JPS61203421A - Laser scanning device - Google Patents

Laser scanning device

Info

Publication number
JPS61203421A
JPS61203421A JP60042789A JP4278985A JPS61203421A JP S61203421 A JPS61203421 A JP S61203421A JP 60042789 A JP60042789 A JP 60042789A JP 4278985 A JP4278985 A JP 4278985A JP S61203421 A JPS61203421 A JP S61203421A
Authority
JP
Japan
Prior art keywords
mirror
laser beam
polygon mirror
steel sheet
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60042789A
Other languages
Japanese (ja)
Other versions
JPH0619111B2 (en
Inventor
Akinobu Ogasawara
小笠原 昭宣
Toshiro Matsubara
松原 俊郎
Akitaka Fujiyama
藤山 晶敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60042789A priority Critical patent/JPH0619111B2/en
Publication of JPS61203421A publication Critical patent/JPS61203421A/en
Publication of JPH0619111B2 publication Critical patent/JPH0619111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics without flawing the insulating film of a grain oriented electrical steel sheet by providing a cylindrical mirror or lens at the entrance side of a rotary polygon mirror so that its axial direction is parallel to the axis of rotation of said polygon mirror. CONSTITUTION:A laser beam 1 is reflected by the rotary polygon mirror 2 and converted as a fine circular beam by a parabolic mirror 3 on the surface 4 of the grain oriented electrical steel sheet at a distance of focal length (f). In this case, when the cylindrical mirror 10 is arranged at the entrance side of the polygon mirror 2 so that its axial direction 10-1 is parallel to the axis 2-1 of rotation of the polygon mirror 2, the mirror 10 only reflects the laser beam 1 by its yz plane and converges it by its zx plane. Therefore, the laser beam 1 have different convergence positions in its scanning direction and a direction perpendicular to it and has a cross section shape shown in 12 in a figure on the copper plate surface 4 and a shape shown by 12 at a position 5 close to the copper plate surface 4. Therefore, an elliptic beam having its long axis in the scanning direction is formed on the steel sheet surface 4, so that a magnetic domain is fractionized without flawing the steel sheet 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザビームにより方向性電磁鋼板の絶縁被膜
を疵つけずに磁気特性を向上させるレーザスキャニング
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser scanning device that uses a laser beam to improve the magnetic properties of a grain-oriented electrical steel sheet without damaging its insulation coating.

(従来の技術) YAGレーザ、C02レーザ等のレーザは、そのビーム
を方向性電磁鋼板(以下鋼板という、)の表面に照射し
て、該鋼板の磁区を細分化し磁気特性の改善に適用され
ることは、例えば特公昭57−2252により公知であ
る。さらに最近、その際レーザビームを鋼板上で適当な
大きさ、形状にコントロールすることで、鋼板表面の絶
縁被膜を疵つけずに磁気特性を改善するためのレーザ照
射について検討されている0例えば特開昭59−358
93では、鋼板に照射するレーザビームの断面形状を楕
円として照射し、絶縁被膜の損傷を回避して鉄損特性を
改善している。これにて用いられる装置の特徴は回転多
面鏡にてスキャニングする方式であり、回転多面鏡と鋼
板の間にシリンドリカルレンズを配置し、該シリンドリ
カルレンズでレーザをスキャニング方向に垂直な方向の
みを集光し、スキャニング方向に長軸なもつ楕円形ビー
ムを作り、鋼板に照射するようにしている。これによる
とレーザは鋼板に楕円形にて照射されるという作用があ
る。しかしこれではスキャニング幅と同一の長さをもつ
シリンドリカルレンズが必要となる。
(Prior art) Lasers such as YAG lasers and C02 lasers are applied to improve magnetic properties by irradiating the surface of grain-oriented electrical steel sheets (hereinafter referred to as steel sheets) to subdivide the magnetic domains of the steel sheets. This is known, for example, from Japanese Patent Publication No. 57-2252. Furthermore, recently, research has been conducted on laser irradiation to improve magnetic properties without damaging the insulation coating on the steel plate surface by controlling the laser beam to an appropriate size and shape on the steel plate. Kaisho 59-358
In No. 93, a steel plate is irradiated with a laser beam having an elliptical cross-sectional shape to avoid damage to an insulating coating and improve iron loss characteristics. The feature of the device used here is that it scans using a rotating polygon mirror, and a cylindrical lens is placed between the rotating polygon mirror and the steel plate, and the cylindrical lens focuses the laser beam only in the direction perpendicular to the scanning direction. An elliptical beam with a long axis in the scanning direction is created to irradiate the steel plate. According to this, the laser beam has the effect of irradiating the steel plate in an elliptical shape. However, this requires a cylindrical lens with the same length as the scanning width.

一方、ハイパワーレーザに使用できる光学材料として、
例えばZn5e製のシリンドリカルレンズがあるが、大
形のものは高価であり、長さは100 ms程度のもの
しか現状では製作できない、よって幅の広い鋼板をスキ
ャニングするためには、レーザ照射装置を幅方向に多数
並べる必要があり、装置が大形化する等不都合がある。
On the other hand, as an optical material that can be used in high-power lasers,
For example, there are cylindrical lenses made of Zn5e, but large ones are expensive and can currently only be manufactured with a length of about 100 ms. Therefore, in order to scan a wide steel plate, the laser irradiation device must be wide It is necessary to arrange a large number of devices in one direction, which causes disadvantages such as an increase in the size of the device.

この他にレーザビームを楕円形にして鋼板に照射する装
置が、特開昭59−92191に提案されている。これ
は固定ミラーで反射されたレーザを対角ミラーと円筒レ
ンズで(シリンドリカルレンズ)からなる回動装置に入
力し、該対角ミラーにより偏向されて円筒レンズを通し
レーザの一方のみを集光し、鋼板面上でスキャニング方
向に長軸をもつ楕円形にて照射するようにしている。こ
れでは円筒レンズは小型でよくスキャニング幅も広くす
ることが可能である。しかし、スキャニング区間のセン
ターと両エツジとでは円筒レンズから鋼板面までの光路
長に差ができ、スキャニング区間を広くとればとるほど
この差は大きくなる。
In addition, an apparatus for irradiating a steel plate with an elliptical laser beam has been proposed in Japanese Patent Laid-Open No. 59-92191. In this method, the laser reflected by a fixed mirror is input to a rotating device consisting of a diagonal mirror and a cylindrical lens (cylindrical lens), and the laser is deflected by the diagonal mirror and focused on only one side of the laser through the cylindrical lens. The beam is irradiated onto the steel plate surface in an elliptical shape with its long axis in the scanning direction. In this case, the cylindrical lens is small and the scanning width can be widened. However, there is a difference in the optical path length from the cylindrical lens to the steel plate surface between the center and both edges of the scanning section, and the wider the scanning section, the larger this difference becomes.

(発明が解決しようとする問題点) つまり鋼板面上での集光レーザビーム形状が鋼板の幅方
向で異なっており、スキャニングの全区間にわたってビ
ームを均一な楕円形状に集光できない、このことは方向
性電磁鋼板の磁性向上効果に大きな悪影響をおよぼす、
この対策として該装置では鋼板をスキャニング方向に湾
曲させこの光路長差を解消している。このため、これで
は鋼板を湾曲させる装置が必要で、設備的に余分のもの
を要することになる。
(Problem to be solved by the invention) In other words, the shape of the focused laser beam on the steel plate surface differs in the width direction of the steel plate, and the beam cannot be focused into a uniform elliptical shape over the entire scanning section. It has a large negative impact on the magnetic improvement effect of grain-oriented electrical steel sheets.
As a countermeasure to this problem, the device curves the steel plate in the scanning direction to eliminate this optical path length difference. Therefore, this requires a device for bending the steel plate, which requires extra equipment.

(問題点を解決するための手段) 本発明は簡単な設備構成でもって、レーザビームを楕円
形ビームとして広い範囲にわたって照射する装置を目的
とするものである。その技術的骨子はレーザビームを回
転多面鏡、放物面鏡を設けた光学系を用いてレーザをス
キャニング照射する装置において、前記回転多面鏡の入
側に、シリンドリカルミラーまたはシリンドリカルレン
ズを設けたことを特徴とするところにある。
(Means for Solving the Problems) The object of the present invention is to provide a device that irradiates a laser beam as an elliptical beam over a wide range with a simple equipment configuration. The technical gist is that in a device that scans and irradiates a laser beam using an optical system equipped with a rotating polygonal mirror and a parabolic mirror, a cylindrical mirror or cylindrical lens is provided on the entrance side of the rotating polygonal mirror. It is characterized by

次に本発明について一実施例にもとづいて図面を参照し
て述べる。
Next, the present invention will be described based on one embodiment with reference to the drawings.

図面において、X軸はスキャニング方向、y軸は鋼板搬
送方向、z軸はレーザ照射方向を示す。
In the drawings, the X axis indicates the scanning direction, the y axis indicates the steel plate conveying direction, and the z axis indicates the laser irradiation direction.

まず、第3図(イ)(ロ)(ハ)を参照してレーザスキ
ャニングの概要について述べる。
First, an overview of laser scanning will be described with reference to FIGS. 3(a), 3(b), and 3(c).

レーザビーム1は回転多面鏡2で反射され、放物面鏡3
にて該放物面鏡3の焦点距離fだけ離れた鋼板面4にて
微小な円形ビームとして集光する0回転多面鏡2を図に
示すような時計回りに回転させると、鋼板面4上では左
から右へ集光ビームはスキャニングを行なう、前記回転
多面鏡と放物面鏡を設けたものはf・θスキャニング系
と呼ばれるものである。
The laser beam 1 is reflected by a rotating polygon mirror 2, and is reflected by a parabolic mirror 3.
When the 0-rotation polygon mirror 2 is rotated clockwise as shown in the figure, the beam is focused as a minute circular beam on the steel plate surface 4 which is separated by the focal length f of the parabolic mirror 3. The condensed beam scans from left to right, and the system provided with the above-mentioned rotating polygonal mirror and parabolic mirror is called an f/θ scanning system.

この光学系の特徴は回転多面鏡2と放物面鏡3との反射
面間の距1IllfLを0式のようにすると、■式に示
すスキャニング区間りにおいて集光ビーム形状およびビ
ーム走査線速度がほぼ一定となり。
The feature of this optical system is that when the distance 1IllfL between the reflecting surfaces of the rotating polygonal mirror 2 and the parabolic mirror 3 is set as shown in the equation 0, the shape of the condensed beam and the beam scanning linear velocity are determined in the scanning section shown in the equation (2). It remains almost constant.

広い区間にわたって均一なビームでスキャニングできる
ことである。
It is possible to scan with a uniform beam over a wide area.

放物面fi3からその焦点層1111fはなれた鋼板面
4においてレーザビームは一番小さく集光され。
The laser beam is focused to the smallest extent on the steel plate surface 4 which is away from the paraboloid fi3 and its focal layer 1111f.

その前後ではレーザビームはポケている。焦点位置での
集光ビーム径を0式に示す。
Before and after that, the laser beam is poked. The diameter of the condensed beam at the focal position is shown in equation 0.

do:集光ビーム直径 入:レーザ波長 f:放物面鏡の焦点距離 D:放物面鏡への入射レーザビーム直径また焦点位置よ
り2軸方向に上、下に各々αだけはなれた位置5.6に
おけるレーザビーム径を0式に示す。
do: Condensed beam diameter entered: Laser wavelength f: Focal length of parabolic mirror D: Diameter of laser beam incident on parabolic mirror Also, position 5 separated by α in two axial directions from the focal position, respectively. The laser beam diameter at .6 is shown in equation 0.

第3図(ハ)に焦点位置に相当する鋼板面4での、ビー
ム形状7と前記鋼板面4よりαだけはなれた位置5.6
でのビーム形状8.9を示す。
FIG. 3(c) shows the beam shape 7 on the steel plate surface 4 corresponding to the focal position and a position 5.6 separated by α from the steel plate surface 4.
The beam shape at 8.9 is shown.

次に本発明の適用によってこの円形の集光ビームをスキ
ャニング方向に長袖をもつ楕円形にする一例を述べる。
Next, an example will be described in which the present invention is applied to transform this circular focused beam into an elliptical shape with long sleeves in the scanning direction.

第1図(イ)(ロ)に示すようにシリンドリカルミラー
lOを回転多面鏡2の入側に配置する。このシリンドリ
カルミラー10は、その軸方向10−1を回転多面鏡2
の回転軸2−1と平行にして、そのミラー面で反射され
たレーザビームが回転多面鏡2に入射されるように1回
転多面鏡2に対向して設ける。しかして、該シリンドリ
カルミラーIOはyz平面内では単にレーザビームを反
射するだけであり、その平面方向のレーザビームの大き
さは変化せずに回転多面鏡2に入射される。このため回
転多面鏡2と放物面鏡3を介して照射されるレーザービ
ームにおいては、スキャニング方向と直交する方向はシ
リンドリカルミラー10がない場合と同様に放物面鏡3
から該放物面鏡の焦点距離fだけはなれた位置にて微小
な大きさに集光される。一方、該シリンドリカルミラー
10はZX平面内では凹形ミラーとして集光効果をもつ
ために、その平面内でレーザビームは絞られて回転多面
鏡2に入射される。このため回転多面鏡から放物面鏡3
を介して照射されるレーザビームのスキャニング方向は
、放物面鏡3の焦点距離fより近い位置5に最小に集光
する。従ってレーザビームはスキャニング方向とそれと
直交する方向で集光する位置が異なることになり、鋼板
面4(放物面鏡3の焦点距離f)でのレーザビームの断
面形状は第1図(ハ)の11で示す形状を呈し、前記位
置5での断面形状は第1図(ハ)の12で示す形状を呈
する。
As shown in FIGS. 1(a) and 1(b), a cylindrical mirror IO is placed on the entrance side of the rotating polygon mirror 2. This cylindrical mirror 10 has its axial direction 10-1 rotated by a polygon mirror 2.
The polygon mirror 2 is parallel to the rotation axis 2-1 of the polygon mirror 2, and is provided opposite to the polygon mirror 2 so that the laser beam reflected by the mirror surface is incident on the polygon mirror 2. Therefore, the cylindrical mirror IO merely reflects the laser beam within the yz plane, and the laser beam enters the rotating polygon mirror 2 without changing the size of the laser beam in the plane direction. Therefore, in the laser beam irradiated via the rotating polygonal mirror 2 and the parabolic mirror 3, the direction perpendicular to the scanning direction is the same as when the cylindrical mirror 10 is not used.
The light is focused to a minute size at a position separated by the focal length f of the parabolic mirror. On the other hand, since the cylindrical mirror 10 has a condensing effect as a concave mirror within the ZX plane, the laser beam is focused within that plane and is incident on the rotating polygon mirror 2. Therefore, from the rotating polygon mirror to the parabolic mirror 3
The scanning direction of the laser beam irradiated through the parabolic mirror 3 is focused to a minimum at a position 5 closer than the focal length f of the parabolic mirror 3. Therefore, the laser beam focuses at different positions in the scanning direction and in the direction orthogonal thereto, and the cross-sectional shape of the laser beam at the steel plate surface 4 (focal length f of the parabolic mirror 3) is shown in Fig. 1 (C). The cross-sectional shape at the position 5 has the shape shown at 12 in FIG. 1(c).

以上のことから明らかなように、シリンドリカルミラー
10を回転多面鏡2の入側に、その軸方向10−1を回
転多面鏡2の回転軸2−1と平行にして配設することに
よって、鋼板面4にてスキャニング方向に長袖を持つ楕
円形レーザビームが形成され、スキャニングを行なうこ
とができ、鋼板に疵を与えることなく磁区の細分化が行
える。
As is clear from the above, by disposing the cylindrical mirror 10 on the inlet side of the rotating polygon mirror 2 with its axial direction 10-1 parallel to the rotation axis 2-1 of the rotating polygon mirror 2, the steel plate An elliptical laser beam having a long sleeve in the scanning direction is formed on the surface 4, and scanning can be performed, and the magnetic domains can be subdivided without causing any flaws to the steel plate.

集光ビームをスキャニング方向に長袖をもつ楕円形にす
る他の方式を第2図(イ)(ロ)(ハ)に示す、これは
前記第1図(イ)(ロ)においての凹形シリンドリカル
ミラーlOを凸形シリンドリカルレンズIOAに変更し
たものであり、同様の装置となる。ただしこの場合ZX
平面内にて凸形ミラーが発散効果をもつため、放物面鏡
3の焦点距離fより遠い位置6にて集光する。鋼板面(
焦点路fa)4の位置でのビーム形状を13.6でのビ
ーム形状を14に示す、また、上記実施例におけるシリ
ンドリカルミラーをシリンドリカルレンズとしても同等
の効果がある。
Another method of making the condensed beam into an elliptical shape with long sleeves in the scanning direction is shown in Figure 2 (a), (b), and (c), which is similar to the concave cylindrical shape in Figures 1 (a) and (b). It is a similar device except that the mirror IO is replaced with a convex cylindrical lens IOA. However, in this case ZX
Since the convex mirror has a diverging effect within the plane, the light is focused at a position 6 farther than the focal length f of the parabolic mirror 3. Steel plate surface (
The beam shape at the focal path fa) 4 is shown at 13.6 and the beam shape at 14 is shown.Also, the same effect can be obtained even if the cylindrical mirror in the above embodiment is replaced by a cylindrical lens.

(実施例) 次に実施例を示す。(Example) Next, examples will be shown.

第1図(イ)(ロ)に示す装置にて放物面鏡3の焦点距
離f = 380m馬、凹シリンドリカルミラーlOの
曲率半径2500〜1000層腸のものを用いレーザビ
ームを鋼板表面上で長袖8〜20m■の楕円形ビームに
てスキャニングを行ない、10数%の鉄損減少効果が得
られ、絶縁被膜の損傷は認められなかった。
Using the apparatus shown in FIGS. 1(a) and 1(b), a laser beam was directed onto the surface of a steel plate using a parabolic mirror 3 with a focal length f = 380 m and a concave cylindrical mirror 10 with a radius of curvature of 2,500 to 1,000 layers. Scanning was carried out using an elliptical beam with a length of 8 to 20 m2, and an effect of reducing iron loss of more than 10% was obtained, and no damage to the insulating coating was observed.

この時の有効スキャニング区間は、240層■で幅広い
範囲にわたって所定の楕円形ビームにて照射されたこと
が実証された。
It was verified that the effective scanning section at this time was irradiated with a predetermined elliptical beam over a wide range of 240 layers.

(発明の効果) 本発明は以上のように簡単な装置構成にしてスキャニン
グ方向に長袖をもつ楕円形レーザビームで幅の広いスキ
ャニング区間の全区間にて、その形状が均一となるレー
ザスキャニング装置であり、方向性電磁鋼板に照射する
ことで、絶縁被膜に疵をつけることなく磁気特性を向上
することが可能となる。
(Effects of the Invention) As described above, the present invention is a laser scanning device which has a simple device configuration and whose shape is uniform over the entire wide scanning section using an elliptical laser beam with a long sleeve in the scanning direction. By irradiating a grain-oriented electrical steel sheet, it is possible to improve the magnetic properties without damaging the insulation coating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明の
他の実施例を示す図、第3図はレーザスキャニング装置
の概要を説明するための図。 1・・・レーザビーム、2・・・回転多面鏡、3・・・
放物面鏡、4・・・鋼板面、10.1OA・・・シリン
ドリカルミラー、11,12,13.14・・・レーザ
ビームの断面形状。
FIG. 1 is a diagram showing one embodiment of the invention, FIG. 2 is a diagram showing another embodiment of the invention, and FIG. 3 is a diagram for explaining the outline of a laser scanning device. 1... Laser beam, 2... Rotating polygon mirror, 3...
Parabolic mirror, 4... Steel plate surface, 10.1OA... Cylindrical mirror, 11, 12, 13.14... Cross-sectional shape of laser beam.

Claims (1)

【特許請求の範囲】  レーザビームを回転多面鏡、放物面鏡を設けた光学系
によりスキャニングし照射する装置において、 前記回転多面鏡の入側に、シリンドリカルミラーまたは
シリンドリカルレンズを、その軸方向を前記回転多面鏡
の回転軸と平行にして設けたことを特徴とするレーザス
キャニング装置。
[Scope of Claims] A device that scans and irradiates a laser beam with an optical system provided with a rotating polygonal mirror or a parabolic mirror, wherein a cylindrical mirror or a cylindrical lens is provided on the entrance side of the rotating polygonal mirror, and its axial direction is A laser scanning device characterized in that the laser scanning device is installed parallel to the rotation axis of the rotating polygon mirror.
JP60042789A 1985-03-06 1985-03-06 Laser scanning device Expired - Lifetime JPH0619111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042789A JPH0619111B2 (en) 1985-03-06 1985-03-06 Laser scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042789A JPH0619111B2 (en) 1985-03-06 1985-03-06 Laser scanning device

Publications (2)

Publication Number Publication Date
JPS61203421A true JPS61203421A (en) 1986-09-09
JPH0619111B2 JPH0619111B2 (en) 1994-03-16

Family

ID=12645730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042789A Expired - Lifetime JPH0619111B2 (en) 1985-03-06 1985-03-06 Laser scanning device

Country Status (1)

Country Link
JP (1) JPH0619111B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402889A (en) * 2011-04-24 2012-04-04 张津 Semiconductor green laser beam expansion device
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
WO2013145683A1 (en) * 2012-03-29 2013-10-03 川崎重工業株式会社 Optical scanning device and laser processing device
JP2016529535A (en) * 2013-06-21 2016-09-23 イエーノプティーク オプティカル システムズ ゲーエムベーハー Scanning device
EP3165614A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402889A (en) * 2011-04-24 2012-04-04 张津 Semiconductor green laser beam expansion device
CN107012309A (en) * 2011-12-27 2017-08-04 杰富意钢铁株式会社 The iron loss of orientation electromagnetic steel plate improves device
CN107012309B (en) * 2011-12-27 2020-03-10 杰富意钢铁株式会社 Apparatus for improving iron loss of grain-oriented electromagnetic steel sheet
US11377706B2 (en) 2011-12-27 2022-07-05 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
CN104011231A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 Device For Improving Core Loss In Grain-Oriented Electrical Steel Sheet
KR20140111275A (en) 2011-12-27 2014-09-18 제이에프이 스틸 가부시키가이샤 Device to improve iron loss properties of grain-oriented electrical steel sheet
JPWO2013099219A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Iron loss improvement device for grain-oriented electrical steel sheet
US10745773B2 (en) 2011-12-27 2020-08-18 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
WO2013145683A1 (en) * 2012-03-29 2013-10-03 川崎重工業株式会社 Optical scanning device and laser processing device
TWI507262B (en) * 2012-03-29 2015-11-11 Kawasaki Heavy Ind Ltd Optical scanning devices and laser processing devices
JP2013205685A (en) * 2012-03-29 2013-10-07 Kawasaki Heavy Ind Ltd Optical scanning device and laser working device
JP2016529535A (en) * 2013-06-21 2016-09-23 イエーノプティーク オプティカル システムズ ゲーエムベーハー Scanning device
EP3165614A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device
US10773338B2 (en) 2014-07-03 2020-09-15 Nippon Steel Corporation Laser processing apparatus

Also Published As

Publication number Publication date
JPH0619111B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
KR100433896B1 (en) Laser marking method and apparatus, and marked member
US4500771A (en) Apparatus and process for laser treating sheet material
US5684642A (en) Optical transmission system and light radiating method
RU2516216C2 (en) Laser scribing installation for surface treatment of magnetic sheets with spots with elliptic shape
JPS5891422A (en) Light beam equalizer
EP0080067A2 (en) Optical beam concentrator
CN105319722A (en) High-efficiency line-forming optical systems and methods
JPS61203421A (en) Laser scanning device
JPS61134724A (en) Laser irradiating device
JPH08182142A (en) Laser beam machining method
KR101051746B1 (en) Magnetic micronization method of electrical steel sheet and magnetic micronized steel sheet
KR100900466B1 (en) Laser surface treatment using beam section shaping and polygon mirror and the method therewith
JP3656371B2 (en) Optical processing equipment
JP7197002B2 (en) Groove processing device and groove processing method
WO2022210995A1 (en) Laser scanning device, laser scanning method, laser processing device, and electrical steel plate manufacturing method
KR20210131510A (en) Apparatus for forming line beam
KR101850365B1 (en) Laser processing apparatus, laser processing method using the same and laser radiation unit
RU2778397C1 (en) Device for manufacturing a groove and method for manufacturing a groove
JPS63124017A (en) Laser beam scanning device
JP7348647B2 (en) Laser irradiation device
JPS63268584A (en) Method for welding metal honeycomb carrier
JPH08309573A (en) Laser beam machine
WO2023282223A1 (en) Laser beam scanning device and laser beam scanning method
JP2023012059A (en) Laser beam machining apparatus
JPS6253566B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term