにし、もって電荷の転送損失の解消、
画像不良の回避を図ったことを骨子とする。
The present invention uses a two-layered buffer insulating film consisting of a thermal acid conversion film and an oxidation-resistant film as a mask material when forming a field oxide film, and further uses a gate insulating film in an output transistor region and a charge transfer film. By using it as an insulating film for the circuit, it prevents the substrate surface related to image defects from being exposed during normal wafer processing, thereby eliminating charge transfer loss.
The main point is to avoid image defects.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をインターライン転送方式イメージセンサ
の製造に適用した場合について第1図(a)〜(至)を
参照して説明する。なお、同図(al〜σ)において、
左側の図はフィールド領域を、中央の図は感光画素領域
を、右側の因は出力トランジスタ領域を夫々示す。
Hereinafter, a case in which the present invention is applied to manufacturing an interline transfer type image sensor will be described with reference to FIGS. In addition, in the same figure (al~σ),
The figure on the left shows the field area, the middle figure shows the photosensitive pixel area, and the figure on the right shows the output transistor area.

(1)  まず、例えばN型のシリコン基板21上に9
50℃で熱酸化して厚さ約400X程度の酸化膜22を
形成した後、その上に厚さ約700λ程度のシリコン窒
化膜23を堆積し、2層構造のバッファ絶縁膜を形成し
た(第1図(a1図示)。
(1) First, for example, place 9 on an N-type silicon substrate 21.
After forming an oxide film 22 with a thickness of about 400X by thermal oxidation at 50°C, a silicon nitride film 23 with a thickness of about 700λ was deposited thereon to form a buffer insulating film with a two-layer structure. Figure 1 (a1 diagram).

つづいて、前記基板21に例えばボロンをイオン注入し
、熱拡散することにより浅いPウェル領域24a1深い
Pウェル領域24b  を所定の位置に形成した(第1
図(b)図示)。次いで、Pウェル領域24m  に感
光画素部用の第1のN 層25を、他方のPウェル領域
24b  K前記N+層25からの信号電荷を読み出す
ための埋め込みチャネル用の第2ON+層26及び画素
分離用のP 領域27を夫々形成した。更に、感光画素
領域、出力トランジスタ領域を除く前記シリコン窒化I
J23を選択的にエツチングした後、フィールド酸化を
行なってフィールド領域に厚いフィールド酸化膜28を
形成した(第1図(e)図示)。
Next, boron, for example, was ion-implanted into the substrate 21 and thermally diffused to form a shallow P-well region 24a1 and a deep P-well region 24b at predetermined positions (first
Figure (b) shown). Next, a first N layer 25 for a photosensitive pixel portion is placed in the P well region 24m, and a second ON+ layer 26 for a buried channel for reading signal charges from the N+ layer 25 and a pixel isolation layer are placed in the other P well region 24b. A P region 27 was formed for each. Furthermore, the silicon nitride I except for the photosensitive pixel area and the output transistor area
After selectively etching J23, field oxidation was performed to form a thick field oxide film 28 in the field region (as shown in FIG. 1(e)).

(2)次に、感光画素領域の窒化膜23上に第1層目の
転送電極29m、29b  を、かつ出力トランジスタ
領域の窒化膜23上にゲート電極30を夫々形成した。
(2) Next, first layer transfer electrodes 29m and 29b were formed on the nitride film 23 in the photosensitive pixel region, and a gate electrode 30 was formed on the nitride film 23 in the output transistor region.

つづいて、これら電極29m、29b、30の上部を低
温ウェット法で酸化し、酸化膜31を形成し念。次いで
、第2城目の転送電極32を形成した後、上記低温ウェ
ット法で再度酸化17、酸化膜33を形成した(第1図
(d)図示)。この際、感光画素領域の光入射部34、
出力トランジスタ領域のソース/ドレイン部35はほと
んど酸化されないため、シリコン窒化膜23が露出され
ている。更に、前記転送電極298,29b  及びゲ
ート電極3Qをマスクとして上記光入射部34、ソース
/ドレイン部35のシリコン窒化膜23をCDB(Ch
emicalDry BtchinII)法で選択的忙
除去した。この際、前記電極29a、29b、30上は
酸化膜sl(又は32)で覆われているため、これらの
電極はエツチングされない(第1図(e1図示)。なお
、同図(elで上記シリコン窒化膜23を選択的に除去
するのは、ソース/ドレイン部35の後記N 層をA 
D S (As Doped Po1y Si)で形成
するのと、工程の最終段階でのシンター効果を充分にも
たせるためである。
Next, the upper parts of these electrodes 29m, 29b, and 30 are oxidized by a low-temperature wet method to form an oxide film 31. Next, after forming the second transfer electrode 32, an oxide film 17 and an oxide film 33 were formed again by the above-mentioned low-temperature wet method (as shown in FIG. 1(d)). At this time, the light incident part 34 of the photosensitive pixel area,
Since the source/drain portion 35 in the output transistor region is hardly oxidized, the silicon nitride film 23 is exposed. Furthermore, using the transfer electrodes 298, 29b and the gate electrode 3Q as a mask, the silicon nitride film 23 of the light incident part 34 and the source/drain part 35 is coated with CDB (Ch).
Selective removal was performed using the chemical Dry Btchin II) method. At this time, since the electrodes 29a, 29b, and 30 are covered with the oxide film sl (or 32), these electrodes are not etched (shown in FIG. 1 (el)). The purpose of selectively removing the nitride film 23 is to remove the later-described N layer of the source/drain portion 35 by A.
This is because it is formed from D S (As Doped PolySi) and to provide a sufficient sintering effect at the final stage of the process.

(3)次に、ゲート電極3oをマスクとして出力トラン
ジスタ領域のPウェル領域24b  Kn型不純物を導
入し、N 型のソース、ト°レイン領域36.37を形
成した。つづいて、 CVD法により全面に低温酸化膜
38を堆積した後、前記ソース、ドレイン領域36.3
7に対応する低温酸化膜38を選択的に除去し、コンタ
クトホール39,39を形成した(第1図(f1図示)
。次いで、全面に例えばAJ蒸着1.た後、パターニン
グし感光画素領域には第1のN 層23に対応する部分
が開口された光シールド膜40を、かつ出力トランジス
タ領域にはコンタクトホール39,39を介してソース
ト9レイン領域36゜37に夫々接続する配線41.4
1を形成した。
(3) Next, using the gate electrode 3o as a mask, Kn-type impurities were introduced into the P-well region 24b of the output transistor region to form N-type source and train regions 36 and 37. Subsequently, after depositing a low-temperature oxide film 38 on the entire surface by CVD method, the source and drain regions 36.3 are
The low-temperature oxide film 38 corresponding to No. 7 was selectively removed to form contact holes 39 (FIG. 1 (f1 diagram)).
. Then, for example, AJ vapor deposition 1. After patterning, a light shield film 40 with an opening corresponding to the first N layer 23 is formed in the photosensitive pixel region, and a source 9 rain region 36° is formed in the output transistor region through contact holes 39, 39. Wiring 41.4 connected to 37 respectively
1 was formed.

更に%例えばプラズマシリコン窒化膜(保護膜)42を
堆積し、所望のイメージセンサを製造した(第1図史)
及び第3図図示)。ここで、第3図は第1図ψ)の平面
図である。第3図において、5z・・・は列状に設けら
れた垂直転送路を、52・・・はこれら垂直転送路51
間に設けられた複数の画素53・・・からなる感光画素
領域を、54は水平転送路を、55はフィールド領域を
、56は出力トランジスタ領域を夫々示す。
Furthermore, a plasma silicon nitride film (protective film) 42, for example, was deposited to manufacture the desired image sensor (Fig. 1).
and shown in Figure 3). Here, FIG. 3 is a plan view of FIG. 1 ψ). In FIG. 3, 5z... indicates vertical transfer paths provided in a row, and 52... indicates these vertical transfer paths 51.
54 is a horizontal transfer path, 55 is a field area, and 56 is an output transistor area.

しかして、本発明によれば、画像不良に関連すふ光入射
部34、ソース/ドレイン部35等のシリコン基板21
の表面を、通常のウニへ工程の途中で1回も露出させk
いため、例えばウェハ処理工程で使用する処理液や薬品
などの汚染にさらされることはない。従って、バクテリ
ア等の有機物の死骸などに起因して局部的に基板濃度が
高くなってその表面電位が深くなることはなく、電荷の
転送損失を回避できる。
According to the present invention, the silicon substrate 21 includes the light incident part 34, the source/drain part 35, etc., which are related to image defects.
The surface of the sea urchin is exposed to normal sea urchins even once during the process.
Therefore, it is not exposed to contamination from processing liquids or chemicals used in the wafer processing process, for example. Therefore, the substrate concentration will not locally increase due to dead organic matter such as bacteria, and the surface potential will not deepen, and charge transfer loss can be avoided.

また、バッファ絶縁膜の一部を構成するシリコン窒化膜
23により基板表面か常に覆われているため、基板表面
への酸素供給はなされず、結晶欠陥の成長を抑制できる
。虹に、酸化膜22を低温(950℃)で熱酸化するこ
とにより形成するため、結晶欠陥の成長を抑制できる。
Further, since the substrate surface is always covered with the silicon nitride film 23 forming a part of the buffer insulating film, oxygen is not supplied to the substrate surface, and the growth of crystal defects can be suppressed. Since the oxide film 22 is formed by thermal oxidation at a low temperature (950° C.), growth of crystal defects can be suppressed.

従って、結晶欠陥に起因する画像不良を回避できる。Therefore, image defects caused by crystal defects can be avoided.

なお、上記実施例では酸化膜22を950℃で熱酸化し
た場合について述べたが、これに限らず、1000℃以
下なら酸化膜形成に伴う結晶欠陥の成長を抑制できる。
Incidentally, in the above embodiment, the case where the oxide film 22 is thermally oxidized at 950° C. is described, but the present invention is not limited to this, and if the temperature is 1000° C. or lower, the growth of crystal defects accompanying the formation of the oxide film can be suppressed.

また、上記実施例では耐酸化性膜としてシリコン窒化膜
を用いたが、これに限定されるものではない。
Further, although a silicon nitride film is used as the oxidation-resistant film in the above embodiment, the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、有機物等による汚染
に起因する電荷の転送損失を解消するとともに、基板へ
の酸素供給に起因する画像不良を回避し得る高信頼件の
イメージセンサ等の固体撮像装置を製造する方法を提供
できる。
As described in detail above, according to the present invention, it is possible to eliminate charge transfer loss caused by contamination with organic substances, etc., and to avoid image defects caused by oxygen supply to the substrate. A method of manufacturing an imaging device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(2)は本発明の一実施例に係るインタ
ーライン転送方式イメージセンサの製造方法を工程順に
示す断面図、第2図は従来のインターライン転送方式イ
メージセンサの断面図、第3図は第1図η)の平面図で
ある。 21・・・N型のシリコン基板、22,31.33・・
・酸化膜、23・・・シリコン窒化膜、24m、24b
・・・Pウェル領域、25.26・・・N1−127・
・・P+領域、2 B =−7イー 7L/ド酸化膜、
29m、29b。 32・・・転送電極、30・・・ゲート電極、34・・
・光入射部、35・・・ソース/ドレイン部、36・・
・r型のソース領域、37・・・N 型のドレイン領域
、38・・・低温酸化膜、39・・・コンタクトホール
、40・・・光シールド膜、41・・・配線、42・・
・保護膜。 第2図 第3凹
FIGS. 1(a) to (2) are cross-sectional views showing the manufacturing method of an interline transfer type image sensor according to an embodiment of the present invention in order of steps, and FIG. 2 is a cross-sectional view of a conventional interline transfer type image sensor. , FIG. 3 is a plan view of FIG. 1 η). 21... N-type silicon substrate, 22, 31.33...
・Oxide film, 23...Silicon nitride film, 24m, 24b
...P well region, 25.26...N1-127.
...P+ region, 2 B = -7E 7L/de oxide film,
29m, 29b. 32... Transfer electrode, 30... Gate electrode, 34...
・Light incidence part, 35... Source/drain part, 36...
- R type source region, 37... N type drain region, 38... low temperature oxide film, 39... contact hole, 40... light shield film, 41... wiring, 42...
·Protective film. Figure 2 3rd recess

Claims (3)

【特許請求の範囲】[Claims] (1)Pウェル構造を有する固体撮像装置の製造方法に
おいて、Pウェル領域を形成するためのイオン注入時の
バッファ絶縁膜を、熱酸化膜と耐酸化性膜の2層構造と
し、このバッファ絶縁膜をフィールド領域のフィールド
酸化膜を形成する際のマスク材として用いるとともに、
更に出力トランジスタ領域のゲート絶縁膜及び電荷の転
送路の絶縁膜として用いることを特徴とする固体撮像装
置の製造方法。
(1) In a method for manufacturing a solid-state imaging device having a P-well structure, the buffer insulating film used during ion implantation to form the P-well region has a two-layer structure of a thermal oxide film and an oxidation-resistant film, and this buffer insulating film is The film is used as a mask material when forming a field oxide film in the field region, and
The method for manufacturing a solid-state imaging device further comprises using the method as a gate insulating film in an output transistor region and an insulating film in a charge transfer path.
(2)熱酸化膜として1000℃以下の低温工程で形成
されるシリコン酸化膜を用いることを特徴とする特許請
求の範囲第1項記載の固体撮像装置の製造方法。
(2) A method for manufacturing a solid-state imaging device according to claim 1, characterized in that a silicon oxide film formed in a low temperature process of 1000° C. or less is used as the thermal oxide film.
(3)耐酸化性膜としてシリコン窒化膜を用いたことを
特徴とする特許請求の範囲第1項記載の固体撮像装置の
製造方法。
(3) A method for manufacturing a solid-state imaging device according to claim 1, characterized in that a silicon nitride film is used as the oxidation-resistant film.
JP60045131A 1985-03-07 1985-03-07 Production of solid-state image pick-up device Pending JPS61203670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045131A JPS61203670A (en) 1985-03-07 1985-03-07 Production of solid-state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045131A JPS61203670A (en) 1985-03-07 1985-03-07 Production of solid-state image pick-up device

Publications (1)

Publication Number Publication Date
JPS61203670A true JPS61203670A (en) 1986-09-09

Family

ID=12710715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045131A Pending JPS61203670A (en) 1985-03-07 1985-03-07 Production of solid-state image pick-up device

Country Status (1)

Country Link
JP (1) JPS61203670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492144A2 (en) * 1990-11-26 1992-07-01 Matsushita Electronics Corporation Charge-coupled device and solid-state imaging device
US5424775A (en) * 1991-03-06 1995-06-13 Matsushita Electronics Corporation Solid-state image pickup device and method of manufacturing the same
JP2004502297A (en) * 2000-06-27 2004-01-22 ダルサ、コーポレーション Method of manufacturing charge-coupled image sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492144A2 (en) * 1990-11-26 1992-07-01 Matsushita Electronics Corporation Charge-coupled device and solid-state imaging device
US5241198A (en) * 1990-11-26 1993-08-31 Matsushita Electronics Corporation Charge-coupled device and solid-state imaging device
US5302545A (en) * 1990-11-26 1994-04-12 Matsushita Electronics Corporation Method of making charge-coupled device and solid-state imaging device having an ONO transfer gate insulating film
US5424775A (en) * 1991-03-06 1995-06-13 Matsushita Electronics Corporation Solid-state image pickup device and method of manufacturing the same
JP2004502297A (en) * 2000-06-27 2004-01-22 ダルサ、コーポレーション Method of manufacturing charge-coupled image sensor

Similar Documents

Publication Publication Date Title
JPH05206434A (en) Solid state image sensor and fabrication thereof
JPH09120965A (en) Manufacture of semiconductor device
JPH10503328A (en) Electronic device manufacturing method
JPS61203670A (en) Production of solid-state image pick-up device
KR100259948B1 (en) Semiconductor device and manufacturing method thereof
JPS5922342A (en) Manufacture of semiconductor device
JP2917918B2 (en) Method for manufacturing semiconductor device
JPS6115595B2 (en)
JPS62216322A (en) Manufacture of semiconductor device
JPS5923468B2 (en) Manufacturing method of semiconductor device
JPH06140410A (en) Manufacture of semiconductor device
JPH06326183A (en) Manufacture of semiconductor device
JPH08162523A (en) Semiconductor device, and its manufacture
JPS6376377A (en) Manufacture of semiconductor integrated circuit device
JPH0794721A (en) Semiconductor device and manufacture thereof
JPS6164159A (en) Manufacture of solid-state image pickup device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS59222939A (en) Semiconductor device
JPH0479336A (en) Production of semiconductor device
JPH0522397B2 (en)
JPS60176240A (en) Manufacture of semiconductor device
KR100872989B1 (en) Image sensor and method for manufacturing thereof
JP2936826B2 (en) Solid-state imaging device
JPS60249362A (en) Manufacture of solid-state image pickup device
JPS62263658A (en) Semiconductor device and manufacture thereof