JPS6120212A - Manufacture of thin film magnetic head - Google Patents

Manufacture of thin film magnetic head

Info

Publication number
JPS6120212A
JPS6120212A JP14111284A JP14111284A JPS6120212A JP S6120212 A JPS6120212 A JP S6120212A JP 14111284 A JP14111284 A JP 14111284A JP 14111284 A JP14111284 A JP 14111284A JP S6120212 A JPS6120212 A JP S6120212A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
film magnetic
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14111284A
Other languages
Japanese (ja)
Inventor
Makoto Aihara
誠 相原
Hiroji Kawakami
寛児 川上
Shinji Narushige
成重 真治
Mitsuo Kichise
吉瀬 三雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14111284A priority Critical patent/JPS6120212A/en
Publication of JPS6120212A publication Critical patent/JPS6120212A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • G11B5/3153Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers including at least one magnetic thin film coupled by interfacing to the basic magnetic thin film structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To inexpensively and efficiently manufacture magnetic heads which performs writing and reproducing with a high storage density, by forming the main body of the thin film magnetic head by laminating two or more thin film magnetic materials and cutting off a part of the gap forming end section of the thin film magnetic material of the outer layer, and then, filling the cut off section with a nonmagnetic material. CONSTITUTION:A lower magnetic material 2, insulating body 4, and upper magnetic material 6 are successively laminated on a base board 1 and each of the upper and lower magnetic layers is separated into two layers 2a and 2b and 6a and 6b with insulating bodies 10 and 11 respectively being put between them 2a and 2b and 6a and 6b. Then a closed magnetic path is formed by magnetically connecting the rear ends of the thin film magnetic head and a laminated cross section 7 is formed by machining the front end section of head. Then partial end parts of the outer layers 2b and 6b at the front end section of the magnetic head main body are cut off after performing etching process on the laminated cross section 7 of the main body and a recessed section is formed. After filling the recessed section with a nonmagnetic material, the excessive nonmagnetic material is removed and, at the same time, the head front end section is machined so that a prescribed gap depth can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、薄膜磁気ヘッドの製造方法に係り、特に高記
録密度のシステム用の書込みおよび読出しを兼用する薄
膜磁気ヘッドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a thin film magnetic head, and more particularly to a method of manufacturing a thin film magnetic head for both writing and reading functions for a high recording density system.

〔発明の背景〕[Background of the invention]

薄膜磁性ヘッドは薄い磁性薄膜を用いることにより、磁
界をヘッド先端に鋭く集中させることができるので、高
い磁気記録密度を実現することができるという特徴を有
している。
Thin-film magnetic heads use a thin magnetic thin film to sharply concentrate the magnetic field at the tip of the head, and are therefore characterized in that they can achieve high magnetic recording density.

第1図は従来の薄膜磁気ヘッドの一例を示す拡大断面図
であって、基板l上に下部磁性体2、一端にギャップ3
を形成する絶縁体4、導体巻線5および上部磁性体6を
順次堆積したもので、磁気媒体に対面する先端部7は磁
気媒体の走行方向に平行に切り取られて構成されている
。なお、下部磁性体2と上部磁性体6の後端は磁気的に
接続され、ギャップ3の切欠き部分を除き閉磁路を形成
している。
FIG. 1 is an enlarged sectional view showing an example of a conventional thin film magnetic head, in which a lower magnetic body 2 is placed on a substrate l, and a gap 3 is provided at one end.
An insulator 4, a conductor winding 5, and an upper magnetic body 6 are sequentially deposited to form an insulator 4, a conductor winding 5, and an upper magnetic body 6, and the tip 7 facing the magnetic medium is cut off parallel to the running direction of the magnetic medium. Note that the rear ends of the lower magnetic body 2 and the upper magnetic body 6 are magnetically connected to form a closed magnetic path except for the notched portion of the gap 3.

このように構成してなる薄膜磁気ヘッドにおける上下部
磁性体の先端部の厚さはボール長(P)、上下部磁性体
の先端部の間隔はギャップ長(G、)と呼ばれている。
In the thin film magnetic head constructed as described above, the thickness of the tips of the upper and lower magnetic bodies is called the ball length (P), and the distance between the tips of the upper and lower magnetic bodies is called the gap length (G, ).

書込電流が小さく、パターンシフトが小さく、読出電圧
の記録密度特性の良好な高記録密度の薄膜磁気ヘッドを
得るには、上記ポール長Pおよびギャップ長G、と最小
記録波長λとの関係は、特開昭52−92709号公報
に示されているよ5に、2P十G、<λの式を満足する
必要がある旨開示されている。例えば、磁気媒体の磁化
反部密度が400@/wとすると、記録波長は5/jm
となり、2P十G、<λ(=5μm)を満すPX’d、
の値は、例えばP=2 (μm)、G、=1(μm)以
下となり極めて小さな値となる。
In order to obtain a high recording density thin film magnetic head with a small write current, small pattern shift, and good read voltage recording density characteristics, the relationship between the above pole length P and gap length G and the minimum recording wavelength λ is as follows. , JP-A-52-92709 discloses that it is necessary to satisfy the formula 2P+G, <λ. For example, if the magnetization density of the magnetic medium is 400@/w, the recording wavelength is 5/jm
Then, PX'd, which satisfies 2P0G, <λ (=5 μm),
The value of is, for example, P=2 (μm) and G=1 (μm) or less, which is an extremely small value.

筺た、高密度記録等の再生時において、連続した磁束反
転の間隔が小さくなった時に見られる再生波長のピーク
のずれをピークシフトと呼はれるが、このピークシフト
を小さくする公知技術としては、Numerical 
Analysis of WriBng andRJe
ading witn multiturn film
 Heads 。
During reproduction of high-density recording, etc., the shift in the peak of the reproduction wavelength that occurs when the interval between successive magnetic flux reversals becomes small is called peak shift, and known techniques for reducing this peak shift include , Numerical
Analysis of WriBng andRJe
adding witn multiturn film
Heads.

IEEE 、 ’I’ransaction on M
agnetics 、 VoL。
IEEE, 'I'transaction on M
agnetics, VoL.

MAG −16、A 5 、 September  
l 98Q に示されるように、上記ポール長Pを記録
波長λの1/4以下にすることが重要であることが開示
されている。
MAG-16, A5, September
198Q, it is disclosed that it is important to make the pole length P equal to or less than 1/4 of the recording wavelength λ.

ところで、この小さなポール長Pを得る手段として、下
部磁性体2および上部磁性体6の厚さt。を薄くするこ
とが容易に考えられる。しかしながら、t、を薄くする
と上下部磁性体2,6は容易に磁気的に飽和してしまう
ので、ギャップ3においては記録媒体を磁化するのに十
分に強い磁界Haを得ることができない。特に、上部磁
性体6と下部磁性体2との間に導体巻線5をはさみ込む
ために、下部磁性体2と上部磁性体6との間隔は導体巻
線5の厚さ以上にする必要がある。一方、磁気ヘッドの
先端における下部磁性体と上部磁性体との間にはギャッ
プ長G、と等しい間隔を設けなければならない。そのた
めに、上下磁性体のいずれか一方例えば上部磁性体6は
図に示すようにギャップ3の後方に向って傾斜する斜面
部分をもつ構造となる。このようなfpr面部分を有す
る上部磁性体6を蒸着法等により形成する際、上部磁性
体6の斜面部分の厚さt、は、斜面の傾きをθとすると
必然的に”m = t 、 COBθとなり、他の水平
部分より薄くなる。そのために、上部磁性体6の斜面部
分は、記録時に閉磁路の他の部分よりも磁気的に飽和し
易くなり、ギャップ3においてより強い記録磁界Haを
得ることができなくなる。また一方、情報を記録媒体圧
書込む際に、上下部磁性体2,6の磁気的飽和を避けて
ギャップ3に強い記録磁界を得るためにはず上下部磁性
体の先端平行部の長さすなわち磁気ギャップ深さGaを
小さくする方法が考えられる。しかしながら、この方法
では磁性体の膜厚t、を2μm程度に薄くしたときには
、磁気ギャップ深さGaを3μm程度に極端に小さくす
る必要がある。
By the way, as a means for obtaining this small pole length P, the thickness t of the lower magnetic body 2 and the upper magnetic body 6 is determined. It is easy to think of making it thinner. However, if t is made thinner, the upper and lower magnetic bodies 2 and 6 easily become magnetically saturated, and therefore it is not possible to obtain a magnetic field Ha strong enough to magnetize the recording medium in the gap 3. In particular, in order to sandwich the conductor winding 5 between the upper magnetic body 6 and the lower magnetic body 2, the distance between the lower magnetic body 2 and the upper magnetic body 6 must be greater than the thickness of the conductor winding 5. be. On the other hand, a distance equal to the gap length G must be provided between the lower magnetic body and the upper magnetic body at the tip of the magnetic head. For this purpose, one of the upper and lower magnetic bodies, for example, the upper magnetic body 6, has a structure having a slope portion that slopes toward the rear of the gap 3, as shown in the figure. When forming the upper magnetic body 6 having such an fpr surface portion by a vapor deposition method or the like, the thickness t of the slope portion of the upper magnetic body 6 is necessarily “m = t,” where the slope of the slope is θ. COBθ, which is thinner than the other horizontal portions.For this reason, the sloped portion of the upper magnetic body 6 is more likely to be magnetically saturated than other portions of the closed magnetic path during recording, and a stronger recording magnetic field Ha is applied in the gap 3. On the other hand, when writing information onto a recording medium, in order to avoid magnetic saturation of the upper and lower magnetic bodies 2 and 6 and obtain a strong recording magnetic field in the gap 3, the tips of the upper and lower magnetic bodies must be A method can be considered to reduce the length of the parallel part, that is, the magnetic gap depth Ga. However, in this method, when the film thickness t of the magnetic material is reduced to about 2 μm, the magnetic gap depth Ga is extremely reduced to about 3 μm. It needs to be made smaller.

以下、この点について詳しく説明する。This point will be explained in detail below.

新情報の書込みおよび旧情報の消去を兼ねるディスク用
ヘッドにおいて、ギャップ3に発生すべき磁界H,Fi
記録媒体の保磁力の5〜10倍程度を見込む必要がある
。ここで、ヘッドの先端幅すなわち第1図の紙面直角方
向の幅をWとすると、ギャップ3における漏れ磁束ΦG
は次式で表わされる。
In a disk head that writes new information and erases old information, the magnetic fields H and Fi that should be generated in the gap 3
It is necessary to expect about 5 to 10 times the coercive force of the recording medium. Here, if the tip width of the head, that is, the width in the direction perpendicular to the paper surface of FIG.
is expressed by the following equation.

Φo =11oXHa XWXGt      ・”(
1)一方、上部磁性体6内を流れる最大磁束量ΦCは次
式となる。
Φo = 11oXHa XWXGt ・”(
1) On the other hand, the maximum amount of magnetic flux ΦC flowing within the upper magnetic body 6 is expressed by the following formula.

Φc =Bm XWX t。         −(2
)ΦC≦ΦGであシ、ギャップ深さGdの許容最大値は
次式となる。
Φc = Bm XWX t. −(2
) ΦC≦ΦG, the maximum allowable value of the gap depth Gd is given by the following formula.

(3)式でBs=1万ガウメガウス@ =2 AmS 
i(G =5千エルステッドとすれば、Gdの許容最大
値は4μmとなる。また、蒸着、スパッタリング等の方
法によシ上部磁性体6を堆積する際に、斜面部分の厚さ
t/、が薄くなり、Gdの許容最大値はさらに小さくな
る。例えば、斜面部分の傾斜角θが45度のとき、t′
。==t、−cos45°を式(3)ニ代入して計算す
ると許容最大値Ga#−1:、Ga528μmと極めて
小さな値となる。すなわち、磁気ヘッドにおいて、磁性
体厚さt、、t’、を薄くせずに磁気コアの磁気抵抗を
できるだけ小さくしたままで、磁性体の先端のポール長
さPを特に小さくする必要がある。このように磁性体の
膜厚を薄くすることなく、ヘッド先端部のポール長Pを
極小にする方法としては、第2図に示すように、磁気ヘ
ッドの磁性体先端に設けた平面の互に遠ざかる位置にあ
る端部8a、 8bを非磁性領域にすることが知られて
いる。それによれば、第2図に示すように、記録媒体に
対面する磁性体の表面を切削した後に薄膜の上、F部磁
性体2.6の先端の互いに遠ざかる位置にある端部にホ
ット・レジスト等で形成したマスクを設け、その上面か
ら酸素イオンを打ち込んで磁性体を酸化せしめて、非磁
性あるいは弱磁性領域を形成するものである。しかしな
がらこの従来の磁気ヘッドを製造する方法では、ポール
部分9a、9bにマスク合わせを行うことが必要であり
、例えばポール長Pを2μmとして±20%以内の精度
で製作するには、マスク合わせ金する際に1F谷される
ずれは0.4μm1すなわち光の波長以下となる。した
がって、従来の磁気ヘッドの製造方法ではボール長Pを
極小にする際に、マスク合わせが不可能とな9、高記録
密度の磁気薄膜磁気ヘッドが得られないという問題点を
有していた。
In equation (3), Bs = 10,000 Gauss = 2 AmS
If i(G = 5,000 oersteds, the maximum allowable value of Gd is 4 μm. Also, when depositing the upper magnetic material 6 by a method such as vapor deposition or sputtering, the thickness of the sloped portion t/, becomes thinner, and the maximum allowable value of Gd becomes smaller.For example, when the inclination angle θ of the slope part is 45 degrees, t'
. When calculated by substituting ==t, -cos45° into equation (3), the allowable maximum value Ga#-1:, Ga528 μm, which is extremely small, is obtained. That is, in the magnetic head, it is necessary to make the pole length P at the tip of the magnetic body particularly small while keeping the magnetic resistance of the magnetic core as small as possible without reducing the thicknesses t, t' of the magnetic body. As shown in Fig. 2, a method for minimizing the pole length P at the tip of the head without reducing the film thickness of the magnetic body is to align the planes provided at the tip of the magnetic body of the magnetic head with each other, as shown in Figure 2. It is known to make the ends 8a, 8b located away from each other a non-magnetic region. According to this, as shown in FIG. 2, after cutting the surface of the magnetic material facing the recording medium, a hot resist is applied to the ends of the F section magnetic material 2.6 that are far away from each other on the thin film. A non-magnetic or weakly magnetic region is formed by implanting oxygen ions into the top surface of the mask to oxidize the magnetic material. However, in this conventional method of manufacturing a magnetic head, it is necessary to perform mask alignment on the pole portions 9a and 9b. For example, in order to manufacture with an accuracy of within ±20% when the pole length P is 2 μm, it is necessary to perform mask alignment. When doing so, the 1F deviation is 0.4 μm1, that is, less than the wavelength of light. Therefore, in the conventional magnetic head manufacturing method, when minimizing the ball length P, mask alignment is impossible9, and a magnetic thin film magnetic head with high recording density cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高記憶密度で書込み、再生する磁気記
録システム用磁気ヘッドを磁気コア厚さを薄くすること
なく、かつ磁気ギャップ深さGaを小さくすることなく
、低コストで効率よく生産することができる薄膜磁気ヘ
ッドの製造方法に関する。
An object of the present invention is to efficiently produce a magnetic head for a magnetic recording system that writes and reproduces data at high storage density at low cost without reducing the thickness of the magnetic core or reducing the magnetic gap depth Ga. The present invention relates to a method of manufacturing a thin-film magnetic head that can be manufactured using a thin-film magnetic head.

〔発明の概要〕[Summary of the invention]

本発明は、2以上の薄膜磁性体を積層して薄膜磁気ヘッ
ド本体を形成し、外層薄膜磁性体のギャップ形成端部の
一部を切除し、この切除部に非磁性体を充填して高記録
密度のシステム用の書込みおよび読出しを兼用する薄膜
磁気ヘッドの製造方法である。
In the present invention, a thin film magnetic head body is formed by laminating two or more thin film magnetic materials, a part of the gap forming end of the outer thin film magnetic material is cut off, and this cut portion is filled with a nonmagnetic material to increase the This is a method of manufacturing a thin film magnetic head for both writing and reading for a recording density system.

上記の製造方法の対象となる薄膜磁気ヘッドは、例えば
第3図に示すように、基板1上にスパッタリング法、メ
ッキ法等によシ下部磁性体2を薄い絶縁層10を介在さ
せて2層2a、2bに形成し、そして上部磁性体を薄い
絶縁層11を介在させて2層6a、 6bに形成し、前
記上下磁性体との間に導体巻線5を配設して構成されて
いる。さらに、この上下部磁性体は後端部が磁性的に接
続され、その先端部をギャップ3をはさんで互に分離し
て磁極を形成している。さらに磁極におけるボール長P
の一部をなす外層の薄膜磁性体層2b、6bの一端部は
切除され、その切除部に非磁性体が充填されている。
The thin film magnetic head that is the target of the above manufacturing method is manufactured by forming a lower magnetic body 2 in two layers on a substrate 1 by sputtering, plating, etc. with a thin insulating layer 10 interposed therebetween, as shown in FIG. 3, for example. 2a and 2b, and the upper magnetic body is formed into two layers 6a and 6b with a thin insulating layer 11 interposed therebetween, and a conductor winding 5 is disposed between the upper and lower magnetic bodies. . Further, the rear end portions of the upper and lower magnetic bodies are magnetically connected, and the tip portions are separated from each other with a gap 3 in between to form magnetic poles. Furthermore, the ball length P at the magnetic pole
One end portion of the outer thin film magnetic material layers 2b and 6b forming a part of is cut off, and the cut portion is filled with a non-magnetic material.

このように磁極の先端部に非磁性体を充填するように構
成する薄膜磁気ヘッドでは、先端部のボール長Pを小さ
くするとともに、書込み動作時に薄膜磁性体が磁気飽和
することなく高記録密度化を図ることができる。
In a thin-film magnetic head configured such that the tip of the magnetic pole is filled with a non-magnetic material, the ball length P at the tip can be made small, and the thin-film magnetic material can achieve high recording density without becoming magnetically saturated during a write operation. can be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明の薄膜磁気ヘッドの製造方法の一例を示
す工程説明図であって、積層工程、切除工程および充填
工程からなる。次罠各工程別に説明する。
FIG. 4 is a process explanatory diagram showing an example of the method for manufacturing the thin film magnetic head of the present invention, which includes a lamination process, a cutting process, and a filling process. The next trap will be explained separately for each process.

積層工程 この積層工程では、まず基板1上にスパッタリング法あ
るいはメッキ法などにより下部磁性体2、絶縁体4およ
び上部磁性体6を順次積層し、かつ下部磁性体2を絶縁
体10を介在させて2層2a。
Lamination process In this lamination process, first, a lower magnetic body 2, an insulator 4, and an upper magnetic body 6 are sequentially laminated on a substrate 1 by a sputtering method or a plating method, and the lower magnetic body 2 is stacked with an insulator 10 interposed. 2 layers 2a.

2bに形成するとともに、上部磁性体6を同様に絶縁体
11を介在させて2層6a、6bに形成して薄膜磁気ヘ
ッド本体を形成する。この2層からなる上下部磁性体2
,6を積層するに際し、各外層を被エツチング速度の大
きい磁性材料たとえばFe−N1(組成比でF e 1
8.5%:Ni81.5%)KCrあるいはAu、pt
などの貴金属を微量添加した磁性材料で構成し、一方各
内層2a。
2b, and the upper magnetic body 6 is similarly formed into two layers 6a and 6b with an insulator 11 interposed therebetween to form a thin film magnetic head body. The upper and lower magnetic bodies 2 consisting of these two layers
, 6, each outer layer is etched using a magnetic material having a high etching speed, such as Fe-N1 (composition ratio:
8.5%: Ni81.5%) KCr or Au, pt
Each inner layer 2a is made of a magnetic material to which a small amount of precious metal such as .

6aに鉱被エツチング速度の小さい磁性材料たとえばF
e−Ni合金(組成比でFe18゜5%:Ni81.5
%)で形成して各磁性体の内外層において化学的エツチ
ングによる被エツチング速度の差異を設けるようにして
形成する。続いて図示しない薄い膜磁気ヘッドの後端部
を磁気的に接続して閉磁路を形成する一方、ヘッドの先
端部を切削加工して積層断面7を形成する。この積層断
面7は基板1、下部磁性体2b、’la、ギャップ3お
よび上部磁性体6a、6bからなるう 切除工程 次に、薄膜磁気ヘッド本体の積層断面7を化学的エツチ
ング法によシエッチング処理を施す。上下部磁性体2.
6の各内層2a、6aよシ被エツチング速度の大きい各
外層2b、6bが選沢的にエツチングされ、磁気ヘッド
本体の先端部における外層2b、6bの一部端部が切除
され、凹部が形成される。なお、上下部磁性体における
内外層の磁性材を同一にした場合においても、外層の厚
さを内層の厚さより大きくすることにより、エツチング
液の循環の差を利用してエツチング速度に差をつけるこ
とができる。さらに、他の切除方法としては、上下部磁
性体2,6を積層する際に、層間に絶縁層10.11を
介在させないで、化学的エツチング法において内外層間
に局部電池を形成させ、極部電池反応を利用して外層2
b、6bを選沢的にエツチングすることができる。
6a is a magnetic material with a low etching rate, such as F.
e-Ni alloy (composition ratio: Fe18°5%:Ni81.5
%) to provide a difference in etching speed by chemical etching between the inner and outer layers of each magnetic material. Subsequently, the rear end of a thin film magnetic head (not shown) is magnetically connected to form a closed magnetic path, while the tip of the head is cut to form a laminated cross section 7. This laminated cross section 7 consists of the substrate 1, the lower magnetic bodies 2b, 'la, the gap 3, and the upper magnetic bodies 6a, 6b. Next, the laminated cross section 7 of the thin film magnetic head body is etched by a chemical etching method. Apply processing. Upper and lower magnetic bodies 2.
The outer layers 2b and 6b, which are etched at a higher etching speed than the inner layers 2a and 6a, are selectively etched, and a portion of the outer layer 2b and 6b at the tip of the magnetic head body is cut off to form a recess. be done. Note that even when the magnetic materials of the inner and outer layers of the upper and lower magnetic bodies are the same, by making the outer layer thicker than the inner layer, the etching speed can be differentiated by utilizing the difference in the circulation of the etching solution. be able to. Furthermore, as another cutting method, when the upper and lower magnetic bodies 2 and 6 are stacked, a local battery is formed between the inner and outer layers using a chemical etching method without interposing the insulating layer 10.11 between the layers, and the polar parts are Outer layer 2 using battery reaction
b, 6b can be selectively etched.

充填工程 次に、切除工程において切除された凹部に非磁性材をス
パッタリング法によシ充填した後、充填した余剰の非磁
性材を切削研磨によシ取り除くと同時に、所定のギャッ
プ深さくdd)になるようにヘッド先端部を切削研磨す
る。充填方法としては、スパッタリング方法の代わりに
、上下部磁性体の外層を電極とするメッキ法によること
も適宜で1、その他既存の充填方法を用いることができ
る。このように上記の積層、切除および充填工程を経て
得られる薄膜磁気ヘッドによれば、磁極先端部の互に遠
ざかる位置にある領域に非磁性(弱磁性を含む)の部分
を有し、ギャップ長Pを小さくすることができるととも
に、ギャップ深さG−を任意に形成することができる。
Filling process: Next, after filling the recesses excised in the cutting process with a non-magnetic material by sputtering, the excess filled non-magnetic material is removed by cutting and polishing, and at the same time, the gap is made to a predetermined depth (dd) Cut and polish the tip of the head so that it looks like this. As a filling method, instead of the sputtering method, a plating method using the outer layers of the upper and lower magnetic bodies as electrodes may be used as appropriate1, and other existing filling methods may be used. According to the thin-film magnetic head obtained through the above-described lamination, cutting, and filling steps, the magnetic pole tips have non-magnetic (including weakly magnetic) portions in regions located far away from each other, and the gap length P can be made small, and the gap depth G- can be formed arbitrarily.

さらに、本発明に係る製造方法では、2層以上の薄膜磁
性体の選沢エッチ性を利用して磁気ヘッド先端部の一部
を切除するため、ホットレジストなどで形成したマスク
を設ける必要はなく、精度の高いギャップ長Pを設定す
ることができる。
Furthermore, in the manufacturing method according to the present invention, a part of the tip of the magnetic head is removed using the selective etchability of two or more layers of thin film magnetic material, so there is no need to provide a mask formed of hot resist or the like. , it is possible to set the gap length P with high accuracy.

このようにして得られた薄膜磁気ヘッドは、磁極の先端
部の互いに遠ざかる位置Klる領域が非磁性または弱磁
性となるので、相対向する磁極先端のポール長Pを小さ
くすることができる。そのため、磁極の先端付近におい
て磁束分布密度が下がシ、書き込み時にはギャップに強
い磁界が得られ、読み出し時にはピークシフトの低減効
果を得ることができる。
In the thin-film magnetic head thus obtained, the regions of the tips of the magnetic poles at positions K1 that are far from each other are non-magnetic or weakly magnetic, so that the pole length P of the opposing tips of the magnetic poles can be made small. Therefore, the magnetic flux distribution density is lowered near the tip of the magnetic pole, a strong magnetic field can be obtained in the gap during writing, and the effect of reducing peak shift can be obtained during reading.

第5図は垂直磁気記録に用いる単磁極ヘッドの一例を示
す断面説明図である。この垂直磁気記録に用いる単磁極
ヘッドにおいて、高密度記録を実現するにはポール長の
短いヘッドを形成する必要がある。図において、101
は磁性体、102および103は磁性体101の両面に
絶縁体104および105を介在させて配設した磁性体
であって、磁性体102,103は磁性体101よシ被
エツチング速度の大きな材質で形成されている。
FIG. 5 is an explanatory cross-sectional view showing an example of a single magnetic pole head used for perpendicular magnetic recording. In a single-pole head used for perpendicular magnetic recording, it is necessary to form a head with a short pole length in order to realize high-density recording. In the figure, 101
102 and 103 are magnetic materials disposed on both sides of the magnetic material 101 with insulators 104 and 105 interposed therebetween, and the magnetic materials 102 and 103 are made of materials with a higher etching speed than the magnetic material 101. It is formed.

磁性体102,103の上下には導体巻線108゜10
9周設されて、絶縁体106,107がそれぞれスパッ
タリング法等で堆積されて単磁極ヘッドが形成されてい
る。
Above and below the magnetic bodies 102 and 103 are conductor windings 108°10
Nine circumferences are provided, and insulators 106 and 107 are deposited by sputtering or the like to form a single magnetic pole head.

このように形成される単磁極ヘッドの先端部は、記録媒
体の走行方向に平行に切シ取られ、端面110が形成さ
れている。次いで、化学的エツチング、法によシ磁性体
102,103の先端一部を切除して、この切除部11
1,112を形成した後、この切除部に非磁性材料を充
填、続いて磁極ヘッドの先端を平滑に切削研磨すること
によって、垂直磁気記録に用いる単磁極ヘッドを得るこ
とができる。このように本発明に係る製造方法において
は、磁性体を2以上積層するとともに、各層の化学的性
質を互に変えることで、フォト・レジスト等の方法によ
るマスク合せをせずに容易に高記録密度の薄膜磁気ヘッ
ドを製造することができる。
The tip of the single magnetic pole head formed in this manner is cut off parallel to the running direction of the recording medium to form an end surface 110. Next, a portion of the tips of the magnetic bodies 102 and 103 is removed by chemical etching or a method, and this removed portion 11 is removed.
1, 112 is formed, the cut portion is filled with a nonmagnetic material, and then the tip of the magnetic pole head is cut and polished to make it smooth, thereby obtaining a single magnetic pole head for use in perpendicular magnetic recording. In this way, in the manufacturing method according to the present invention, by laminating two or more magnetic materials and mutually changing the chemical properties of each layer, high recording can be easily achieved without mask alignment using methods such as photoresist. High density thin film magnetic heads can be manufactured.

〔発明の効果〕〔Effect of the invention〕

以上の説明から、本発明によれば、磁気ヘッドのボール
長と記録媒体の記録波長が接近しても読出し波形のピー
クソフト量の少ない、かつ高記録密度の薄膜磁気ヘッド
を容易にかつ低コストで得ることができるという顕著な
効果を有する。
From the above explanation, according to the present invention, even if the ball length of the magnetic head and the recording wavelength of the recording medium are close to each other, a thin film magnetic head with a small amount of peak softness in the readout waveform and a high recording density can be easily manufactured at a low cost. It has the remarkable effect that it can be obtained with.

【図面の簡単な説明】 第1図は従来の薄膜磁気ヘッドの一例を示す拡大断面図
、第2図は磁極先端を改良した従来の薄膜磁気ヘッドの
断面図、第3図は本発明の製造方法により製造される薄
膜磁気ヘッドの一例を示す断面図、第4図は本発明の製
造方法の工程説明図、第5図は本発明の製造方法による
垂直磁気記録に用いる単磁極ヘッドの一例を示す断面図
である。 1・・・基板、2a、2b・・・下部磁性体、3・・・
ギャップ、4・・・絶縁体、5・・・導体巻線、6a、
5b・・・上部磁性体、7・・・磁気ヘッドの先端面、
8・・・切除部。
[Brief Description of the Drawings] Fig. 1 is an enlarged sectional view showing an example of a conventional thin film magnetic head, Fig. 2 is a sectional view of a conventional thin film magnetic head with an improved magnetic pole tip, and Fig. 3 is a manufacturing method of the present invention. FIG. 4 is a cross-sectional view showing an example of a thin film magnetic head manufactured by the method, FIG. 4 is a process explanatory diagram of the manufacturing method of the present invention, and FIG. 5 is an example of a single magnetic pole head used for perpendicular magnetic recording by the manufacturing method of the present invention. FIG. 1... Substrate, 2a, 2b... Lower magnetic body, 3...
Gap, 4... Insulator, 5... Conductor winding, 6a,
5b... Upper magnetic body, 7... Tip surface of magnetic head,
8...Resection part.

Claims (1)

【特許請求の範囲】 1、2以上の薄膜磁性体を積層して薄膜磁気ヘッド本体
を形成し、外層薄膜磁性体のギャップ形成端部の一部を
切除し、この切除部に非磁性体を充填して形成すること
を特徴とする薄膜磁気ヘッドの製造方法。 2、特許請求の範囲第1項において、前記外層薄膜磁性
体のギャップ形成端部の一部を切除する方法が各薄膜磁
性体の選沢エッチ性を利用する化学エッチング法である
ことを特徴とする薄膜磁気ヘッドの製造方法。
[Claims] A thin film magnetic head body is formed by laminating one or more thin film magnetic materials, a part of the gap forming end of the outer thin film magnetic material is cut off, and a non-magnetic material is applied to this cut portion. A method for manufacturing a thin film magnetic head, characterized in that it is formed by filling. 2. Claim 1 is characterized in that the method for cutting off a part of the gap forming end of the outer thin film magnetic material is a chemical etching method that utilizes selective etchability of each thin film magnetic material. A method for manufacturing a thin film magnetic head.
JP14111284A 1984-07-06 1984-07-06 Manufacture of thin film magnetic head Pending JPS6120212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14111284A JPS6120212A (en) 1984-07-06 1984-07-06 Manufacture of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14111284A JPS6120212A (en) 1984-07-06 1984-07-06 Manufacture of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6120212A true JPS6120212A (en) 1986-01-29

Family

ID=15284437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14111284A Pending JPS6120212A (en) 1984-07-06 1984-07-06 Manufacture of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6120212A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391813A (en) * 1986-10-06 1988-04-22 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacture
JPH023101A (en) * 1988-03-23 1990-01-08 Hitachi Ltd Magnetic disk device and method for recording and reproducing information
JPH04146510A (en) * 1990-10-05 1992-05-20 Tdk Corp Magnetic head
US5245488A (en) * 1986-08-13 1993-09-14 Seiko Epson Corporation Low-noise composite magnetic head for recording and producing
US7068467B2 (en) 1998-07-23 2006-06-27 Hitachi Global Storage Technologies Japan, Ltd. Thin film magnetic head and magnetic disk apparatus including the same
US7271982B2 (en) 2004-02-13 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording head built using an air-bearing surface damascene process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245488A (en) * 1986-08-13 1993-09-14 Seiko Epson Corporation Low-noise composite magnetic head for recording and producing
JPS6391813A (en) * 1986-10-06 1988-04-22 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacture
JPH023101A (en) * 1988-03-23 1990-01-08 Hitachi Ltd Magnetic disk device and method for recording and reproducing information
JPH04146510A (en) * 1990-10-05 1992-05-20 Tdk Corp Magnetic head
US7068467B2 (en) 1998-07-23 2006-06-27 Hitachi Global Storage Technologies Japan, Ltd. Thin film magnetic head and magnetic disk apparatus including the same
US7382576B2 (en) 1998-07-23 2008-06-03 Hitachi Global Storage Technologies Japan, Ltd. Thin film magnetic head and magnetic disk apparatus including the same
US7271982B2 (en) 2004-02-13 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording head built using an air-bearing surface damascene process

Similar Documents

Publication Publication Date Title
US5850326A (en) Narrow track thin film magnetic head suitable for high density recording and reproducing operations and fabrication method thereof wherein an air bearing surface has at least one groove containing a non-magnetic electrically conductive layer
US6151193A (en) Thin film magnetic head
US6754947B2 (en) Method for forming a narrow track inductive write head having two-piece pole
US3813766A (en) Process for manufacture of a magnetic transducer using a pre-existing unitary foil
JPS61153816A (en) Thin film magnetic head
JPH0778858B2 (en) Thin film magnetic head
JPH03296907A (en) Magnetic head and production thereof
JPS6120212A (en) Manufacture of thin film magnetic head
JPH10269526A (en) Magnetic head
JP2598018B2 (en) Thin film magnetic head
JPS62114113A (en) Thin film magnetic head
JPS5996517A (en) Magnetic recording and reproducing method
JPS60256907A (en) Thin film magnetic head
JPS63195818A (en) Thin film magnetic head
JP3397159B2 (en) Magnetic head
JPH03142702A (en) Perpendicular magnetic recording device
JPS62164203A (en) Production of thin film magnetic head
JPS61229209A (en) Magnetic head
JPH0154766B2 (en)
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device
JPS6220606B2 (en)
JPS5919215A (en) Magnetic head
JPH04123304A (en) Induction type thin film magnetic head and its production
JPS61117714A (en) Thin film magnetic head
JPH0498607A (en) Thin-film magnetic head