JPS61202436A - Exposing apparatus - Google Patents

Exposing apparatus

Info

Publication number
JPS61202436A
JPS61202436A JP60044205A JP4420585A JPS61202436A JP S61202436 A JPS61202436 A JP S61202436A JP 60044205 A JP60044205 A JP 60044205A JP 4420585 A JP4420585 A JP 4420585A JP S61202436 A JPS61202436 A JP S61202436A
Authority
JP
Japan
Prior art keywords
wafer
mask pattern
alignment mark
alignment
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044205A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Hideki Ine
秀樹 稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60044205A priority Critical patent/JPS61202436A/en
Publication of JPS61202436A publication Critical patent/JPS61202436A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To accurately align by using an excimer laser as a light source, and commonly using the projecting units of optical systems for transferring and exposing a mask pattern on the surface of a wafer and for aligning an alignment mark, thereby transferring in a high resolution. CONSTITUTION:A luminous flux from an excimer laser 1 is divided into two fluxes by luminous flux dividing means 2. One flux is emitted by an illumination optical system 3 to a mask pattern 4 and projected by a projecting system 5 on the surface of a wafer 6. The other flux is emitted through a reflecting mirror 8, a translucent mirror 9 and a reflecting mirror 10 by an alignment optical system 11 to the alignment mark on the pattern 4, and projected by the system 5 near the alignment mark on the wafer 6. Then, both marks are focused by the system 11 and a focusing system 13 on an image sensing tube 14 to detect the relative positional relationship of the marks by detecting means 15. Drive means 15 drives an X-Y stage on the basis of the result to match the pattern 4 to the wafer 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子回路等の微細なパターンが形成されている
マスクパターンをウェハ面上べ繰り返し転写露光し、半
導体t−n造する際に、マスクパターンとウェハとの整
合を高精度に行うことのできる露光装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to the process of repeatedly transferring and exposing a mask pattern in which a fine pattern such as an electronic circuit is formed onto a wafer surface to fabricate a semiconductor t-n. The present invention relates to an exposure apparatus that can align a mask pattern and a wafer with high precision.

(従来の技術) 最近の半導体技術は電子回路の高集積化、微細化の一途
を辿り、光学的な露光方式も高解像力のレンズの開発等
でますますその領域を拡げつつ6る。このような半導体
製造における露光装置にシいて、マスク又はレチクルの
回路パターンをウェハ面上に転写、焼付ける場合には、
ウェハ面上に焼付けられる回路パターンの解像線巾が光
源の波長に比例する九め、近年では遠紫外(Deep 
LrV )領域の短い波長の光源が用いられている。
(Conventional Technology) Recent semiconductor technology has continued to increase the degree of integration and miniaturization of electronic circuits, and optical exposure methods are also expanding their range further due to the development of high-resolution lenses, etc.6. When using such exposure equipment in semiconductor manufacturing to transfer and print the circuit pattern of a mask or reticle onto the wafer surface,
The resolution line width of the circuit pattern printed on the wafer surface is proportional to the wavelength of the light source.
A short wavelength light source in the LrV ) region is used.

しかしながらこれらの光源は遠紫外領域においては出力
が低く、またウェハ面上に塗付されるフォ)1/シスト
材の感光性も低いので、露光時間が長くなり、スループ
ットが小さくなる等の欠点があった。
However, these light sources have low output in the deep ultraviolet region, and the photosensitivity of the photosensitive material coated on the wafer surface is also low, so they have drawbacks such as long exposure times and low throughput. there were.

一方、近年エキシマ(txelmar )レーザーとい
う高出力の遠紫外領域を発振波長とする光源が各方面で
研究されている。このエキシマレーザーは高輝度性、単
色性にすぐれまた可干渉性があまりないこと等から半導
体製造の露光装置に大変有効である。
On the other hand, in recent years, excimer (txelmar) lasers, which are high-output light sources whose oscillation wavelength is in the deep ultraviolet region, have been studied in various fields. This excimer laser is very effective in exposure equipment for semiconductor manufacturing because it has high brightness, excellent monochromaticity, and little coherence.

一般に半導体素子の製造工程においては異つ文構成のマ
スクパターンをウェハ面上に何層に本練シ返し重ねて転
写していく工程が採られている。光源としてエキシマレ
ーザーヲ用い、エキシマレーザ−の発振波長の短波長化
による焼付線1)】の微細化を行う際にはマスクパター
ンとウェハとの整合もその都度高精度に行うことが必要
となってくる。しかしながら従来は可視光を用いて行っ
ていた為にマスクパターンとウェハとの整合を、焼付は
毎に高精度に行うには時間もかかりスループツ)を低下
させる原因となっていた。
Generally, in the manufacturing process of semiconductor devices, a process is adopted in which mask patterns having different text structures are transferred onto the wafer surface in several layers by repeating the actual training process. When an excimer laser is used as a light source and the oscillation wavelength of the excimer laser is shortened to miniaturize printed lines 1), it is necessary to align the mask pattern and the wafer with high precision each time. It's coming. However, since conventional methods have used visible light, it takes time to align the mask pattern and the wafer with high precision each time it is printed, resulting in a decrease in throughput.

(本発明の目的) 本発明は光源としてエキシマレーザ−を用い、マスクパ
ターンのウェハ面上への転写を高解像度で行うと共に、
マスクパターンとウェハトノ整合を高精度にしかも高速
に行うととくよ〕高スループット代金達成し九露光装置
の提供金目的とする。
(Objective of the present invention) The present invention uses an excimer laser as a light source to transfer a mask pattern onto a wafer surface with high resolution.
We aim to achieve high throughput costs by aligning the mask pattern and wafer topology with high precision and at high speed, and provide nine exposure devices.

(本発明の主たる特徴) 電子回路等のパターンが形成されているマスクパターン
をエキシマレーザ−からの光束により照明光学系を介し
て照明し、前記マスクパターンをウェハ面上に転写露光
する際、前記エキシマレーザ−からの光束の一部を光束
分割手段によシ分割し、前記マスクパターン面上に設け
られているアライメントマーク罠導光し、前記マスクパ
ターンと前記ウェハの整合を前記アライメントマーク若
しくはアライメントマークの像を走査することにより行
ったことである。
(Main features of the present invention) When a mask pattern on which a pattern of an electronic circuit or the like is formed is illuminated with a light beam from an excimer laser through an illumination optical system, and the mask pattern is transferred and exposed onto a wafer surface, A part of the light beam from the excimer laser is split by a light beam splitting means, and the light beam is guided to the alignment mark trap provided on the mask pattern surface, and alignment between the mask pattern and the wafer is performed using the alignment mark or alignment mark. This was done by scanning the image of the mark.

この他の本発明の特徴は実施例において記載さハでいる
Other features of the invention are described in the Examples.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

同図において1はエキシマレーザ−であシ、エキシマレ
ーザ−1からの光束の一5t−光束分割手段2により2
光束九分割する。このうち光束分割手段2で反射した光
束は照明光学系3によりマスクパターン4を照明する。
In the same figure, 1 is an excimer laser, and one 5t of the light beam from the excimer laser 1 is divided into 5t by the light beam splitting means 2.
Divide the luminous flux into nine parts. Among these, the light beam reflected by the light beam splitting means 2 illuminates the mask pattern 4 by the illumination optical system 3.

マスクパターン4は投影系5によりウニ66面上へ投影
されている。一方光束分割手段2を通過し九光束は反射
鏡8で反射し半透過鏡9、反射鏡10を介しアライメン
ト光学系1) Kよシ!スクパターン4面上に設けられ
ているマスク用アライメントマークを照射する。マスク
用アライメントマークは投影系5によりウェハ6面上に
設けられているウェハ用アライメントマーク近傍に投影
されている。そしてウニへ面に投影されたマスク用アラ
イメントマークとウェハ用アライメントマークの双方の
アライメントマークを投影系5、アライメント光学系1
)及び結像系13 Kよ〕例えば撮像管14の撮像面上
に結像させて、双方のアライメントマークの相対的位置
関係を電気的に走査し検出手段15により検出してrる
。そして検出手段15からの出力信号に基づいて駆動手
段16によルウエバ6を載置しているXYステージ7 
t−IK動させてマスクパターン4とウェハ6との整合
を行っている。
The mask pattern 4 is projected onto the surface of the sea urchin 66 by the projection system 5. On the other hand, the nine beams passing through the beam splitting means 2 are reflected by a reflecting mirror 8, and are sent to the alignment optical system 1) via a semi-transmissive mirror 9 and a reflecting mirror 10. The mask alignment mark provided on the fourth surface of the mask pattern is irradiated. The mask alignment mark is projected by the projection system 5 near the wafer alignment mark provided on the surface of the wafer 6 . The alignment marks for both the mask alignment mark and the wafer alignment mark projected onto the surface of the sea urchin are projected onto the projection system 5 and the alignment optical system 1.
) and the imaging system 13K] For example, an image is formed on the imaging surface of the imaging tube 14, and the relative positional relationship between both alignment marks is electrically scanned and detected by the detection means 15. Based on the output signal from the detection means 15, the XY stage 7 on which the lever 6 is placed is driven by the drive means 16.
The mask pattern 4 and the wafer 6 are aligned by t-IK movement.

本実施例におけるマスク用アライメントマークとウェハ
用アライメントマークとの整合は原理的に既に本出朧人
が特開昭s3−135654号公報で提案している方法
が使用可能である。
To align the mask alignment mark and the wafer alignment mark in this embodiment, in principle, it is possible to use the method already proposed by Oboromoto Motode in Japanese Patent Application Laid-Open No. S3-135654.

第2図囚、@、0は各々特開昭53−135654号公
報で提案しているアライメントマークの整合状態の説明
図である。
FIG. 2, @, and 0 are explanatory diagrams of the aligned state of alignment marks proposed in Japanese Patent Application Laid-Open No. 53-135654, respectively.

第2図囚に示すようにマスク用アライメント! −り2
5はマスクパターン4の一部に水平方向に45傾い友互
いに平行な2本の黒線よシ成る1−り25a T 2s
bとマーク25m1.25b1とは直交する方向で互い
に平行な2本の黒線よシ成るマーり25az −25b
zとを有しマーク25a1 と25a2  で一方のア
ライメントマークを構成し、又マーク25b1と25b
2で他方のアライメントマークを構成している。
Alignment for the mask as shown in Figure 2! -ri2
5 is a part of the mask pattern 4 consisting of two black lines 45 inclined horizontally and parallel to each other.
b and mark 25m1.25b1 is a mark 25az -25b formed by two black lines parallel to each other in a direction orthogonal to each other.
The marks 25a1 and 25a2 constitute one alignment mark, and the marks 25b1 and 25b
2 constitutes the other alignment mark.

又ウェハ6にはマスクパターン4の各マーク25m  
、 25m  、 25b  、 25b2に対応しこ
れらに各々平行な一本の黒線よ構成るウニ/1用アライ
メントマーク26の’v −/ 26a1+ 26a2
+ 26b1 *26b2 が設けられている。そして
ウニノ16面上のマーク26m  、 26m  、 
26b  、 26b2を各々マスクパターン4面上の
マーク25m1 、25m2゜25b  、 25b2
の略中間に平行に位置するようにマスクパターン4とウ
ェハ6t−相対的に変位すせて両者の整合を行っている
In addition, each mark of mask pattern 4 is 25 m long on wafer 6.
'v-/26a1+26a2 of the alignment mark 26 for sea urchin/1, which is composed of a single black line parallel to and corresponding to 25m, 25b, and 25b2.
+26b1 *26b2 are provided. And marks 26m, 26m on the 16th surface of Unino,
26b and 26b2 are marks 25m1 and 25m2 on the fourth side of the mask pattern, respectively.25b and 25b2
The mask pattern 4 and the wafer 6t are relatively displaced so that they are located parallel to each other approximately in the middle of the wafer 6t, thereby aligning them.

本実施例のようにテレビカメラを用いたオートアライメ
ントにンいては、マスク/(ターン番とウェハ6の双方
のアライメントマーク像を第2図Ωに示す如く撮像管の
走査線s、s’で電気的に走査し、各黒線の間を走査す
る時間 tU tU2・t3・t4 ・t1′・1.(
・ti・tjt−検出し、これらが全て等しくない場合
そのずれに応じて両者の位置を調整し、最終的に走査時
間 t工。
In auto-alignment using a television camera as in this embodiment, the alignment mark images of both the mask/(turn number and wafer 6) are scanned by scanning lines s and s' of the image pickup tube as shown in Figure 2 Ω. Time to electrically scan and scan between each black line tU tU2・t3・t4・t1′・1.(
・ti・tjt-detected, and if these are not all equal, adjust the positions of both according to the deviation, and finally scan time t.

t2 * t39t4 + tt ttイ t3′、t
、: が全て等しくなるようにしている。
t2 * t39t4 + tt tt t3', t
, : are all made equal.

本実施例においてマスクパターンとウニノーの整合を撮
像管を用いずに特開昭53−135654号公報で提案
されているようにアライメントマークのエツジからの散
乱光や回折光を検出することにより行っても良い。この
場合はマスクパターン面上のアライメントマークの位a
t−i学的に走査する走査手段を例えば光源とアライメ
ント光学系との間に配置する必要がある。
In this embodiment, the alignment between the mask pattern and Uni-No is performed by detecting the scattered light and diffracted light from the edges of the alignment marks, as proposed in Japanese Patent Application Laid-open No. 135654/1982, without using an image pickup tube. Also good. In this case, the alignment mark position a on the mask pattern surface is
It is necessary to arrange a scanning means for t-i scanning, for example between the light source and the alignment optical system.

本実施例において照明光学系3にはライトインテグレー
タ等の空間的に光量の均一性を達成する為の手段、シャ
ッター等の露光量制御手段そして可干渉性の良い光源を
用いたときに生じるスペックルを除去する為のインコヒ
ーレンF化の為の手段等を有している。
In this embodiment, the illumination optical system 3 includes a means for spatially achieving uniformity of light amount such as a light integrator, an exposure amount control means such as a shutter, and speckles that occur when using a light source with good coherence. It has a means for converting it into incoherent F to remove it.

本実施例においてアライメントマークを光学的に走査す
る場合はエキシ!レーザーからの光束を細長いシート状
の光束断面としてアライメントマークに照射するのが散
乱光量を増大させS/N 比が向上するので好ましい。
In this embodiment, when scanning the alignment mark optically, EXI! It is preferable to irradiate the alignment mark with the beam from the laser in the form of an elongated sheet-like beam cross section because this increases the amount of scattered light and improves the S/N ratio.

尚本実施例において投影系を用いずマスクパターンとウ
ェハを僅かの間隔tあけて転写露光する所謂プロキクミ
テイ方弐によシ行っても良いO (本発明の効果) 本発明によればマスクパターンのウニノ1面上への転写
露光の為の光学系と双方のアライメントマーりの整合用
の光学系を共に投影系を共通化して用い、更にエキシマ
レーザ−からの短い波長を使用することによシマスフパ
ターンのウニへ面への転写を高解像度で行うことが出来
、更に環境変化による投影系の結像性能の誤差が直ちに
アライメントマークの結像性能の誤差として現われ′〔
〈るので常に高精度の整合が可能となる。
In this embodiment, it is also possible to use the so-called professional exposure method in which the mask pattern and the wafer are transferred and exposed with a slight interval t without using a projection system. By using a common projection system for both the optical system for transfer exposure onto one surface of Unino and the optical system for matching the alignment marks on both sides, and by using a short wavelength from the excimer laser, It is possible to transfer the pattern onto the surface of the sea urchin with high resolution, and furthermore, errors in the imaging performance of the projection system due to environmental changes immediately appear as errors in the imaging performance of the alignment marks.
Therefore, highly accurate matching is always possible.

又エキシマレーザ−からの短い波長の光束を用いマスク
パターンとウェハの整合を行っティるのでアライメント
マークのエツジからの散乱光や回折光を利用して整合す
る場合、エツジからの回折散乱光の角度が小さくなり位
置合わせ装置において信号検出系のとシこめる回折散乱
光が多くなシS/N比が向上し高精度でしかも高速の整
合が可能となる。
Also, since the mask pattern and the wafer are aligned using a short wavelength light beam from an excimer laser, when alignment is performed using scattered light or diffracted light from the edge of the alignment mark, the angle of the diffracted scattered light from the edge This reduces the amount of diffracted and scattered light that enters the signal detection system in the alignment device, improving the S/N ratio and enabling high-accuracy and high-speed alignment.

更に1つのエキシ!レーザーからの光束を2つに分割し
て転写露光用と整合用に用いている為に露光装置を小型
に構成することができる。
One more exi! Since the light beam from the laser is divided into two parts and used for transfer exposure and alignment, the exposure apparatus can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2図囚
、@、(Qは各々本発明に係るアライメントマークの説
明図である。 図中1はエキシマレーザ−12は光束分割手段、3は照
明光学系、4はマスクパターン、5は投影系、6はウェ
ハ、7はXYステージ、1)はアライメント光学系、1
3は結像系、14は撮像管、15は検出手段、16は駆
動手段である。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of an alignment mark according to the present invention. Dividing means, 3 is an illumination optical system, 4 is a mask pattern, 5 is a projection system, 6 is a wafer, 7 is an XY stage, 1) is an alignment optical system, 1
3 is an imaging system, 14 is an image pickup tube, 15 is a detection means, and 16 is a drive means.

Claims (2)

【特許請求の範囲】[Claims] (1)電子回路等のパターンが形成されているマスクパ
ターンをエキシマレーザーからの光束により照明光学系
を介して照明し、前記マスクパターンをウェハ面上に転
写露光する際、前記エキシマレーザーからの光束の一部
を光束分割手段により分割し、前記マスクパターン面上
に設けられているアライメントマークに導光し、前記マ
スクパターンと前記ウェハの整合を前記アライメントマ
ーク若しくはアライメントマークの像を光学的或いは電
気的に走査することにより行つたことを特徴とする露光
装置。
(1) When a mask pattern on which a pattern such as an electronic circuit is formed is illuminated with a light beam from an excimer laser via an illumination optical system, and the mask pattern is transferred and exposed onto a wafer surface, the light beam from the excimer laser A part of the light beam is divided by a beam splitting means and guided to an alignment mark provided on the mask pattern surface, and the alignment mark or the image of the alignment mark is optically or electrically aligned between the mask pattern and the wafer. 1. An exposure apparatus characterized in that the exposure is performed by scanning.
(2)前記マスクパターンを投影系を介してウェハ面上
に投影露光すると共に、前記マスクパターンとウェハと
の整合を前記投影系を介して行つたことを特徴とする特
許請求の範囲第1項記載の露光装置。
(2) The mask pattern is projected and exposed onto a wafer surface via a projection system, and the mask pattern and the wafer are aligned via the projection system. The exposure apparatus described.
JP60044205A 1985-03-06 1985-03-06 Exposing apparatus Pending JPS61202436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044205A JPS61202436A (en) 1985-03-06 1985-03-06 Exposing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044205A JPS61202436A (en) 1985-03-06 1985-03-06 Exposing apparatus

Publications (1)

Publication Number Publication Date
JPS61202436A true JPS61202436A (en) 1986-09-08

Family

ID=12685056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044205A Pending JPS61202436A (en) 1985-03-06 1985-03-06 Exposing apparatus

Country Status (1)

Country Link
JP (1) JPS61202436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239942A (en) * 1987-03-27 1988-10-05 Nikon Corp Exposure apparatus
JPS63240501A (en) * 1987-03-27 1988-10-06 Matsushita Electric Ind Co Ltd Projecting lens and exposing device using said lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239942A (en) * 1987-03-27 1988-10-05 Nikon Corp Exposure apparatus
JPS63240501A (en) * 1987-03-27 1988-10-06 Matsushita Electric Ind Co Ltd Projecting lens and exposing device using said lens

Similar Documents

Publication Publication Date Title
JP3102076B2 (en) Illumination device and projection exposure apparatus using the same
US4822975A (en) Method and apparatus for scanning exposure
US4901109A (en) Alignment and exposure apparatus
JP3128827B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP2946950B2 (en) Illumination apparatus and exposure apparatus using the same
US3819265A (en) Scanning projection printer apparatus and method
KR950034480A (en) Projection Exposure Apparatus and Method
US4566795A (en) Alignment apparatus
JP3008633B2 (en) Position detection device
US4614864A (en) Apparatus for detecting defocus
US5114223A (en) Exposure method and apparatus
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JPH04211110A (en) Projection aligner and aligning method
JP2650396B2 (en) Position detecting device and position detecting method
JPS62188316A (en) Projection exposure device
JPS61202436A (en) Exposing apparatus
JP3306972B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JPH04342111A (en) Method and apparatus for projection exposure
US4808002A (en) Method and device for aligning first and second objects relative to each other
JPS6216526A (en) Projection exposure apparatus
US4723846A (en) Optical path length compensating optical system in an alignment apparatus
JP2503568B2 (en) Projection exposure device
JP2819855B2 (en) Position detecting method and position detecting device using lattice mark
JPH11162824A (en) Aligner
JP3295244B2 (en) Positioning device