JPS6120211B2 - - Google Patents

Info

Publication number
JPS6120211B2
JPS6120211B2 JP7219378A JP7219378A JPS6120211B2 JP S6120211 B2 JPS6120211 B2 JP S6120211B2 JP 7219378 A JP7219378 A JP 7219378A JP 7219378 A JP7219378 A JP 7219378A JP S6120211 B2 JPS6120211 B2 JP S6120211B2
Authority
JP
Japan
Prior art keywords
voltage
output
circuit
amount
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7219378A
Other languages
Japanese (ja)
Other versions
JPS54163332A (en
Inventor
Juji Ooki
Kazunobu Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7219378A priority Critical patent/JPS54163332A/en
Publication of JPS54163332A publication Critical patent/JPS54163332A/en
Publication of JPS6120211B2 publication Critical patent/JPS6120211B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は、電力系統保護用のモ−形保護継電
器(以下モ−形継電器と略称する)の誤動作防
止対策に関する改良である。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the technical field The present invention is an improvement regarding measures to prevent malfunction of a Mo-type protective relay (hereinafter abbreviated as a Mo-type relay) for power system protection.

(b) 従来技術の説明 第1図は、従来の電力系統保護用モ−形継電
器8の概要を示す図であり、第2図は第1図の
動作を説明する各部波形である。本モ−形継電
器の動作原理の概要は以下の通りである。即
ち、送電線の電圧、電流に比例した交流電圧V
及び交流電流Iがそれぞれ、モ−形継電器の補
助変圧器1及び補助変流器2に導入され、Vに
比例した電気量K2V及びIに比例した電気量
K1Iが得られる。又、補助変圧器1の出力は記
憶回路3に導入されて、Vと同位相のVPなる
電気量がモ−形継電器の極性量として用いら
れ、又、K1IとK2Vの合成電気量K1I−K2Vが動
作量として用いられて継電器の動作判定が行な
われる。又、記憶回路3は電力系統の故障前の
電圧Vの位相を記憶するもので、後述の様に継
電器設置点近距離で故障が発生し電圧Vが零に
なつても、前記記憶回路3によつて故障後にお
いても極性量VPが得られ、継電器の動作判定
が可能になるものである。この様にして得られ
た極性量VPと動作量K1I−K2Vとの位相差が90
゜以内であるか否かを判定する。即ち、VP
びK1I−K2Vがそれぞれ方形波変換回路4,5
に導入されて方形波(VP)′及び(K1I−
K2V)′となり、次段のアンド回路6に導入さ
れる。アンド回路6では(VP)′と(K1I−
K2V)′とが共に“1”である時にのみ出力を
生じ、(VP)′・(K1I−K2V)′なる出力が得ら
れる。この(VP)′・(K1I−K2V)′が時間測
定回路7によつて時間測定が行なわれて90゜以
上であればモ−形継電器は動作状態となる。第
3図は以上の動作を説明するベクトル図で、電
流Iの対する電圧Vの動作限界を示す。即ち、
PとK1I−K2Vなる電気量の位相差は第3図の
θで表わされ、この位相差θが90゜以内であれ
ば動作し、従つて第3図の円内が動作域とな
る。第4図は一般的な片端非電源端の送電線L
の電源端に第1図と同様な、モ−形継電器8を
適用したものである。送電線LのA点での故
障、即ち内部故障ではモ−形継電器8は前述の
様な動作を行ない継電器8は動作状態となる。
又、B点での故障、即ち外部故障では第5図の
各部波形に示す様に電圧V、電流I共に零とな
り、モ−形継電器8は不動作となる。つまり内
部故障では動作、外部故障では不動作となるの
が正常な応動である。
(b) Description of Prior Art FIG. 1 is a diagram showing an outline of a conventional power system protection motor-type relay 8, and FIG. 2 shows waveforms of various parts explaining the operation of FIG. 1. The outline of the operating principle of this motor-type relay is as follows. In other words, the AC voltage V proportional to the voltage and current of the power transmission line
and alternating current I are respectively introduced into the auxiliary transformer 1 and the auxiliary current transformer 2 of the motor-type relay, and the quantity of electricity K 2 proportional to V and the quantity of electricity proportional to I
K 1 I is obtained. Further, the output of the auxiliary transformer 1 is introduced into the memory circuit 3, and the electrical quantity V P having the same phase as V is used as the polarity quantity of the Morph type relay, and the sum of K 1 I and K 2 V The electrical quantity K 1 I−K 2 V is used as the operating quantity to determine the operation of the relay. Furthermore, the memory circuit 3 stores the phase of the voltage V before a failure in the power system, and even if a failure occurs near the relay installation point and the voltage V becomes zero as described later, the memory circuit 3 Therefore, even after a failure, the polarity amount V P can be obtained, and the operation of the relay can be determined. The phase difference between the polarity amount V P obtained in this way and the operation amount K 1 I−K 2 V is 90
Determine whether or not it is within °. That is, V P and K 1 I−K 2 V are square wave conversion circuits 4 and 5, respectively.
is introduced into the square wave (V P )′ and (K 1 I−
K 2 V)' and is introduced into the AND circuit 6 at the next stage. In the AND circuit 6, (V P )′ and (K 1 I−
An output is produced only when both K 2 V)' are "1", and an output of (V P )'.(K 1 I-K 2 V)' is obtained. If (V P )'·(K 1 I-K 2 V)' is measured by the time measuring circuit 7 and exceeds 90°, the Mo-type relay is in an operating state. FIG. 3 is a vector diagram explaining the above operation, and shows the operating limits of voltage V with respect to current I. That is,
The phase difference between the electric quantities V P and K 1 I−K 2 V is represented by θ in Figure 3, and if this phase difference θ is within 90°, it will work, and therefore the circle in Figure 3 is This is the operating range. Figure 4 shows a typical power transmission line L with one non-power supply end.
A Mo-type relay 8 similar to that shown in FIG. 1 is applied to the power source end of the power source. In the case of a failure at point A of the power transmission line L, that is, an internal failure, the Mo-type relay 8 operates as described above, and the relay 8 becomes operational.
Further, in the case of a failure at point B, that is, an external failure, both the voltage V and the current I become zero, as shown in the waveforms of various parts in FIG. 5, and the Mo-type relay 8 becomes inoperable. In other words, the normal response is to operate in the event of an internal failure and inoperative in the event of an external failure.

ところが、周知の様に第1図に示した継電器
の補助変圧器1は入力電圧Vが零となつても、
2次側の出力V′は完全に零とはならず、過渡
直流分を発生する。この点を第6図の補助変圧
器等価回路を用いて説明する。まず故障前には
入力電圧Vにより、励磁インピーダンスZL
励磁電流が流れて、励磁エネルギーが蓄えられ
ている。ところが、入力電圧Vが瞬時に零にな
ると、この励磁インピーダンスZLに蓄えられ
ていた励磁エネルギーが矢印のように2次側に
放出される為に2次側出力Vは瞬時には零にな
らず、第7図に示す様に、過渡直流分VTが発
生する。この継電器の補助変圧器1が発生する
過渡直流分VTが従来のモ−形継電器の応動に
悪影響を及ぼし外部故障で誤動作とならしめ
る。即ち、第4図の送電線のB点で故障が発生
すると前述のに電流I、電圧V共零になるが、
補助変圧器1の出力V′は直ちに零とはなら
ず、前述の過渡直流分VTが残る。この状態で
のモ−形継電器8の応動は第8図の様になる。
即ち、極性量VPは故障発生後も電圧Vの位相
を記憶し続け、又故障発生後の電圧V、電流I
は零となるが、補助変圧器1の出力V′は過渡
直流分がしばらく残つているので、動作量は第
8図のK1I−K2Vの様になる。これを方形波に
変換すると(VP)′は180゜の期間だけ“1”
となつており、(K1I−K2V)′は過渡直流分が
残つている間連続“1”となつている。したが
つて、アンド回路6の出力は1サイクルごとに
180゜の方形波出力となるので、時間測定回路
7の出力つまりモ−形継電器の出力は、1サイ
クルに1回の誤出力を生ずることになる。尚、
この過渡直流分によるモ−形継電器の誤動作
は、第4図の送電線が両端である場合には電
圧、あるいは電流が故障発生後も残つているの
で、動作量K1I−K2Vが過渡直流分より大きく
なり、生じない。しかし、第4図の様に故障発
生後の電圧、電流が共に零となる系統において
は誤動作に至る。
However, as is well known, even if the input voltage V becomes zero, the auxiliary transformer 1 of the relay shown in FIG.
The output V' on the secondary side does not become completely zero, but generates a transient DC component. This point will be explained using the auxiliary transformer equivalent circuit shown in FIG. First, before a failure occurs, an excitation current flows through the excitation impedance Z L due to the input voltage V, and excitation energy is stored. However, when the input voltage V instantaneously becomes zero, the excitation energy stored in this excitation impedance Z L is released to the secondary side as shown by the arrow, so the secondary output V does not instantaneously become zero. First, as shown in FIG. 7, a transient DC component V T is generated. The transient DC component V T generated by the auxiliary transformer 1 of this relay has an adverse effect on the response of the conventional motor-type relay, causing it to malfunction due to an external failure. That is, if a failure occurs at point B of the power transmission line in Fig. 4, both the current I and the voltage V become zero as described above.
The output V' of the auxiliary transformer 1 does not immediately become zero, and the aforementioned transient DC component V T remains. The response of the Mo-type relay 8 in this state is as shown in FIG.
In other words, the polarity V P continues to memorize the phase of the voltage V even after a fault occurs, and the polarity V P continues to memorize the phase of the voltage V and the current I after the fault occurs.
becomes zero, but since the transient DC component remains for a while in the output V' of the auxiliary transformer 1, the operating amount becomes K 1 I−K 2 V in FIG. When this is converted into a square wave, (V P )′ is “1” only for a period of 180°.
Therefore, (K 1 I−K 2 V)′ remains “1” continuously while the transient DC component remains. Therefore, the output of the AND circuit 6 is
Since the output is a 180° square wave, the output of the time measuring circuit 7, that is, the output of the Morph type relay, will produce an erroneous output once per cycle. still,
Malfunction of the Mo-type relay due to this transient DC component is caused by the voltage or current remaining even after the fault occurs when the power transmission line in Figure 4 is at both ends, so the operating amount K 1 I-K 2 V is It is larger than the transient DC component and does not occur. However, in a system where both the voltage and current become zero after a failure occurs, as shown in FIG. 4, malfunction will occur.

以上の様に、従来のモ−形継電器はその補助
変圧器が発生する過渡直流分によつて、外部故
障では本来は不動作であるべきところが誤動作
するという欠点があつた。以上においては継電
器の補助変圧器で不具合現象を説明したが、コ
ンデンサ形計器用変圧器回路でも類似の現象が
生じ得る。これは、モ−形継電器の基本的な応
動である方向判別機能が失われるという、根本
的な欠点でもあつた。
As mentioned above, the conventional motor-type relay has the drawback that the transient DC component generated by the auxiliary transformer causes the malfunction of the relay when it should not operate due to an external failure. Although the malfunction phenomenon has been explained above with respect to the auxiliary transformer of the relay, a similar phenomenon may also occur in the capacitor-type voltage transformer circuit. This was also a fundamental drawback in that the direction discrimination function, which is the basic response of the Mo-type relay, was lost.

(c) 発明の目的 本発明は、この様な補助変圧器の発生する過
渡直流分に対しても、誤動作することにないモ
−形継電器を提供することを目的とする。
(c) Object of the Invention The object of the present invention is to provide a motor-type relay that does not malfunction even in response to such a transient DC component generated by an auxiliary transformer.

(d) 発明の構成 第9図は本発明によるモ−形継電器の一実施
例を示すブロツク線図である。補助変圧器1の
出力が記憶回路3に接続されて極性量VP
得、補助変流器2の出力K1Iと補助変圧器1の
出力K2Vとが合成されて動作量K1I−K2Vが得
られ、抑制回路9に導入される。この抑制回路
9は係数器−K3を有し、前記記憶回路3の出
力VPを−K3VPとし、動作量K1I−K2Vに抑制
をかけて、K1I−K2V−K3VPを得る。なお抑制
量−K3VPの大きさは過渡直流の大きさよりも
わずかに大きな量に選ぶ。そしてこれらの電気
量VP、及びK1I−K2V−K3VPが方形波変換回
路4,5に導入されて方形波となり、更にアン
ド回路6及び時間測定回路7にて動作判定が行
なわれて出力を得る。尚、第9図中と第1図中
で同一番号のものは同様の働きをするものであ
る。
(d) Structure of the Invention FIG. 9 is a block diagram showing one embodiment of a motor type relay according to the present invention. The output of the auxiliary transformer 1 is connected to the memory circuit 3 to obtain the polarity V P , and the output K 1 I of the auxiliary current transformer 2 and the output K 2 V of the auxiliary transformer 1 are combined to obtain the operating amount K 1 I−K 2 V is obtained and introduced into the suppression circuit 9. This suppression circuit 9 has a coefficient multiplier -K 3 , sets the output V P of the storage circuit 3 to -K 3 V P , applies suppression to the operating amount K 1 I-K 2 V, and outputs K 1 I-K 2 V−K 3 V P is obtained. Note that the magnitude of the suppression amount −K 3 V P is selected to be slightly larger than the magnitude of the transient DC. Then, these electric quantities V P and K 1 I−K 2 V−K 3 V P are introduced into square wave conversion circuits 4 and 5 to become square waves, and further, an AND circuit 6 and a time measurement circuit 7 determine the operation. is executed and the output is obtained. Components with the same numbers in FIG. 9 and FIG. 1 have similar functions.

(c) 発明の作用 以下に本発明によるモ−形継電器の作用を説
明する。
(c) Effects of the invention The effects of the Mo-type relay according to the present invention will be explained below.

第10図は、第9図に示した本発明のモ−形
継電器の動作を説明する各部波形であり、第8
図で示した従来のモ−形継電器と同様な故障状
態、即ち第4図の送電線LでB点での外部故障
が発生した場合の動作を示す。前述の様に、モ
−形継電器設置点の電源側の外部で故障が発生
すると送電線の電圧、電流共に零となる。しか
し継電器の補助変圧器1の出力は、完全に零に
はならず、過渡直流分が発生する為に第10図
のV′の様になる。また、電流Iは故障後は零
となつているので、動作量K1I−K2Vは過渡直
流分もの波形となる。又、極性量は記憶作用に
よつてVPの如くしばらく継続している。とこ
ろで、記憶回路3の出力からは抑制回路9によ
つて極性量VPに比例した逆位相の抑制量−
K3VPが得られ、この抑制量−K3VPによつて動
作量K1I−K2Vに抑制をかける。
FIG. 10 is a waveform of each part explaining the operation of the Mo-type relay of the present invention shown in FIG.
The operation will be shown in the same fault condition as the conventional motor-type relay shown in the figure, that is, when an external fault occurs at point B on the power transmission line L in FIG. As mentioned above, if a failure occurs outside the power supply side of the installation point of the Mo-type relay, both the voltage and current of the power transmission line become zero. However, the output of the auxiliary transformer 1 of the relay does not become completely zero, and because a transient DC component occurs, the output becomes like V' in FIG. 10. Furthermore, since the current I is zero after the failure, the operating amount K 1 I−K 2 V has a waveform equivalent to that of a transient DC component. Moreover, the polarity amount continues for a while like V P due to the memory effect. By the way, from the output of the memory circuit 3, the suppression circuit 9 generates an opposite phase suppression amount - which is proportional to the polarity amount VP .
K 3 VP is obtained, and the operation amount K 1 I−K 2 V is suppressed by this suppression amount −K 3 VP .

したがつて第10図の様にK1I−K2Vは抑制
がかかつたことにより(K1I−K2V−K3VP)と
なる。この2つの電気量VP及び(K1I−K2V−
K3VP)が方形波変換回路4,5によつて方形
波に変換されて(VP)′及び(K1I−K2V−
K3VP)′の様な波形となる。(VP)′は1サイ
クルごとに180゜の方形波出力となり、(K1I−
K2V−K3VP)′は、記憶回路3からの抑制によ
り、連続“1”とはならず、1サイクルごとに
“0”となる期間が生じる。しかもこの“0”
となる点は、(VP)′の180゜方形波出力のちよ
うど90゜の点ある。これは極性量VPと抑制量
−K3VPが逆位相である為である。したがつ
て、これら(VP)′と(K1I−K2V−K3VP)′
とが共に“1”である期間は、第10図のアン
ド回路出力に示す様にいつでも90゜未満となつ
ている。したがつて、時間測定回路7では90゜
の時間測定は行なえず、出力は生じない。つま
り、外部故障時に補助変圧器1で発生する過渡
直流分による誤動作は、この記憶回路3からの
抑制により、防止することができるわけであ
る。この抑制量K3VPの大きさは、これまでの
説明からも明らかな様に過渡直流分の大きさよ
りわずかに大きな量を用いればよく、実際に
は、系統の定格電圧値に対して非常に小さな値
なので、抑制量もわずかな値でよい。また、前
述の様に記憶回路の減衰の速さは、回路の定数
によつて任意に変えることが出来、しかも継電
器の動作としては位相のみが関係し、減衰の速
さにはほとんど無関係なので、過渡直流分の減
衰時定数に合わせることができる。以上の説明
では、モ−形継電器の外部故障における応動
で、送電線の電圧、電流共零になる場合につい
て述べたが、電圧あるいは電流が故障後でも残
る場合は、従来のモ−形継電器と全く同様に不
動作となることは明らかである。この場合は、
不動作状態が確実に得られることの他は何ら変
わりがない。又、内部故障の場合も動作量の方
が抑制量よりもはるかに大きいので、従来の応
動と全く同じく正常な動作が付能となる。
Therefore, as shown in FIG. 10, K 1 I−K 2 V becomes (K 1 I−K 2 V−K 3 V P ) due to the suppression. These two electrical quantities V P and (K 1 I−K 2 V−
K 3 V P ) is converted into a square wave by the square wave conversion circuits 4 and 5, and (V P )′ and (K 1 I−K 2 V−
The waveform becomes K 3 V P )'. (V P )′ becomes a square wave output of 180° every cycle, and (K 1 I−
Due to the suppression from the memory circuit 3, K 2 V-K 3 V P )' does not become "1" continuously, but there is a period in which it becomes "0" every cycle. Moreover, this “0”
There is a point at 90° after the 180° square wave output of (V P )'. This is because the polarity amount V P and the suppression amount −K 3 V P are in opposite phases. Therefore, these (V P )′ and (K 1 I−K 2 V−K 3 V P )′
The period in which both are "1" is always less than 90 degrees, as shown in the AND circuit output in FIG. Therefore, the time measuring circuit 7 cannot measure the time at 90 degrees, and no output is produced. In other words, malfunctions due to transient DC components generated in the auxiliary transformer 1 at the time of an external failure can be prevented by the suppression from the memory circuit 3. As is clear from the previous explanation, the magnitude of this suppression amount K 3 V P should be slightly larger than the magnitude of the transient DC component; Since the value is small, the amount of suppression only needs to be small. Furthermore, as mentioned above, the attenuation speed of the memory circuit can be changed arbitrarily by changing the circuit constants, and the relay's operation is only related to the phase, which has almost no relation to the attenuation speed. It can be adjusted to the attenuation time constant of the transient DC component. In the above explanation, we have discussed the case where the voltage and current of the transmission line become zero due to the response of the Mo-type relay to an external fault.However, if the voltage or current remains even after the fault, it is possible to use the conventional Mo-type relay. It is clear that it will not work in exactly the same way. in this case,
There is no difference other than the fact that a non-operating state is reliably obtained. Also, in the case of an internal failure, the amount of operation is much larger than the amount of suppression, so normal operation is possible, just like the conventional response.

尚、距離継電器では一般に送電線のインピー
ダンス角を考慮してその角度分だけ継電器内部
で電流Iの位相を進めており、動作を速めるた
めに交流電気量の正半波及び負半波にそれぞれ
別々の方形波変換回路、アンド回路等を使用し
ているが、これまでの説明においては説明を簡
単にするためにこれらを省略して述べたが、負
波に対しても同様に考え得ることはもち論であ
る。
In addition, in distance relays, the phase of the current I is generally advanced within the relay by that angle in consideration of the impedance angle of the transmission line, and in order to speed up the operation, the phase of the current I is advanced separately for the positive and negative half waves of the AC quantity of electricity. The square wave conversion circuit, AND circuit, etc. of This is a moot point.

この様に、本発明は記憶回路の出力を抑制量
として用いることにより、外部故障時における
誤動作を防止できるわけであり、又、記憶回路
は従来のモ−形継電器には必ず必要であるので
これを用いることがき、複雑な付加回路を必要
としない点も本発明の特徴の1つである。
In this way, the present invention can prevent malfunctions in the event of an external failure by using the output of the memory circuit as a suppression amount, and since the memory circuit is always necessary for conventional motor-type relays, it is possible to prevent malfunctions due to external failures. Another feature of the present invention is that it can be used without the need for complicated additional circuits.

(f) 他の実施例 これまでの説明では、モ−形継電器8の動
作量K1I−K2Vに抑制をかけてK1I−K2V−
K3VPを得ていたが、第11図及び第12図
の様に合成電気量を得る前の電気量、すなわ
ちK1Iあるいは−K2Vに抑制をかけても全く
同様な動作が可能である。又、第13図の様
にK1I−K2V−K3VPの3電気量を同時に合成
して抑制をかけても同様であることは言うま
でもない。
(f) Other embodiments In the explanation so far, the operation amount K 1 I−K 2 V of the Mo-type relay 8 is suppressed to reduce K 1 I−K 2 V−
K 3 V P was obtained, but as shown in Figures 11 and 12, even if we suppress the electrical quantity before obtaining the composite electrical quantity, that is, K 1 I or -K 2 V, exactly the same behavior will occur. It is possible. Moreover, it goes without saying that the same effect can be obtained even if the three electrical quantities of K 1 I-K 2 V-K 3 V P are simultaneously combined and suppressed as shown in FIG. 13.

第9図ではモ−形継電器8の時間測定回路
7を、90゜測定としたが、この測定時間は90
゜でなくても良い。例えば90゜より大きい時
間測定を行なつた場合は、モ−形継電器の特
性は第14図の様に木の葉形の特性となる。
その場合でも本発明を適用し得ることは明ら
かである。
In Fig. 9, the time measurement circuit 7 of the Mo-type relay 8 is measured at 90 degrees, but this measurement time is 90 degrees.
It doesn't have to be ゜. For example, if the time measurement is made at an angle greater than 90 degrees, the characteristics of the Maw-shaped relay will become leaf-shaped as shown in FIG.
It is clear that the present invention can be applied even in that case.

(g) 総合的な効果 以上説明した様に、本発明によれば継電器の
補助変圧器などに過渡直流分が発生した場合で
も、外部故障時に誤動作することなく、簡単な
装置を付加するだけで、確実に内部故障、外部
故障の判別が行えるモ−形継電器を得ることが
できる。
(g) Overall effect As explained above, according to the present invention, even if a transient DC component occurs in the auxiliary transformer of a relay, there will be no malfunction in the event of an external failure, and by simply adding a simple device. Therefore, it is possible to obtain a motor-type relay that can reliably discriminate between internal and external failures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のモ−形継電器の構成を示すブロ
ツク図、第2図は第1図の動作を説明する各部波
形、第3図は、第1図の動作原理を説明するベク
トル図、第4図は、第1図のモ−形継電器を適用
した系統例、第5図は第1図のモ−形継電器が正
不動作した場合の各部波形、第6図は補助変圧器
を説明する図、第7図は第6図の補助変圧器に過
渡直流分が発生した場合の波形、第8図は第1図
のモ−形継電器が誤動作した場合の各部波形、第
9図は本発明の一実施例を説明するためのブロツ
ク図、第10図は、第9図の動作を説明する各部
波形、第11図、第12図、第13図、第14図
は本発明の他の実施例を示す図である。 1……補助変圧器、2……補助変流器、3……
記憶回路、9……抑制回路、4,5……方形波変
換回路、6……アンド回路、7……時間測定回
路。
Fig. 1 is a block diagram showing the configuration of a conventional motor type relay, Fig. 2 is a waveform of each part explaining the operation of Fig. 1, and Fig. 3 is a vector diagram explaining the operating principle of Fig. 1. Figure 4 shows an example of a system to which the Mo-type relay shown in Figure 1 is applied, Figure 5 shows the waveforms of various parts when the Mo-type relay shown in Figure 1 malfunctions, and Figure 6 explains the auxiliary transformer. Figure 7 shows the waveform when a transient DC component occurs in the auxiliary transformer shown in Figure 6, Figure 8 shows the waveforms of various parts when the Mo-type relay shown in Figure 1 malfunctions, and Figure 9 shows the waveform of the present invention. FIG. 10 is a block diagram for explaining one embodiment. FIG. 10 is a waveform of each part explaining the operation of FIG. 9. FIGS. It is a figure which shows an example. 1... Auxiliary transformer, 2... Auxiliary current transformer, 3...
Memory circuit, 9... Suppression circuit, 4, 5... Square wave conversion circuit, 6... AND circuit, 7... Time measurement circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流系統から電圧変成器および電流変成器を
介してそれぞれ電圧および電流を入力し、この電
圧および電流を合成して動作量を得る手段と、前
記電圧を記憶回路に入力して極性量を得る手段
と、これらの手段から出力された動作量および極
性量で動作判定を行うようにしたものにおいて、
前記記憶回路の出力電気量を入力して前記電圧変
成器の過渡直流分よりも大きな電気量を得、この
電気量で前記動作量に抑制をかけることを特徴と
するモ−形保護継電器。
1. Means for inputting voltage and current from an AC system via a voltage transformer and a current transformer, and synthesizing the voltage and current to obtain an operating amount, and inputting the voltage to a storage circuit to obtain a polarity amount. In the device in which the operation is determined based on the means and the amount of movement and polarity output from these means,
A Morph type protective relay characterized in that an output electricity quantity of the memory circuit is inputted to obtain an electricity quantity larger than a transient DC component of the voltage transformer, and the operating quantity is suppressed by this electricity quantity.
JP7219378A 1978-06-16 1978-06-16 Motor protecting relay Granted JPS54163332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7219378A JPS54163332A (en) 1978-06-16 1978-06-16 Motor protecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219378A JPS54163332A (en) 1978-06-16 1978-06-16 Motor protecting relay

Publications (2)

Publication Number Publication Date
JPS54163332A JPS54163332A (en) 1979-12-25
JPS6120211B2 true JPS6120211B2 (en) 1986-05-21

Family

ID=13482124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219378A Granted JPS54163332A (en) 1978-06-16 1978-06-16 Motor protecting relay

Country Status (1)

Country Link
JP (1) JPS54163332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055349U (en) * 1991-07-04 1993-01-26 三井精機工業株式会社 Horizontal multi-axis head cutting tool inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055349U (en) * 1991-07-04 1993-01-26 三井精機工業株式会社 Horizontal multi-axis head cutting tool inspection device

Also Published As

Publication number Publication date
JPS54163332A (en) 1979-12-25

Similar Documents

Publication Publication Date Title
Fouad et al. Calculation of generation-shedding requirements of the BC hydro system using transient energy functions
US4885656A (en) Digital protective relay
RU166909U1 (en) ADAPTIVE REMOTE PROTECTION OF THE ELECTRIC TRANSMISSION LINE
US4589050A (en) Method and apparatus for the protection of a thyristor power conversion system
JPS6120211B2 (en)
JP3628143B2 (en) Ground fault distance relay
Iqbal et al. MRAS based Sensorless Control of Induction Motor based on rotor flux
Opoku et al. Superimposed sequence components for microgrid protection: A review
JPS6165829U (en)
JPS5843402Y2 (en) Hogokeiden Sochi
JPS5972930A (en) Protecting relay unit
Akter et al. Impedance based directional relaying for smart power networks integrating with converter interfaced photovoltaic plants
JPS6143934B2 (en)
JPS631812B2 (en)
Lyubarsky et al. Criteria for Assessing the Severity of Short-Circuit Faults for Choosing Controlling Actions of Emergency Automation
JPS63121424A (en) Digital current differential relay
JPS596722A (en) Transformer protecting relay
JPH0223025A (en) Distance relay
JPS6359720A (en) Digital differential current relay
SU1012026A1 (en) Elctromagnetic flowmeter having frequency output
JPS5937732Y2 (en) Clock pulse generation circuit for offset compensation of electronic watt-hour meter
JPS59153419A (en) Ratio differential relaying device
JPS5927166B2 (en) Protective relay device
JPS58256B2 (en) Seidōteikoukikaihojikiseigiyohoushiki
JPH0432618B2 (en)