JPS6120324B2 - - Google Patents

Info

Publication number
JPS6120324B2
JPS6120324B2 JP52134102A JP13410277A JPS6120324B2 JP S6120324 B2 JPS6120324 B2 JP S6120324B2 JP 52134102 A JP52134102 A JP 52134102A JP 13410277 A JP13410277 A JP 13410277A JP S6120324 B2 JPS6120324 B2 JP S6120324B2
Authority
JP
Japan
Prior art keywords
wastewater
tank
pressure
water
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52134102A
Other languages
Japanese (ja)
Other versions
JPS5468050A (en
Inventor
Tetsuo Nakajima
Bunji Kurosaki
Hisayuki Udagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP13410277A priority Critical patent/JPS5468050A/en
Publication of JPS5468050A publication Critical patent/JPS5468050A/en
Publication of JPS6120324B2 publication Critical patent/JPS6120324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は洗車廃水、ビル雑廃水などの小規模廃
水を再利用するために良質で効率が良く、しかも
安価に安定的に再生する方法およびその装置の改
良に関するものである。 洗車廃水等は土砂やカーボンなどの無機物質お
よび油脂類その他の有機物質を含有する処理の比
較的困難な廃水であるから、従来の浄化方法では
大きな敷地面積を要するなどの経済上の理由で、
油脂分のみをトラツプで捕集した後に、稀釈放流
する場合が多かつた。また、再生施設を建設して
いる処でさえも凝集剤の添加、混合、凝集、沈降
分離を大気圧下で、しかも各工程を別個の装置中
で行ない、その後、得られた上澄液を加圧ポンプ
で操作圧2〜4Kg/cm2下で下向流型砂過槽に圧
入して処理する方法を採用しているので、凝集剤
の添加、混合、凝集、沈降分離に大きな設置面積
を要するのみならず、さらに加圧下向流型砂過
槽の過面積は上向流型砂過槽の約4倍量も必
要とし、当然それに応じて砂過槽の洗浄に要す
る逆洗水量も約4倍量だけ多量に消費し、処理水
の全量の約40〜50%を無駄にするという致命的な
欠点がある。逆洗水は未処理廃水と合流せしめて
再処理する必要があるので、逆洗水を多量に消費
すれば、それに応じて処理水量が増加し、各装置
を大きくする必要がある。更に、沈降槽を大きく
すれば、それだけ水面に多くの浮遊物質が浮び、
浮上現象を起して白濁し、腐敗性が著しく、不快
な悪臭を発する処理水となる欠点がある。このほ
か装置全体を加圧型で操作している処理施設もあ
るが、前述のような下向流型砂過槽を使用する
ので、前述の欠点を有するのみならず、操作圧が
一般には2Kg/cm2に及ぶ運転を行なうので、水漏
れが起り、ランニングコストが上昇し、強力な耐
圧構造を必要とし、価格も高く、保守が難しい。 更に、廃水を再生するさいには自動化すること
が望ましいが、従来法を自動化する場合には、前
処理(例えば活性汚泥処理、凝集、沈降等)後の
処理水質を検出する必要があり、そのためには高
価な計器、例えば濁度計、自動発信可能な透視度
計を使用するか、あるいは処理水中に浮遊物質が
流出し、白濁することにより始めて肉眼で検出す
る事態が多い。しかし、小規模施設に占める計器
コストは異常に高く実用にはなり難かつた。特に
乗用車の洗車利潤は非常に僅少で建設費の抑制原
因となり、現状では廃水再生利用施設の普及まで
には凡そ至り難かつた。 また、生活系廃水として日常対象となるものの
一つとしてビル雑排水処理があるが、それらは住
宅や商店の規模により異なるも一般に排水量とし
て20〜300m3/dの規模が多く、生物化学的酸素
要求量(BOD)40〜70ppm、浮遊物質(SS)20
〜80ppmが多く、生し尿の混入するものは
BOD150〜300ppm、SS70〜180ppmの大きな値を
示す。この廃水を再生する場合には、活性汚泥処
理後に単一機器を組合せて薬注を行なつている実
例が多いが、洗車廃水と同様の欠点を有し、廃水
再生施設の普及までには末だ至つていない。 本発明は、かかる現状に鑑み、高価な濁度計、
透視計などの計器に代えて予備吸着槽を用いて砂
過槽の逆洗時期を検知することにより、安価に
安定的に処理水を再生すると共に、脱気管と粗な
内壁を具備する過効率の極めて良好な上向流型
砂過槽を用いて良質な処理水を効率良く、しか
も安価に再生する方法およびその装置を提供する
ものである。 次に、本発明を図示の実施例に基づき詳しく説
明する。 図において、有機性物質、浮遊物質等を含む廃
水を廃水貯槽1に貯え、この流路中に設けたスク
リーン2により粗大固形物質を取除いたのち、廃
水供給ポンプP1を経て密閉型の急速凝集槽3に達
するまでの配管イの途中において、廃水に例えば
ポンプP2からポリ塩化アルミニウム液を注入し、
ポンプP3から中和用アルカリ液を注入してpHを
約6.9に上昇させ、ポンプP4からはポリアクリル
アミド等の高分子液を圧入し、電磁弁Aを通して
上記の凝集槽3に導入する。凝集槽3において
は、廃水を凝集剤と共に多段に設けられたプレー
ト間を例えば0.4〜1m/secの流速で上下によく
混合しながら1〜2分間通して浮遊物質と凝集剤
との衝突を繰返し、フロツクを生成した後、凝集
槽3の開口を通して次に大きなフロツクへと成長
せしめる緩速凝集槽4に導入する。緩速凝集槽4
においては、廃水を例えば0.1〜0.2m/secの速
度で3分間にわたつて横流により多段プレート間
を通して衝突を多くしてフロツクの成長を促進す
る。次にフロツクを含む廃水を配管ロを通して密
閉型の沈降槽5に導入するが、沈降槽5の入口に
おいて2つに分岐せしめ、多孔性ロンダー(流れ
調整のための多孔板)の小孔を通して沈降槽5に
供給することが望ましい。多孔性ロンダーには、
多数の10〜14mmの小孔が開口してあり、このため
沈降槽5の断面積に対して均一な平行流が得ら
れ、フロツクが崩れない。沈降槽5内では、廃水
の流速は急に低下するので、沈降槽5の底盤上に
沈積し、上澄液と分離する。沈降槽5の有効面積
を増してフロツクの沈降を促進させる目的で槽内
に傾斜板6を設けても良い。軽量のフロツクは、
上面の溢流口に向うので、上澄液の衝突が効果的
に繰返し行なえるように邪魔板を中途に設け、上
記の傾斜板6間に設置してフロツクを成長させて
沈降し易い形にすることが望ましい。傾斜板6の
有効面積Am2を増加させて流量Qm3/hrを処理す
るときには、見掛上の沈降速度RmはRm=Q/
A(m/hr)として表わされるので、廃水供給ポ
ンプP1・1台を用いて操作するには、Rm=0.4
〜0.6m/hrに設定したときが沈降分離操作を容
易にするポイントである。傾斜板の代りに環状の
多管を利用するものも同一の効果が得られる。沈
降槽5には、沈降した汚泥の高さを検知するセン
サー7を設けることが望ましい。例えば、
3.75MHzの周波数で発信するセンサー7を所望
の高さに設置し、汚泥がこの高さに達すると、超
音波発信器8に信号を送り、これにより沈降槽5
の側壁に付されている電磁弁Bを開いて汚泥を配
管ハを経て汚泥貯槽9に流入させることができ
る。この場合には、センサー7は絶えず汚泥の上
面を検知するので、汚泥を一定水位以下に抑え、
傾斜板の高さ以下に保ち、良質な処理水を得る重
要な役割を行なう。 更に、沈降槽5に圧力発信機PYを設けること
が望ましい。沈降槽5の内部圧が設定圧力の0.35
Kg/cm2に達したときには、電磁弁Bを開いて汚泥
を排出させることにより、沈降槽の内圧を例えば
0.1Kg/cm2に低下させることができる。または、
圧力上昇に対する安全を確保するためには、沈降
槽5のスラブ上に1本の開口した保安安全曲管1
0を取着し、その長さを調整して操作圧を0.35
Kg/cm2にする安全弁とすることができる。即ち、
圧力が急上昇したときには、溢流水を管ニに流出
させ、廃水貯槽1内へ自動的に返送する緩衝作用
が行なわれて沈降槽5の安全性を保持することが
できる。汚泥の排出は、単にタイマーの設定操作
によつて自動的に行なうことも可能である。 沈降槽5の溢流水は、出口に設けた多孔性の開
口板付のコ字状の溢流堰11内に均一な流量とな
り、配管ホを経て密閉型の予備吸着槽12内に入
る。予備吸着槽12には、残留する浮遊物質等を
吸着させるポリプロピレンの多孔板等の材13
が板状または筒状で一段または多段に設けられて
いる。ポリプロピレン製の数種の目の荒い多孔
材が順に細目となるように多段積上げ方式で直列
に配置することが望ましい。沈降槽5からの処理
水に浮遊物質やn―ヘキサン抽出分が残留すると
きには、材13の細孔部を徐々に目詰りさせる
ために急速に圧力が上昇する。材13の孔径、
段数等を後述の砂過槽14の汚れによる過効
率の低下するときに予備吸着槽12における水圧
が0.35Kg/cm2となるよう選定すると、この予備吸
着槽12は圧力発信機Pxの配設により、砂過
槽14の逆洗時期を知らせる働きをする。このよ
うにして、処理水の圧力が0.35Kg/cm2に達する
と、圧力発信機Pxから発する電流信号による電
磁石の作用により自動的に廃水供給ポンプP1が停
止し、電磁弁Aが閉鎖する。そこで、予備吸着槽
12の開閉部を開き、目詰りの生じた材13を
取除くと共に、後述の砂過槽14の逆洗を行な
う。更に、予備吸着槽12には、処理水の空気を
抜くための脱気管ヘを配設する。これは、後述の
過を均一に行なうために必要である。予備吸着
槽12の下部には材13を支持する台支持15
があり、処理水の短絡を防止すると共に、材1
3と密着することを可能とする。 予備吸着槽12からの処理水は、予備吸着槽1
2の下端から配管トを経て上部大気圧開放型の急
速上向流砂過槽14の下部に圧入される。この
上向流砂過槽14には、下層から順に多孔板1
6、砂利層17、金網18および砂床19が装
填されており、その内壁は例えば充填砂と同様に
2〜3mmの凹凸の烈しい粗な面仕上げを施すこと
により粗面となし、処理水が円滑な側壁に沿つて
多量に流れることを防止する。従来、多量の水が
側壁を伝つて不均一に流れ、砂と水との渦流を生
じて床効率が低下する欠点があつたが、これを
内壁を粗面にすることで均一な上向流を得ること
になり、著しく改善することができる。更に、上
向流砂過槽14の内壁、例えば砂利層17の上
部の側面に処理水中の気泡を抜出すための脱気管
チを取付ける。装置内には、次のような理由で必
ず気泡が発生するので、多数の管により充分に脱
気を行なう。即ち、沈降槽内に貯えられる汚泥と
泥水中のBDO源が嫌気性、好気性の分解を起し
て水中に溶存していた炭酸ガス、一酸化炭素、メ
タンガス、硫化水素その他の溶存ガス気泡が生じ
たり、ポンプや配管の接手類等より吸込んだ空気
の気泡が生じたりする。この場合、廃水の中の洗
剤のために著しい泡立が生ずるので、当然、多量
の消え難い泡となり、在来の施設の浄化作用の阻
害の因子となつていた。そして処理水中に気泡が
存在すると、それが上昇するにつれて圧力低下の
ために大きくなり、その通路に空洞を生ぜしめ、
後の水は主としてこの空洞を通過し、砂と水との
強烈な渦流を生じ、床効率が低下する。これを
防止するため、該内壁の全周にわたり弁Gを付し
た脱気管チを取付けることにより、処理水の気泡
を取除いて空洞の発生を防止し、水流を均等化す
る。このように、内壁の粗面化と脱気管の取付は
重要な役割を果すものであり、これにより均等な
床流速にすると、上向流速度を800〜900m/日
にしても在来の400m/日のそれと大差のない良
質な水質を安定的に得ることができるので、その
分だけ効率が良く、砂床面積を縮少することが
できる。砂床の材には、相当径0.6mmを中心
とした均等係数1.4以下のマンガン砂、ゼオライ
ト砂、アンスラサイト等を使用する。床の充填
は、単層または必要に応じて多層とすることがで
きる。 上向流砂過槽14の下部に圧入された処理水
は、先ず砂利層17を支持する多孔板16および
砂利層17を通過し、次いで砂利層17を砂床
19との混合防止用の金網18を通過して砂床
19で過されて良質の処理水となる。なお、砂
過槽14の下部に沈殿した汚泥は手動弁Hと配
管リを経て汚泥貯槽9に流入せしめる。 上向流砂過槽14の砂利層、砂床には、処
理水に残留する浮遊物質等が次第に蓄積され、
過効率が低下するので、時々逆洗して浮遊物質等
を砂利層、砂床から取除く必要がある。この逆
洗は、前述のように予備吸着槽12に設けられて
いる圧力発信機Pxの設定圧が0.35Kg/cm2の制圧
に達したときに開始される。このように、逆洗の
時期を予備吸着槽12における圧力変化で決定す
る理由は、予備吸着槽12が砂過槽14に比べ
て汚泥の目詰りによる圧力変化が大きいからであ
る。予備吸着槽12を使用しないで、直ちに、砂
過槽14で処理水を過する場合には、砂過
槽14の水圧は汚泥の目詰りにより上昇するがそ
の上昇の程度は比較的小さいので、予備吸着槽1
2を使用して圧力変化を大きくして汚泥による目
詰りの程度を検知することが必要である。 逆洗の作動順序は、次の通りである。予備吸着
槽12に設けた圧力発信機Px(これが故障した
ときには、圧力発信機Py)の設定圧が0.35Kg/
cm2の規制圧に達すると、廃水供給ポンプP1が停止
し、電磁弁AおよびEが閉鎖した後、1分以内に
空気圧力貯槽20に連結した電磁弁Fを開き、空
気管ヌの先端のステンレス開口管より約2Kg/cm2
の圧力空気を約3〜7分間吹込んで砂床19を
充分に洗浄する。所定時間の気曝を続けた後に電
磁弁Fを閉じ、同時に電磁弁Cと電磁弁Dを開
き、逆洗用ポンプP5を作動させ、逆洗水を再利用
水貯槽21から配管ルを通し、砂過槽14の下
部へ送り込み、砂利層17と金網18との間を約
1450m/日の線速度をもつて急上昇させ、砂床
19を5〜15分間充分に洗浄する。逆洗用ポンプ
P5の作用は、この他に管トを経て予備吸着槽12
内の材13を逆洗し、管ホを経て汚泥を沈降槽
5に沈降せしめ、過剰の廃水を管10を経て廃水
貯槽1に流出せしめることにより、材の再生作
用も自動的に行なうように工夫した。逆洗を終え
た廃水は、溢流堰22に連設した配管ヲと配管ワ
を経て電磁弁Cから開口堰23へ流出せしめ、配
管カを通り汚泥貯槽9または配管ヨを通り廃水貯
槽1へ送る。なお、逆洗のさいに先ず気曝を施す
理由は、砂と汚泥とを分離させて逆洗水による洗
浄を容易にするためである。気曝のためのステン
レス開口管の位置は金網18から上方へ約10cm以
上離れた位置が望ましい。なお、逆洗時も弁G、
配管チならびに配管ヘは開放型となつている。 逆洗が終ると、逆洗用ポンプP5を停止し、電磁
弁Dを閉じ、電磁弁Eを開き、電磁弁Cを閉じ
る。砂過槽14の砂床19は逆洗の終了後5
〜13分で下降してもとの一定の高さになるので、
その後、電磁弁Aを開き、同時に廃水供給ポンプ
P1を作動し、再び凝集、沈降、吸着、過の全サ
イクルを開始する。 上向流砂過槽14の砂床19を通過して清
浄化された処理水は、溢流堰22を越え、砂床
19内に設置した配管ヲを流れて電磁弁Eを経て
配管タを経て再利用水貯槽21内に送られて貯え
られる。再利用水貯槽21には、水道水または井
水が補給用に加えられるようになつており、この
槽に貯えられた処理水は洗車用または塩素水等を
添加してビルのトイレ用として繰返し使用するこ
とができる。 実施例 1 廃水の水質;n―ヘキサン抽出分20〜
160ppm、SS60〜100ppm、BCD70〜210ppm、
TS260〜500ppm、DS200〜400ppm、透視度15〜
20、液の性状;淡黄乳白色で悪臭を伴なう、p
H7.5〜8.2、COD30〜60ppm、洗剤含有量3〜
7ppm、一般細菌数2×106ケ/c.c.、粗大なSSの
沈降速度3m/hr、微細粒子の沈降速度0.7〜1.2
m/hr。 上記の水質を有するデパート雑廃水に重曹
2ppm、ポリ塩化アルミニウム15ppm、ポリアク
リル酸アミド1ppmおよび硅藻土5〜15ppmを加
えて凝集せしめる以外は図および前記の説明の如
くして0.35Kg/cm2に達すると逆洗を行ないながら
0.35Kg/cm2以下の加圧下で凝集、沈降分離、予備
吸着および砂過を経て次のような結果を得た。 処理水質;n―ヘキサン抽出分3〜10ppm、
SS4〜10ppm、BOD15〜30ppm、DS140〜
300ppm、合成洗剤2〜5ppm、一般細菌数2×
102〜2×103ケ/c.c.、透視度100〜240、液の性
状;透明無臭、pH6.8、COD10〜15ppm。 塩素水の注入により一般細菌数は0ケ/c.c.とな
り、トイレ用水としてすべてを満足する水質とな
つた。 実施例 2 廃水の水質;n―ヘキサン抽出分10〜
200ppm、SS60〜250ppm、BCD40〜110ppm、
TS300〜500ppm、DS240〜250ppm、合成洗剤
0.7〜2ppm、透視度5〜12、Fe,Mn計1.2ppm、
液の性状;白乳色ないし淡褐色、pH6〜7、
COD15〜120ppm。 上記の水質を有する洗車廃水を次の条件を除い
て図および前記の説明と同様にして0.35Kg/cm2
達すると逆洗を行ないながら0.35Kg/cm2以下の加
圧下で下記の処理水を得た。 処理条件;凝集剤、ポリ塩化アルミニウム20〜
25ppm(純分}、NaOH10〜30ppm、ポリアクリ
ルアミド0.7〜1.0ppm、急速凝集時間1分、緩速
凝集2分、沈降静置時間30分、沈降速度2.8m/
hr、予備吸着槽内の線速度600〜900m/d、砂
過槽内の線速度600〜1000m/d、砂床マンガ
ン砂(径0.6mm、均等係数1.4以下)、使用筒100mm
φ、通過速度3.3〜5.45/min。 処理水の水質;n―ヘキサン0.2〜4ppm、SS4
〜10ppm、BOD4〜10ppm、TS210〜220ppm、
DS206〜210ppm、洗剤0.6〜1.7ppm、透視度100
〜250、Fe,Mn計0.05ppm、液の性状;透明、p
H6.6〜6.9、COD7〜10ppm。 このような処理により洗車廃水は著しく浄化さ
れ、洗車用水として充分に使用しうるものとなつ
た。 実施例 3 ワツクスと洗剤を多量に含む車輛洗車廃水の処
理前の水質、処理条件、処理後の水質および除去
率を次表に示す。なお、初期透視度1〜0.5の白
乳色のものを供試料とした。また、その他の条件
は図および前記の説明と同様にして0.35Kg/cm2
達すると逆洗を行ないながら0.35Kg/cm2以下の加
圧下で行なつた。
The present invention relates to a method for reusing small-scale wastewater, such as car wash wastewater and building wastewater, in a high-quality, efficient, inexpensive and stable manner, and to an improvement of the apparatus. Car wash wastewater is relatively difficult to treat as it contains inorganic substances such as earth and sand and carbon, as well as organic substances such as oils and fats, so conventional purification methods require a large site area for economic reasons.
In many cases, only the fats and oils were collected in a trap and then released. In addition, even in places where recycling facilities are being constructed, the addition of flocculant, mixing, flocculation, and sedimentation separation are performed under atmospheric pressure, and each step is performed in separate equipment, and then the supernatant liquid obtained is Since we use a pressure pump to pressurize the sand into a downward flow type sand filter tank under an operating pressure of 2 to 4 kg/ cm2 , a large installation area is required for adding, mixing, flocculating, and settling and separating the flocculant. Not only that, but also the excess area of the pressurized downward flow type sand filter tank requires about four times the amount of the upflow type sand filter tank, and accordingly, the amount of backwash water required for cleaning the sand sand tank is also about four times as much. It has the fatal disadvantage of consuming a large amount of water and wasting approximately 40 to 50% of the total amount of treated water. Backwash water needs to be combined with untreated wastewater and reprocessed, so if a large amount of backwash water is consumed, the amount of water to be treated increases accordingly, making it necessary to increase the size of each device. Furthermore, the larger the settling tank, the more suspended matter will float on the water surface.
The disadvantage is that the treated water becomes cloudy due to the floating phenomenon, is highly corrosive, and emits an unpleasant odor. In addition, there are treatment facilities that operate the entire equipment under pressure, but since they use a downward flow sand filter tank as mentioned above, they not only have the disadvantages mentioned above, but also have operating pressures of 2 kg/cm. Since the system is operated twice , water leakage occurs, running costs increase, a strong pressure-resistant structure is required, the price is high, and maintenance is difficult. Furthermore, automation is desirable when regenerating wastewater, but when automating conventional methods, it is necessary to detect the quality of the treated water after pretreatment (e.g. activated sludge treatment, coagulation, sedimentation, etc.). In most cases, expensive instruments such as turbidity meters and fluorometers that can automatically transmit signals are used, or suspended solids flow into the treated water and become cloudy and can only be detected with the naked eye. However, the cost of instruments for small-scale facilities was extremely high, making it difficult to put them into practical use. In particular, the profits from washing passenger cars are extremely small, which is a factor in suppressing construction costs, and under the current circumstances, it is difficult to spread the use of wastewater recycling facilities. In addition, gray water treatment from buildings is one of the types of domestic wastewater that is treated on a daily basis, and although it varies depending on the size of the residence or store, the wastewater volume generally varies from 20 to 300 m 3 /d, and biochemical oxygen Demand (BOD) 40-70ppm, suspended solids (SS) 20
~80ppm is high and raw urine is mixed in.
Shows large values of BOD 150-300ppm and SS 70-180ppm. When regenerating this wastewater, there are many examples of chemical injection using a combination of single devices after activated sludge treatment, but this has the same drawbacks as car wash wastewater, and it is unlikely that wastewater reclamation facilities will become widespread. I haven't reached it yet. In view of the current situation, the present invention provides an expensive turbidimeter,
By using a preliminary adsorption tank instead of instruments such as a fluorometer to detect when it is time to backwash the sand filter tank, treated water can be regenerated stably at low cost. The present invention provides a method and apparatus for regenerating high-quality treated water efficiently and inexpensively using an upflow type sand filter tank with extremely high quality. Next, the present invention will be explained in detail based on illustrated embodiments. In the figure, wastewater containing organic substances, suspended substances, etc. is stored in a wastewater storage tank 1, and after removing coarse solid substances with a screen 2 installed in this flow path, it is passed through a wastewater supply pump P1 to a closed type rapid pump. In the middle of piping A until it reaches the coagulation tank 3, for example, polyaluminum chloride liquid is injected into the wastewater from pump P2 ,
A neutralizing alkaline solution is injected from pump P 3 to raise the pH to approximately 6.9, and a polymer solution such as polyacrylamide is injected from pump P 4 and introduced into the above-mentioned flocculation tank 3 through solenoid valve A. . In the flocculation tank 3, the wastewater is passed together with the flocculant between plates arranged in multiple stages at a flow rate of 0.4 to 1 m/sec for 1 to 2 minutes while being well mixed up and down, so that the collision between the suspended solids and the flocculant is repeated. After the flocs are produced, they are introduced through the opening of the flocculation tank 3 into a slow flocculation tank 4 where they are allowed to grow into the next larger floc. Slow flocculation tank 4
In this method, floc growth is promoted by passing the wastewater cross-flow between the multistage plates at a speed of 0.1 to 0.2 m/sec for 3 minutes to increase collisions. Next, the wastewater containing flocs is introduced into a closed sedimentation tank 5 through a piping hole, and is split into two at the inlet of the sedimentation tank 5, where it is allowed to settle through small holes in a porous launder (perforated plate for flow adjustment). It is desirable to supply it to tank 5. The porous launder has
A large number of small holes of 10 to 14 mm are opened, so that a uniform parallel flow is obtained with respect to the cross-sectional area of the sedimentation tank 5, and the floc does not collapse. In the sedimentation tank 5, the flow rate of the wastewater decreases rapidly, so that the wastewater settles on the bottom plate of the sedimentation tank 5 and is separated from the supernatant liquid. For the purpose of increasing the effective area of the settling tank 5 and promoting the settling of flocs, an inclined plate 6 may be provided in the tank. The lightweight flock is
Since the flow is directed toward the overflow port on the top surface, a baffle plate is installed halfway to allow the supernatant liquid to effectively and repeatedly collide with each other, and is installed between the above-mentioned inclined plates 6 to allow flocs to grow and settle easily. It is desirable to do so. When increasing the effective area Am 2 of the inclined plate 6 to process the flow rate Qm 3 /hr, the apparent sedimentation rate Rm is Rm=Q/
Since it is expressed as A (m/hr), to operate using one wastewater supply pump P1 , Rm = 0.4
The point at which the sedimentation separation operation is facilitated is when the speed is set at ~0.6 m/hr. The same effect can be obtained by using an annular multi-tube instead of the inclined plate. Preferably, the settling tank 5 is provided with a sensor 7 that detects the height of settled sludge. for example,
A sensor 7 that emits at a frequency of 3.75 MHz is installed at a desired height, and when the sludge reaches this height, it sends a signal to an ultrasonic transmitter 8, which causes the settling tank 5 to
By opening the solenoid valve B attached to the side wall of the sludge, the sludge can flow into the sludge storage tank 9 through the pipe C. In this case, the sensor 7 constantly detects the top surface of the sludge, so the sludge is kept below a certain water level and
It plays an important role in obtaining high-quality treated water by keeping it below the height of the inclined plate. Furthermore, it is desirable to provide the settling tank 5 with a pressure transmitter PY . The internal pressure of settling tank 5 is 0.35 of the set pressure.
When the pressure reaches Kg/ cm2 , the internal pressure of the sedimentation tank can be reduced by opening the solenoid valve B and discharging the sludge.
It can be reduced to 0.1Kg/ cm2 . or
In order to ensure safety against pressure increases, a safety curved pipe 1 opened on the slab of the sedimentation tank 5 is required.
0, adjust its length and set the operating pressure to 0.35.
Kg/cm 2 can be used as a safety valve. That is,
When the pressure suddenly increases, a buffering effect is performed in which the overflow water flows out into the pipe N and is automatically returned to the waste water storage tank 1, so that the safety of the settling tank 5 can be maintained. Sludge can also be discharged automatically simply by setting a timer. The overflow water from the sedimentation tank 5 has a uniform flow rate in a U-shaped overflow weir 11 with a porous opening plate provided at the outlet, and enters a closed pre-adsorption tank 12 through a piping E. The preliminary adsorption tank 12 includes a material 13 such as a polypropylene perforated plate that adsorbs residual suspended solids, etc.
are plate-shaped or cylindrical and provided in one or multiple stages. It is desirable to arrange several kinds of coarse porous materials made of polypropylene in series in a multi-stage stacking manner so that the porous materials become finer in order. When suspended solids and n-hexane extracts remain in the treated water from the sedimentation tank 5, the pressure increases rapidly to gradually clog the pores of the material 13. The pore diameter of material 13,
If the number of stages etc. are selected so that the water pressure in the preliminary adsorption tank 12 is 0.35 Kg/cm 2 when the overefficiency decreases due to dirt in the sand filter tank 14, which will be described later, this preliminary adsorption tank 12 is equipped with a pressure transmitter Px. This functions to notify the time for backwashing of the sand filter tank 14. In this way, when the pressure of the treated water reaches 0.35Kg/ cm2 , the wastewater supply pump P1 is automatically stopped by the action of the electromagnet due to the current signal emitted from the pressure transmitter Px, and the solenoid valve A is closed. . Therefore, the opening/closing part of the preliminary adsorption tank 12 is opened, the clogged material 13 is removed, and the sand filter tank 14 is backwashed, which will be described later. Further, the preliminary adsorption tank 12 is provided with a degassing pipe for removing air from the treated water. This is necessary in order to uniformly perform the process described below. At the bottom of the preliminary adsorption tank 12, there is a stand support 15 for supporting the material 13.
This prevents short circuits in the treated water, and also
This allows for close contact with 3. The treated water from the preliminary adsorption tank 12 is transferred to the preliminary adsorption tank 1.
It is press-fitted from the lower end of 2 through piping into the lower part of a rapid upward flow sand filter tank 14 whose upper part is open to atmospheric pressure. This upward flow sand filter tank 14 includes perforated plates 1 in order from the bottom layer.
6. A gravel layer 17, a wire mesh 18, and a sand bed 19 are loaded, and the inner wall thereof is made rough by applying a rough surface finish with severe irregularities of 2 to 3 mm, similar to the filling sand, and the treated water is Prevents excessive flow along smooth sidewalls. In the past, a large amount of water flowed unevenly along the side walls, creating a vortex between sand and water and reducing floor efficiency.However, by making the inner walls rough, a uniform upward flow was achieved. This will result in a significant improvement. Furthermore, a deaeration pipe is attached to the inner wall of the upward flow sand filter tank 14, for example, to the upper side of the gravel layer 17, for removing air bubbles from the treated water. Bubbles are inevitably generated inside the device for the following reasons, so sufficient deaeration must be carried out using a large number of tubes. In other words, the BDO source in the sludge and muddy water stored in the settling tank undergoes anaerobic and aerobic decomposition, and bubbles of carbon dioxide, carbon monoxide, methane gas, hydrogen sulfide, and other dissolved gases dissolved in the water are decomposed. Air bubbles may be generated due to air sucked in from pumps, pipe fittings, etc. In this case, the detergent in the wastewater causes significant foaming, which naturally results in a large amount of foam that is difficult to eliminate, which is a factor that inhibits the purifying action of conventional facilities. If bubbles are present in the process water, they will grow larger due to the pressure drop as they rise, creating cavities in the passages.
The latter water mainly passes through this cavity, creating a strong swirl of sand and water, reducing bed efficiency. In order to prevent this, a degassing pipe with a valve G is installed all around the inner wall to remove air bubbles from the treated water, prevent the formation of cavities, and equalize the water flow. In this way, the roughening of the inner wall and the installation of deaeration pipes play an important role, and by making the bed flow velocity uniform, even if the upward flow velocity is 800 to 900 m/day, it will be lower than the conventional 400 m/day. Since it is possible to stably obtain high-quality water that is not much different from that of a day, the efficiency is correspondingly higher and the sand bed area can be reduced. For the material of the sand bed, use manganese sand, zeolite sand, anthracite, etc. with an equivalent diameter of 0.6 mm and a uniformity coefficient of 1.4 or less. The bed packing can be single layer or multilayer as required. The treated water injected into the lower part of the upward flow sand filter tank 14 first passes through the perforated plate 16 that supports the gravel layer 17 and the gravel layer 17, and then passes through a wire mesh 18 to prevent the gravel layer 17 from mixing with the sand bed 19. The water passes through the sand bed 19 and becomes high quality treated water. The sludge settled in the lower part of the sand filter tank 14 is made to flow into the sludge storage tank 9 through a manual valve H and piping. Suspended substances remaining in the treated water gradually accumulate on the gravel layer and sand bed of the upward flow sand filter tank 14.
Since the excess efficiency decreases, it is necessary to backwash occasionally to remove suspended solids from the gravel layer and sand bed. This backwashing is started when the set pressure of the pressure transmitter P x provided in the preliminary adsorption tank 12 reaches a suppressed pressure of 0.35 Kg/cm 2 as described above. The reason why the timing of backwashing is determined based on the pressure change in the preliminary adsorption tank 12 is that the pressure change in the preliminary adsorption tank 12 due to clogging with sludge is larger than that in the sand filter tank 14. If the treated water is immediately passed through the sand filter tank 14 without using the preliminary adsorption tank 12, the water pressure in the sand filter tank 14 will increase due to clogging with sludge, but the degree of increase will be relatively small. Preliminary adsorption tank 1
2, it is necessary to increase the pressure change and detect the degree of clogging due to sludge. The backwash operation sequence is as follows. The set pressure of the pressure transmitter P x (or pressure transmitter P y when this breaks down) installed in the preliminary adsorption tank 12 is 0.35 kg/
When the regulated pressure of cm 2 is reached, the waste water supply pump P 1 is stopped, and after the solenoid valves A and E are closed, the solenoid valve F connected to the air pressure storage tank 20 is opened within 1 minute, and the end of the air pipe N is opened. Approximately 2Kg/cm 2 from the stainless steel open pipe
The sand bed 19 is thoroughly cleaned by blowing in pressurized air for about 3 to 7 minutes. After continuing aeration for a predetermined period of time, close the solenoid valve F, open the solenoid valves C and D at the same time, operate the backwash pump P5 , and pass the backwash water from the recycled water storage tank 21 through the piping. , the sand is sent to the lower part of the sand filter tank 14, and the gap between the gravel layer 17 and the wire mesh 18 is approximately
The sand bed 19 is thoroughly cleaned for 5 to 15 minutes by increasing the speed rapidly at a linear speed of 1450 m/day. Backwash pump
In addition to this, the action of P5 is carried out through the pipe to the preliminary adsorption tank 12
By backwashing the material 13 inside, allowing the sludge to settle in the sedimentation tank 5 through the pipe 10, and allowing excess wastewater to flow out into the wastewater storage tank 1 through the pipe 10, the material regeneration action is automatically carried out. I devised it. The wastewater that has finished backwashing passes through the piping and piping connected to the overflow weir 22, flows out from the solenoid valve C to the opening weir 23, passes through the piping, passes through the sludge storage tank 9, or through the piping YO, and enters the wastewater storage tank 1. send. The reason why aeration is performed first during backwashing is to separate sand and sludge and facilitate washing with backwash water. The stainless steel open tube for aeration is desirably located upwardly from the wire mesh 18 by about 10 cm or more. In addition, when backwashing, valve G,
Piping 1 and 2 are open type. When the backwash is finished, the backwash pump P5 is stopped, the solenoid valve D is closed, the solenoid valve E is opened, and the solenoid valve C is closed. After the backwashing is completed, the sand bed 19 of the sand filter tank 14 is
It will descend in ~13 minutes and return to its original height, so
Then, open solenoid valve A, and at the same time open the waste water supply pump.
Activate P 1 and start the entire cycle of flocculation, sedimentation, adsorption, and filtration again. The treated water that has been purified after passing through the sand bed 19 of the upward flow sand filter tank 14 crosses the overflow weir 22, flows through the piping installed in the sand bed 19, passes through the solenoid valve E, and passes through the piping. The water is sent to the reused water storage tank 21 and stored there. Tap water or well water can be added to the reused water storage tank 21 for replenishment, and the treated water stored in this tank can be used repeatedly for car washing or for building toilets by adding chlorine water, etc. can be used. Example 1 Water quality of wastewater; n-hexane extractable content: 20~
160ppm, SS60~100ppm, BCD70~210ppm,
TS260~500ppm, DS200~400ppm, transparency 15~
20. Liquid properties: pale yellow and milky white with a foul odor, p
H7.5~8.2, COD30~60ppm, detergent content 3~
7ppm, general bacteria count 2 x 106 /cc, sedimentation rate of coarse SS 3m/hr, sedimentation rate of fine particles 0.7-1.2
m/hr. Baking soda is added to department store wastewater with the above water quality.
2ppm, polyaluminum chloride 15ppm, polyacrylic acid amide 1ppm and diatomaceous earth 5-15ppm were added and flocculated as shown in the figure and in the above explanation.
The following results were obtained through coagulation, sedimentation separation, preliminary adsorption, and sand filtration under a pressure of 0.35 Kg/cm 2 or less. Treated water quality: n-hexane extractable content 3-10ppm,
SS4~10ppm, BOD15~30ppm, DS140~
300ppm, synthetic detergent 2-5ppm, general bacteria count 2x
10 2 - 2 x 10 3 pieces/cc, transparency 100 - 240, liquid properties: transparent and odorless, pH 6.8, COD 10 - 15 ppm. By injecting chlorinated water, the number of general bacteria was reduced to 0 bacteria/cc, and the water quality satisfied all requirements for toilet water. Example 2 Water quality of wastewater; n-hexane extractable content: 10~
200ppm, SS60~250ppm, BCD40~110ppm,
TS300~500ppm, DS240~250ppm, synthetic detergent
0.7~2ppm, transparency 5~12, Fe, Mn total 1.2ppm,
Liquid properties: white milky to light brown, pH 6~7,
COD15~120ppm. Car wash wastewater having the above water quality was treated in the same manner as shown in the figure and in the above explanation except for the following conditions, and when it reached 0.35Kg/cm 2 , it was backwashed and the following treated water was treated under a pressure of 0.35Kg/cm 2 or less. I got it. Processing conditions: flocculant, polyaluminum chloride 20~
25ppm (purity), NaOH 10-30ppm, polyacrylamide 0.7-1.0ppm, rapid flocculation time 1 minute, slow flocculation 2 minutes, sedimentation standing time 30 minutes, sedimentation speed 2.8 m/
hr, linear velocity in the preliminary adsorption tank 600 to 900 m/d, linear velocity in the sand filter tank 600 to 1000 m/d, sand bed manganese sand (diameter 0.6 mm, uniformity factor 1.4 or less), cylinder used 100 mm
φ, passing speed 3.3 to 5.45/min. Water quality of treated water: n-hexane 0.2-4ppm, SS4
~10ppm, BOD4~10ppm, TS210~220ppm,
DS206~210ppm, detergent 0.6~1.7ppm, transparency 100
~250, Fe, Mn total 0.05ppm, liquid properties: transparent, p
H6.6~6.9, COD7~10ppm. Through such treatment, car wash waste water is significantly purified and can now be used satisfactorily as car wash water. Example 3 The following table shows the water quality before treatment, treatment conditions, water quality after treatment, and removal rate of car wash wastewater containing large amounts of wax and detergent. Note that the test sample was a white milky one with an initial transparency of 1 to 0.5. The other conditions were the same as those shown in the figure and the above explanation, and the test was carried out under a pressure of 0.35 Kg/cm 2 or less, with backwashing performed when the pressure reached 0.35 Kg/cm 2 .

【表】【table】

【表】 この表から明らかなように凝集剤の量が僅少で
あつても処理効果は多大である。 実施例 4 凝集しない油分の除去 多くのテストを繰返した結果、ポリ塩化アルミ
ニウム、ポリアクリルアミド等を使用しても、ど
うしても凝集しない浮上油が循環することにより
多量に蓄積して水質の汚染を行なうことが多発す
る。特にタクシー、乗用車、電車等の洗車廃水を
処理したときに生じやすい。このような場合に
は、第2図に示すように沈降槽5の溢流側の頂面
に均一な突出函24を設け、水面に浮かぶ油分を
促えて汚泥貯槽9に送り、他の汚泥と共沈させ
る。更に油分の捕集効果を促進し、浮上する浮遊
物質の除去を行なうために沈降槽5の天井板に浮
上物抑流板25を垂直に取着することが望まし
い。 この操作は、特に合成洗剤の含有量の高い廃水
の浄化に当つては、種々の原因によつて気泡が生
成する結果、表面に浮上して溢流堰11を通つて
予備吸着槽12内の材13の目詰りを起させ、
度々逆洗に入る欠点を防止する大きな役割を果
す。即ち、浮上物抑流板25の使用により水面に
浮かぶ油分40000ppmが汚泥貯槽9へ除去され、
他の汚泥と共沈すると、その処理水のn―ヘキサ
ン抽出分は常時20ppm以下に下がり、後の処理
で0.2〜1ppmとなり操作上、安全かつ安定した良
質の水質に近づけることが容易となつた。 比較例 砂過工程における砂床の逆洗を行なわない
で実施例2と同様にして凝集、沈降分離、予備吸
着、砂過を経て廃水処理を継続したところ、圧
力発信機Pxの圧力が徐々に増加し、0.35Kg/cm2
を越える加圧状態では砂過槽14の砂床にお
ける蓄積物が目詰りのため上昇して処理水中に混
入し始め、0.45Kg/cm2の加圧下では次のような不
良な処理水が得られた。 n―ヘキサン抽出分 5〜10ppm SS 10〜15〃 BOD 10〜15〃 TS 215〜250〃 DS 210〜220〃 COD 10〜20〃 透視度 30cm以下 以上の説明から明らかなように本発明の洗車廃
水、ビルの雑廃水等の小規模廃水の再生処理方法
およびその装置は、洗車廃水等の小規模廃水に凝
集剤の添加、凝集および沈降分離を施して得られ
た処理水に材による予備吸着処理を施し、次い
で渦流の発生を防止しながら均一な上向流で過
する方法において、全工程を0.35Kg/cm2以下の加
圧下で行なうべく圧力を検知し、その圧力が0.35
Kg/cm2に達したとき自動的に運転を停止し、予備
吸着工程における目詰りの材を除去すると共に
過工程における砂床の逆洗を行なう方法およ
び密閉型凝集槽、密閉型沈降槽、圧力発信機と脱
気管とを配し、かつ材を交換するための開閉自
在な開閉部を配した密閉型予備吸着槽、および内
壁を粗面とし、砂利層外周に脱気管を配した上部
大気圧開放型の急速上向流過槽等からなる装置
であつて、特に脱気管と粗な内壁を有する過効
率の極めて良好な上向流砂過槽を用い、しかも
砂過槽の逆洗時期を予備吸着槽の材の正確な
吸着作用によつて生ずる圧力上昇によつて検知
し、全工程を0.35Kg/cm2という低圧に維持すると
共に逆洗操作を自動的に行なうので、良質の処理
水を効率良くしかも安価に安定して供給すること
を可能とする作用と効果を持つものである。本発
明は、洗車廃水、ビル雑廃水のほかに機械工場、
化学工場等の含油廃水の再生処理などに広く適用
することができる。
[Table] As is clear from this table, even if the amount of flocculant is small, the treatment effect is great. Example 4 Removal of oil that does not agglomerate As a result of repeated tests, it was found that even when polyaluminum chloride, polyacrylamide, etc. are used, floating oil that does not agglomerate circulates and accumulates in large amounts, causing water pollution. occurs frequently. This is particularly likely to occur when waste water from car washes such as taxis, passenger cars, and trains is treated. In such a case, as shown in FIG. 2, a uniform protruding box 24 is provided on the top surface of the overflow side of the settling tank 5 to encourage oil floating on the water surface to be sent to the sludge storage tank 9 and to separate it from other sludge. Co-precipitate. Furthermore, it is desirable to vertically attach a floating object suppression plate 25 to the ceiling plate of the sedimentation tank 5 in order to promote the oil-collecting effect and remove floating objects. In this operation, especially when purifying wastewater with a high content of synthetic detergent, air bubbles are generated due to various causes, float to the surface, pass through the overflow weir 11, and enter the preliminary adsorption tank 12. causing clogging of material 13,
It plays a major role in preventing the defects that occur frequently in backwashing. That is, by using the floating matter suppression plate 25, 40,000 ppm of oil floating on the water surface is removed to the sludge storage tank 9.
When co-precipitated with other sludge, the n-hexane extract content of the treated water always drops below 20 ppm, and after subsequent treatment it becomes 0.2 to 1 ppm, making it easy to achieve safe, stable, and high-quality water. . Comparative Example When wastewater treatment was continued through flocculation, sedimentation separation, preliminary adsorption, and sand filtration in the same manner as in Example 2 without backwashing the sand bed in the sand filtration process, the pressure of pressure transmitter P x gradually decreased. increased to 0.35Kg/cm 2
When the pressure exceeds 0.45 kg/cm 2 , the accumulated material on the sand bed of the sand filter tank 14 becomes clogged and begins to rise and mix into the treated water. It was done. n-hexane extract 5~10ppm SS 10~15〃 BOD 10~15〃 TS 215~250〃 DS 210~220〃 COD 10~20〃 Transparency 30cm or less As is clear from the above description, the car wash wastewater of the present invention , a method for recycling small-scale wastewater such as miscellaneous wastewater from buildings, and its equipment include a preliminary adsorption treatment using a material for the treated water obtained by adding a flocculant to small-scale wastewater such as car wash wastewater, and subjecting it to coagulation and sedimentation separation. In this method, the pressure is detected so that the entire process is carried out under a pressure of 0.35 kg/cm 2 or less, and the pressure is 0.35 kg/cm 2 or less.
Kg/cm 2 is reached, the operation is automatically stopped, the clogging material in the preliminary adsorption step is removed, and the sand bed is backwashed in the pass step, and a closed flocculation tank, a closed sedimentation tank, A closed preliminary adsorption tank equipped with a pressure transmitter and a degassing pipe, as well as a part that can be opened and closed for exchanging materials, and a large upper part with a rough inner wall and a degassing pipe around the outer periphery of the gravel layer. It is a device consisting of an air pressure release type rapid upward flow filter tank, etc., and in particular uses an upward flow sand filter tank with extremely good flow efficiency, which has a degassing pipe and a rough inner wall, and also controls the backwashing period of the sand tank. It detects the pressure increase caused by the precise adsorption action of the material in the preliminary adsorption tank, and maintains the entire process at a low pressure of 0.35Kg/ cm2 , and backwashing is automatically performed to ensure high quality treated water. It has the function and effect of making it possible to supply efficiently and stably at low cost. In addition to car wash wastewater and building wastewater, the present invention can also be used in machine factories,
It can be widely applied to recycling treatment of oil-containing wastewater from chemical factories, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施態様を示すものであつ
て、第1図はその説明図、第2図は沈降槽の他の
実施例を示す断面図である。 1…廃水貯槽、2…スクリーン、3…急速凝集
槽、4…緩速凝集槽、5…沈降槽、6…傾斜板、
7…センサー、8…超音波発信器、9…汚泥貯
槽、10…保安安全曲管、11…溢流堰、12…
予備吸着槽、13…材、14…砂過槽、15
…支持台、16…多孔板、17…砂利層、18…
金網、19…砂床、20…空気圧力貯槽、21
…再利用水貯槽、22…溢流堰、23…開口堰、
24…突出函、25…浮上物抑流板。
The drawings show one embodiment of the present invention, and FIG. 1 is an explanatory view thereof, and FIG. 2 is a sectional view showing another embodiment of the settling tank. 1... Wastewater storage tank, 2... Screen, 3... Rapid flocculation tank, 4... Slow flocculation tank, 5... Sedimentation tank, 6... Inclined plate,
7...Sensor, 8...Ultrasonic transmitter, 9...Sludge storage tank, 10...Safety and safety curved pipe, 11...Overflow weir, 12...
Preliminary adsorption tank, 13...material, 14...sand filter tank, 15
...Support stand, 16...Perforated plate, 17...Gravel layer, 18...
Wire mesh, 19... Sand bed, 20... Air pressure storage tank, 21
...Reused water storage tank, 22...Overflow weir, 23...Open weir,
24... Projection box, 25... Floating object suppression plate.

Claims (1)

【特許請求の範囲】 1 洗車廃水等の小規模廃水に凝集剤の添加、凝
集および沈降分離を施して得られた処理水に材
による予備吸着処理を施し、次いで内壁を粗面と
し、かつ脱気を施すことにより渦流の発生を防止
しながら均一な上向流で過する方法において、
全工程を0.35Kg/cm2以下の加圧下で行なうべく圧
力を常時検知し、その圧力が0.35Kg/cm2に達した
とき自動的に廃水の供給を停止し、過工程にお
ける砂床の逆洗を行なうことを特徴とする洗車
廃水等の小規模廃水の再処理方法。 2 密閉型凝集槽、密閉型沈降槽、圧力発信機と
脱気管とを各々配し、かつ材を交換するための
開閉自在な開閉部を配した密閉型予備吸着槽、お
よび内壁を粗面とし、砂利層外周に脱気管を配し
た上部大気圧開放型の急速上向流過槽等からな
る洗車廃水等の小規模廃水の再生処理装置。
[Scope of Claims] 1. Treated water obtained by adding a coagulant to small-scale wastewater such as car wash wastewater, coagulating it, and performing sedimentation separation is subjected to preliminary adsorption treatment with a material, and then the inner wall is roughened and desorbed. In the method of creating a uniform upward flow while preventing the generation of vortices by applying air,
In order to carry out the entire process under pressure of 0.35Kg/ cm2 or less, the pressure is constantly detected, and when the pressure reaches 0.35Kg/ cm2 , the wastewater supply is automatically stopped, and the sand bed is reversed in the overprocess. A method for reprocessing small-scale wastewater such as car wash wastewater, which involves washing. 2. A closed flocculation tank, a closed sedimentation tank, a closed pre-adsorption tank each equipped with a pressure transmitter and a degassing pipe, and with a part that can be opened and closed for exchanging materials, and an inner wall with a rough surface. , a small-scale wastewater regeneration treatment device for car wash wastewater and other small-scale wastewater, consisting of a rapid upward flow filter tank with a degassing pipe placed around the outer periphery of the gravel layer and a top atmospheric pressure open type.
JP13410277A 1977-11-10 1977-11-10 Regeneration disposal method of small-scale waste water, such as, waste water by car washing, etc. and its device Granted JPS5468050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13410277A JPS5468050A (en) 1977-11-10 1977-11-10 Regeneration disposal method of small-scale waste water, such as, waste water by car washing, etc. and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13410277A JPS5468050A (en) 1977-11-10 1977-11-10 Regeneration disposal method of small-scale waste water, such as, waste water by car washing, etc. and its device

Publications (2)

Publication Number Publication Date
JPS5468050A JPS5468050A (en) 1979-05-31
JPS6120324B2 true JPS6120324B2 (en) 1986-05-21

Family

ID=15120486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13410277A Granted JPS5468050A (en) 1977-11-10 1977-11-10 Regeneration disposal method of small-scale waste water, such as, waste water by car washing, etc. and its device

Country Status (1)

Country Link
JP (1) JPS5468050A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093807A (en) * 2001-09-27 2003-04-02 Daicel Chem Ind Ltd Apparatus for circularly using vehicle washing wastewater
JP5190884B2 (en) * 2008-11-18 2013-04-24 有冨 正憲 Water purification system
JP2011212596A (en) * 2010-03-31 2011-10-27 Dowa Eco-System Co Ltd Method for oil/water separation utilizing sand filtration
JP2015051418A (en) * 2013-09-09 2015-03-19 特定非営利活動法人おおいたの水と生活を考える会 Filter device and method for manufacturing filter device

Also Published As

Publication number Publication date
JPS5468050A (en) 1979-05-31

Similar Documents

Publication Publication Date Title
US4168228A (en) Waste water purification
US9290399B2 (en) Wastewater treatment process including irradiation of primary solids
US5256299A (en) Method and apparatus for liquid treatment
US3577341A (en) Water treatment
US5411665A (en) Methods for reducing and separating emulsions and homogeneous components from contaminated water
US4172781A (en) Waste water process for treatment of strong wastes
US4225431A (en) Process and apparatus for the treatment of aqueous waste materials
US4159945A (en) Method for denitrification of treated sewage
US3587861A (en) Apparatus and method of filtering solids from a liquid effluent
RU2325330C2 (en) Method of oilfield waters preparation for oilfield layer pressure support system and device for its implementation
JPS6120324B2 (en)
JPH0866697A (en) Fluid processing method
JP2000503895A (en) Wastewater treatment method and apparatus
IES20090512A2 (en) An effluent treatment process
JPH06237B2 (en) Wastewater treatment method and apparatus
JPS5931399B2 (en) Wastewater treatment equipment
GB2084041A (en) Process and apparatus for wastewater treatment
WO2021255541A1 (en) Plant for purifying wastewater
RU187325U1 (en) SEWAGE TREATMENT DEVICE
US3671426A (en) Continuous filtering process
KR20080082852A (en) Filtration apparatus and method using the same
JPS6261359B2 (en)
RU2817552C1 (en) Water supply and drainage system in weaving production
JP3970612B2 (en) Purification processing apparatus and purification processing method
JP3270155B2 (en) Sewage treatment method and treatment device