JPS61202325A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPS61202325A
JPS61202325A JP4290285A JP4290285A JPS61202325A JP S61202325 A JPS61202325 A JP S61202325A JP 4290285 A JP4290285 A JP 4290285A JP 4290285 A JP4290285 A JP 4290285A JP S61202325 A JPS61202325 A JP S61202325A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic disk
hardened layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290285A
Other languages
Japanese (ja)
Inventor
Tomoji Morita
森田 知二
Mitsumasa Umezaki
梅崎 光政
Hirobumi Ouchi
博文 大内
Isato Nishinakagawa
西中川 勇人
Yasuhiro Okamura
康弘 岡村
Teruji Futami
二見 照治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4290285A priority Critical patent/JPS61202325A/en
Publication of JPS61202325A publication Critical patent/JPS61202325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To increase the number of times of contact start stop (CSS) by forming an Ni-Cu-P alloy film contg. 1-95wt% copper as a nonmagnetic hardened layer. CONSTITUTION:The hardened layer 2 on a nonmagnetic substrate 1 is subjected to a heat treatment at >=400 deg.C to form a non-magnetized Ni-Cu-P alloy layer thereon, by which the magnetization of the hardened layer is obviated even if a thin barium ferrite film 3 formed by heating during sputtering is used. The decrease in the reproduced output is obviated and since the layer has substantial hardness, the number of times of CSS is increased and a magnetic disk having high reliability is obtd. The Ni-Cu-P plating film which is not magnetized even if the film is subjected to the heat treatment of, for example, >=400 deg.C contains 1-95wt% Cu.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気ディスク装置に使用される磁気ディスク
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic disk used in a magnetic disk device.

〔従来の技術〕[Conventional technology]

近年、コンピュータ・システムにおける磁気ディスク等
の外部記憶装置の重要性が増大し、高記録密度化に対す
る要求はますます高まっている。
In recent years, the importance of external storage devices such as magnetic disks in computer systems has increased, and the demand for higher recording densities is increasing.

磁気記録装置は記録再生ヘッドおよび磁気ディスクの主
構成部から構成され、磁気ディスクは高速で回転し記録
再生ヘッドは磁気ディスクより微小間隔浮上している。
A magnetic recording device is composed of the main components of a recording/reproducing head and a magnetic disk. The magnetic disk rotates at high speed, and the recording/reproducing head floats a minute distance above the magnetic disk.

磁気記録装置の高性能化に伴い、この浮上間隔を小さく
するために記録再生ヘッドの荷重を小さくするとともに
接触始動・停止(コンタクトΦスタート・ストップ:C
55)型ヘッド浮揚システムが採用されている。磁気デ
ィスクの高記録密度化、高性能化を図るためには。
As the performance of magnetic recording devices improves, the load on the recording/reproducing head is reduced in order to reduce the flying distance, and contact start/stop (contact Φ start/stop: C
55) type head flotation system is adopted. In order to increase the recording density and performance of magnetic disks.

記録媒体の薄層化、均−一様化、磁気特性の改良(保磁
力、角形比の向上)、および低浮上量における安定した
ヘッド浮揚状態を確保しヘッドとディスクの衝突(ヘッ
ド・クラッシュ)を防止するためのディスク表面精度の
向上、耐ヘッドクラツシユ性等の向上が必要である。
By making the recording medium thinner and more uniform, improving its magnetic properties (improving coercive force and squareness ratio), and ensuring stable head flying conditions at low flying heights, head-disk collisions (head crashes) are avoided. In order to prevent this, it is necessary to improve disk surface precision and head crush resistance.

それに伴い磁性媒体層を支持する基板の品質の向上が重
要となっている。
Accordingly, it has become important to improve the quality of the substrate that supports the magnetic medium layer.

高密度記録に適する基板の条件としては機械的平担性お
よび表面粗さが良好であり、欠陥が小さくその数も少な
いことが挙げられる。さらに、記録媒体の薄層化に伴い
基板の十分な硬度も必要とされてきた。すなわち、基板
が軟かいと磁気ヘツドが磁気ディスクに接触した際に陥
没などの変形を起こし、磁気ヘッドの安定した浮揚状態
が得られないばかりか、磁気記録装置の信頼性を表すコ
ンタクトスタートストップ(CSS)回数が小さくなる
という問題がある。
Conditions for a substrate suitable for high-density recording include good mechanical flatness and surface roughness, and a small number of defects. Furthermore, as the recording medium becomes thinner, the substrate needs to have sufficient hardness. In other words, if the substrate is soft, it will cause deformation such as depression when the magnetic head comes into contact with the magnetic disk, and not only will the magnetic head not be able to maintain a stable floating state, but the contact start/stop (contact start/stop), which indicates the reliability of the magnetic recording device, will occur. CSS) There is a problem that the number of times becomes small.

バリウムフェライト薄膜を磁気記録媒体とする磁気ディ
スクはバリウムフェライト(B、0・6Fe20g)の
ターゲットを用いて、基板f:400〜650℃に加熱
し、  DC2C2極スバツタ(M、 Naoe、S、
 HasunumaY−Ho8hi、 S、Yanla
naka 工FEE Trans 、、 Mag、 *
MAG−17巻、6号(1981)、3184〜318
6頁:山中、直性、星、蓮沼、第28回春季応物講演予
稿(1981)、467貞)や対向ターゲット式スパッ
タ法(M、 Naoe 、 B、 Yamanaka 
tY−HOθhi、  工]11i1E  Tran8
0M、g、 、MAG −16巻。
A magnetic disk using a barium ferrite thin film as a magnetic recording medium uses a target of barium ferrite (B, 0.6Fe20g), heats the substrate f: 400 to 650℃, and performs a DC2C bipolar sputtering process (M, Naoe, S,
Hasunuma Y-Ho8hi, S, Yanla
naka engineering FEE Trans,, Mag, *
MAG-17, No. 6 (1981), 3184-318
Page 6: Yamanaka, Nao, Hoshi, Hasunuma, 28th Spring Science Lecture Proceedings (1981), 467 Sada) and facing target sputtering method (M, Naoe, B, Yamanaka)
tY-HOθhi, ENG]11i1E Tran8
0M, g, , MAG-16 volume.

5号(198G)、646〜64g頁; M、1Jao
e tY、 Ho5hi e S−Yamanaka、
 J、 Appl、  Phya、、 53巻、3号、
274B頁(1982);松岡、星。
No. 5 (198G), pp. 646-64g; M, 1Jao
e tY, Ho5hi e S-Yamanaka,
J, Appl, Phya, Volume 53, Issue 3,
Page 274B (1982); Matsuoka, Hoshi.

直性、山中、第5回応用磁気講演予稿(19111)。Naoya Yamanaka, Proceedings of the 5th Applied Magnetism Lecture (19111).

13頁;松岡、星、直江、山中、昭57信学総全大(1
982)、155頁;星、松岡、直江、山中。
13 pages; Matsuoka, Hoshi, Naoe, Yamanaka, 1981 IEICE General University (1
982), p. 155; Hoshi, Matsuoka, Naoe, Yamanaka.

信学論、J66−C巻、1号(1983)t  9頁)
Kより、バリウムフェライト薄膜を形成し、得られてい
る。基板は熱酸化膜付きシリコンウェハ(5iOz/ 
Sl) 、シリコンウェハ、石英ガラス、サファイアな
どが試験されているが、熱膨張率、熱伝導率、バリウム
フェライトの特性の点から8102/S1  が最良と
言われている(上述、信学論。
IEICE Theory, Vol. J66-C, No. 1 (1983) p. 9)
A barium ferrite thin film was formed from K. The substrate is a silicon wafer with thermal oxide film (5iOz/
SL), silicon wafer, quartz glass, sapphire, etc. have been tested, but 8102/S1 is said to be the best in terms of thermal expansion coefficient, thermal conductivity, and barium ferrite properties (as mentioned above, IEICE theory).

766−C巻、1千(1983)、9頁)。しかし、上
述基板では耐久性などに問題があり、磁気ディスクに使
用することは不可能である。一方。
766-C, 1,000 (1983), p. 9). However, the above-mentioned substrate has problems with durability, etc., and cannot be used for magnetic disks. on the other hand.

磁気ディスクに一般的に用いられているアルマイト処理
したアルミニウム合金基板では、アルマイト層が硬く研
磨できるため表面精度があげられるなどの利点があるが
2表面欠陥が多くまたバリウムフェライト薄膜の生成条
件である400℃以上の耐熱性がなくクラックが生じる
欠点があった。
Anodized aluminum alloy substrates, which are commonly used for magnetic disks, have advantages such as improved surface precision because the alumite layer is hard and can be polished, but they also have many surface defects and are difficult to produce barium ferrite thin films. It had the disadvantage of not being heat resistant to temperatures above 400°C and cracking.

この問題解決のため、アルミ合金基板上の非磁性硬化層
としてNi −P めつき膜が考えられた。
To solve this problem, a Ni-P plating film was considered as a nonmagnetic hardened layer on an aluminum alloy substrate.

N1−pめつき膜は研磨性が良好で膜厚を厚くでき、ア
ルマイト膜に比べて表面精度2表面欠陥数。
N1-p plated film has good polishability, can be made thicker, and has a higher surface accuracy than anodized aluminum film, with 2 surface defects.

耐熱性ともに著しく改善された。Both heat resistance was significantly improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、バリウムフェライト膜磁気ディスクの前記工程
のうち、スパッタリングの際の基板温度は通常400℃
以上である。Nl −Pめつき膜の磁性発生温度が通常
200℃前後であるため、前記工程処理後には:11−
 P めつき膜は磁性化している。硬化層が磁性化して
しまった場合、磁気記録の際磁性媒体層およびこの下の
硬化層にも記録され磁化遷移幅が増大し、再生の際は磁
性媒体層の磁化がこの下の硬化層によって閉じるために
磁気記録媒体外部に生じる磁束が減少しヘッド出力が低
下する問題があった。
However, among the above processes for barium ferrite film magnetic disks, the substrate temperature during sputtering is usually 400°C.
That's all. Since the magnetism generation temperature of the Nl-P plated film is usually around 200°C, after the above process: 11-
The P-plated film is magnetic. If the hardened layer becomes magnetized, it will be recorded in the magnetic medium layer and the hardened layer below this during magnetic recording, increasing the magnetization transition width, and during reproduction, the magnetization of the magnetic medium layer will be changed by the hardened layer below this. There was a problem in that the magnetic flux generated outside the magnetic recording medium was reduced due to the closing, resulting in a decrease in head output.

この発明は上記のような問題点を解決するためになされ
たもので、再生出力の低下のないCSS回数の増大する
信頼性の高い磁気ディスクを得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a highly reliable magnetic disk that can increase the number of CSS without decreasing the reproduction output.

〔間他点を解決するための手段〕[Means for solving the problem]

この発明の磁気ディスクは、非磁性硬化層として銅含有
量が1〜95重量%のNi−C1−P合金被膜を形成し
たものである。
The magnetic disk of the present invention has a Ni-C1-P alloy film having a copper content of 1 to 95% by weight formed as a nonmagnetic hardened layer.

〔作用〕[Effect]

この発明に係る銅含有量が1〜95重量%のNl −C
u−P合金被膜は、加熱処理をしても磁性化せず、再生
出力が低下することがなく、CSS回数も増大する。
Nl-C having a copper content of 1 to 95% by weight according to this invention
The u-P alloy film does not become magnetized even when subjected to heat treatment, the reproduction output does not decrease, and the number of CSSs increases.

〔実施例〕〔Example〕

以下、この発明の一実施例を図を用いて説明する。図面
において、(1)は非磁性基板であるアルミニウム合金
基板、(2)は非磁性硬化層であるNi −Cu −P
 めつき膜、(3)は磁性媒体層であるバリウムフェラ
イトスパッタ膜、(4)は潤滑膜である。
An embodiment of the present invention will be described below with reference to the drawings. In the drawings, (1) is an aluminum alloy substrate which is a non-magnetic substrate, and (2) is a Ni-Cu-P which is a non-magnetic hardened layer.
The plated film, (3) is a barium ferrite sputtered film which is a magnetic medium layer, and (4) is a lubricating film.

実施例 アルミ合金基板上に無電解めっきによってN1− Cu
 −Pめつき膜f、20 、a mつけた。N1−Cu
−pめつき膜は上材工業(株)製無電解Ni  Cu−
Pめつき液を用いて形成した。この時の膜の組成は重量
%でN160%、Cu35%、P5%であった。研磨に
より鏡面仕上げして、スパッタリングによりバリウムフ
ェライト薄膜を形成した。
Example N1-Cu was deposited on an aluminum alloy substrate by electroless plating.
-P plating film f, 20, a m was applied. N1-Cu
-P plating film is electroless Ni Cu manufactured by Uezai Kogyo Co., Ltd.
It was formed using a P plating solution. The composition of the film at this time was 160% N, 35% Cu, and 5% P by weight. A mirror finish was obtained by polishing, and a barium ferrite thin film was formed by sputtering.

比較例1 アルミ合金基板上に無電解めっきによってN1−pめっ
き膜t−20μmつけた。N1− p めつき膜は日本
カニゼン社製ブルーシューマーを用いて形成した。研磨
により鏡面仕上げして、スパッタリングによりバリウム
フェライト薄膜を形成した。
Comparative Example 1 A N1-p plating film of t-20 μm was deposited on an aluminum alloy substrate by electroless plating. The N1-p plating film was formed using Blue Schumer manufactured by Nippon Kanigen Co., Ltd. A mirror finish was obtained by polishing, and a barium ferrite thin film was formed by sputtering.

比較例2 アルミ合金基板上にアルマイト処理によってアルマイト
膜を2μmつけた。研磨により鏡面仕上げして、スパッ
タリングによりバリウムフェライト薄膜を形成した。
Comparative Example 2 A 2 μm thick alumite film was formed on an aluminum alloy substrate by alumite treatment. A mirror finish was obtained by polishing, and a barium ferrite thin film was formed by sputtering.

上述の比較例2のようにして得られた磁気ディスクは、
アルマイト膜にクラックが生じており。
The magnetic disk obtained as in Comparative Example 2 above was
Cracks have occurred in the alumite film.

実用に供することはできなかった。It could not be put to practical use.

上述の実施例のようにして得られた磁気ディスクは、比
較例1のようにして得られた磁気ディスクとともにクラ
ックは生じず、C8B試験などを行った。実施例により
得られた磁気ディスクは比較例1の場合に比較してC8
S回数は約1.5倍。
The magnetic disk obtained as in the above-mentioned Example, as well as the magnetic disk obtained as in Comparative Example 1, showed no cracks and was subjected to the C8B test. The magnetic disk obtained in the example has C8 compared to the case of comparative example 1.
The number of S times is approximately 1.5 times.

再生出力は30%向上した。The playback output was improved by 30%.

なお、上記実施例では膜の組成重量%がN160%、C
u 35%、P5%の場合を示したが、400℃以上の
熱処理をしても磁性化しないNi  Cu−pめっき膜
はCU の含有量が1〜95重量%である。CUの含有
量が極端に多い場合や少ない場合には、一様の組成で膜
厚を厚くするのがむすかしくy  Cuの含有量が15
〜80重量%が望ましい。
In addition, in the above example, the composition weight % of the film was N160%, C
Although the case of U 35% and P 5% is shown, the Ni Cu-P plating film, which does not become magnetized even after heat treatment at 400° C. or higher, has a CU content of 1 to 95% by weight. When the Cu content is extremely high or low, it is difficult to increase the film thickness with a uniform composition.
~80% by weight is desirable.

〔発明の効果〕〔Effect of the invention〕

以上のよ取に、この発明によれば、基板上の硬化層に4
00℃以上の熱処理をして磁性化しないN1− +4−
 P合金層を採用したので、スパッタリング中加熱して
形成されるバリウムフェライト薄膜を用いても硬化層が
磁性化せず再生出力が低下することなく、十分に硬度が
あるので、CSS回数が増大し、信頼性の高い磁気ディ
スクが得られる効果がある。
In addition to the above, according to the present invention, the cured layer on the substrate has four
N1- +4- which does not become magnetized by heat treatment above 00℃
Since the P alloy layer is used, even if a barium ferrite thin film formed by heating during sputtering is used, the hardened layer will not become magnetized and the reproduction output will not decrease.Since it is sufficiently hard, the number of CSS cycles can be increased. This has the effect of providing a highly reliable magnetic disk.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例により得られた磁気ディスク
を示す断面図である。 図において、(1)は非磁性基板、(2)はNi −C
u−P合金非磁性硬化層、(3)はバリウムフェライト
磁性媒体層、(4)は潤滑膜である。
The drawing is a sectional view showing a magnetic disk obtained according to an embodiment of the present invention. In the figure, (1) is a non-magnetic substrate, (2) is a Ni-C
A u-P alloy nonmagnetic hardened layer, (3) a barium ferrite magnetic medium layer, and (4) a lubricating film.

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板と、この非磁性基板に被覆される非磁性硬化
層と、この非磁性硬化層に被覆されるバリウムフェライ
ト磁性媒体層を有する磁気ディスクにおいて、前記非磁
性硬化層は銅含有量が1〜95重量%のNi−Cu−P
合金被膜であることを特徴とする磁気ディスク。
In a magnetic disk having a nonmagnetic substrate, a nonmagnetic hardened layer coated on the nonmagnetic substrate, and a barium ferrite magnetic medium layer coated on the nonmagnetic hardened layer, the nonmagnetic hardened layer has a copper content of 1. ~95% by weight Ni-Cu-P
A magnetic disk characterized by an alloy coating.
JP4290285A 1985-03-05 1985-03-05 Magnetic disk Pending JPS61202325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290285A JPS61202325A (en) 1985-03-05 1985-03-05 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290285A JPS61202325A (en) 1985-03-05 1985-03-05 Magnetic disk

Publications (1)

Publication Number Publication Date
JPS61202325A true JPS61202325A (en) 1986-09-08

Family

ID=12648959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290285A Pending JPS61202325A (en) 1985-03-05 1985-03-05 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS61202325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011457A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Magnetic recording medium, method of producing magnetic recording medium and magnetic recording device
JP2016018572A (en) * 2014-07-07 2016-02-01 古河電気工業株式会社 Metallic member for magnetic recording medium and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011457A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Magnetic recording medium, method of producing magnetic recording medium and magnetic recording device
JP2016018572A (en) * 2014-07-07 2016-02-01 古河電気工業株式会社 Metallic member for magnetic recording medium and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS60177420A (en) Composite type thin film magnetic head and its production
JPH0566647B2 (en)
JPS61202325A (en) Magnetic disk
JPS61199224A (en) Magnetic recording medium
JPH0474772B2 (en)
JPS61202326A (en) Magnetic disk
JPH04259908A (en) Magnetic disk substrate
JPS61188734A (en) Magnetic disk
JP2856258B2 (en) Thin film magnetic disk
JPS61199233A (en) Magnetic recording medium
JPS61199236A (en) Magnetic recording medium
JP2581225B2 (en) Magnetic recording medium and method of manufacturing the same
JPS61188732A (en) Magnetic recording medium
JPS61199238A (en) Magnetic recording medium
JP3024769B2 (en) Magnetic hard disk
JPS62243115A (en) Magnetic recording medium
JPS61188733A (en) Magnetic recording medium
JPS63209082A (en) Magnetic head
JPH03142708A (en) Magnetic recording medium
JPS61199226A (en) Magnetic recording medium
JPH0556006B2 (en)
JPS6052918A (en) Magnetic memory medium
JPS61199234A (en) Magnetic recording medium
JPS61199231A (en) Magnetic recording medium
JPS61199225A (en) Magnetic recording medium