JPS61202052A - Refrigerator with electric type expansion valve - Google Patents

Refrigerator with electric type expansion valve

Info

Publication number
JPS61202052A
JPS61202052A JP4512085A JP4512085A JPS61202052A JP S61202052 A JPS61202052 A JP S61202052A JP 4512085 A JP4512085 A JP 4512085A JP 4512085 A JP4512085 A JP 4512085A JP S61202052 A JPS61202052 A JP S61202052A
Authority
JP
Japan
Prior art keywords
degree
valve
superheat
refrigerant
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4512085A
Other languages
Japanese (ja)
Other versions
JPH0544581B2 (en
Inventor
岩田 儀美
木沢 敏浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4512085A priority Critical patent/JPS61202052A/en
Publication of JPS61202052A publication Critical patent/JPS61202052A/en
Publication of JPH0544581B2 publication Critical patent/JPH0544581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電動式の膨張弁を備えた冷凍機、詳しくは、蒸
発器の入口側に設ける開度調整可能な電動式の膨張弁と
、該蒸発器の出口側冷媒の過熱度を検出する過熱度検出
手段と、該検出手段の出力を基に前記膨張弁の弁開度を
前記出口側冷媒の過熱度が設定過熱度に成るように制御
する制御手段とを備える冷凍機に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a refrigerator equipped with an electrically operated expansion valve, and more specifically, an electrically operated expansion valve that is provided on the inlet side of an evaporator and whose opening degree can be adjusted. superheat degree detection means for detecting the degree of superheat of the refrigerant on the outlet side of the evaporator; and based on the output of the detection means, the valve opening degree of the expansion valve is adjusted so that the degree of superheat of the refrigerant on the outlet side becomes a set superheat degree. The present invention relates to a refrigerator including a control means for controlling the refrigerator.

(従  来  技  術  ) 一般に冷凍機は、蒸発器の入口側の液管にキャピラリー
チューブや感温式膨張弁などの膨張機構を介装して、前
記蒸発器の出口側の吸入ガス冷媒の過熱度を調節するよ
うにしている。
(Prior technology) Generally, a refrigerator has an expansion mechanism such as a capillary tube or a temperature-sensitive expansion valve installed in the liquid pipe on the inlet side of the evaporator to superheat the suction gas refrigerant at the outlet side of the evaporator. I'm trying to adjust the degree.

(発明が解決しようとする問題点) ところで、過熱度制御用の前記膨張機構として前記キャ
ピラリーチューブや感温膨張弁を用いた従来の冷凍機を
暖房装置に適用した場合に、暖房運転開始時に良好な立
ち上がり特性が得られない欠点があった。以下、この点
を、前記膨張機構に感温膨張弁を用いた分離形の冷凍機
について、第10図を用いて説明する。
(Problems to be Solved by the Invention) By the way, when a conventional refrigerator that uses the capillary tube or temperature-sensitive expansion valve as the expansion mechanism for controlling the degree of superheat is applied to a heating device, it is possible to The drawback was that it was not possible to obtain good rise characteristics. This point will be explained below with reference to FIG. 10 regarding a separate refrigerator using a temperature-sensitive expansion valve as the expansion mechanism.

冬季は外気温度の方が室内温度より低いために、運転停
止中は、冷媒が蒸発器(51)、アキュムレータ(52
)など室外ユニット(A)側に偏って滞留している。
In winter, the outside temperature is lower than the indoor temperature, so when the operation is stopped, the refrigerant is in the evaporator (51) and accumulator (52).
) etc. are concentrated on the outdoor unit (A) side.

この状態で運転を開始すると、この運転開始時は前記し
たごとく前記蒸発器(5工)及びアキュムレータ(52
)に液冷媒が滞留しているので、吸入ガス冷媒の過熱度
は零(即ち飽和)となり、従って、前記膨張弁(50)
の弁開度は極端な小開度に調節される。このため冷媒循
環量が抑制されてなかなか冷媒回路内の適性な冷媒分布
が得られず、この結果、運転開始時に良好な立ち上がり
特性が得られない問題があったのである。
When the operation is started in this state, the evaporator (5 units) and the accumulator (52 units) and the accumulator (52 units) are
), the degree of superheat of the suction gas refrigerant becomes zero (i.e., saturated), and therefore the expansion valve (50)
The valve opening is adjusted to an extremely small opening. For this reason, the amount of refrigerant circulation is suppressed, making it difficult to obtain an appropriate refrigerant distribution within the refrigerant circuit, and as a result, there is a problem in that good start-up characteristics cannot be obtained at the start of operation.

尚、第10図において、(53)は前記膨張弁(50)
の感温部、(54)は圧縮機、(55)は凝縮器、(5
B)は受液器である。
In addition, in FIG. 10, (53) is the expansion valve (50).
temperature sensing part, (54) is a compressor, (55) is a condenser, (5
B) is a liquid receiver.

また、キャピラリーチューブを利用した冷凍機において
も、該チューブは、運転開始時に抵抗を積極的に減少さ
せるように調節することができないので、同様に立ち上
がり特性が悪い問題があったのである。
Furthermore, even in refrigerators using capillary tubes, the tubes cannot be adjusted to actively reduce the resistance at the start of operation, so there is a similar problem of poor start-up characteristics.

しかして、本発明の目的は、前記膨張機構に電動式の膨
張弁を用いている冷凍機において、運転開始時に前記膨
張弁を強制的に大開度に調節して、冷媒循環量を増大さ
せ、冷媒分布を迅速に適性化できるようにして、良好な
立ち上がり特性が得られるようにする点にある。
Therefore, an object of the present invention is to forcibly adjust the expansion valve to a large opening at the start of operation to increase the amount of refrigerant circulation in a refrigerator using an electric expansion valve as the expansion mechanism. The objective is to quickly optimize the refrigerant distribution and obtain good start-up characteristics.

(問題点を解決するための手段) しかして、本発明の構成を第1図、第2図に基づいて説
明すると、蒸発器(2)の入口側に設ける開度調整可能
な電動式の膨張弁(EV)と、該蒸発器(2)の出口側
冷媒の過熱度を検出する過熱度検出手段と、該検出手段
の出力を基に前記膨張弁(EV)の弁開度を前記出口側
冷媒の過熱度が設定過熱度に成るように制御する制御手
段とを備える冷凍機において、 運転開始信号の入力により前記膨張弁(EV)の弁開度
を、標準運転時の開度よりも大きな開度に強制的に設定
する初期開度設定手段と、前記設定手段による前記膨張
弁(EV)の弁開度設定を解除する解除手段と を設けたのである。
(Means for Solving the Problems) The structure of the present invention will be explained based on FIG. 1 and FIG. a valve (EV), a degree of superheat detection means for detecting the degree of superheat of the refrigerant on the outlet side of the evaporator (2), and a degree of opening of the expansion valve (EV) on the outlet side based on the output of the detection means. In a refrigerator equipped with a control means for controlling the degree of superheat of the refrigerant to a set degree of superheat, the valve opening of the expansion valve (EV) is set to be larger than the opening during standard operation upon input of an operation start signal. An initial opening degree setting means for forcibly setting the opening degree and a canceling means for canceling the valve opening degree setting of the expansion valve (EV) by the setting means are provided.

尚、第2図においては、前記蒸発器(2)は熱源側熱交
換器として示されている。
In addition, in FIG. 2, the evaporator (2) is shown as a heat source side heat exchanger.

また、前記解除手段は冷媒回路の吸入ガス冷媒の過熱度
の変化を基に、前記回路内の冷媒分布の適性化を検出し
て、前記設定手段による弁開度設定を解除するようにし
ている。また、前記解除手段による前記弁開度設定の解
除は、運転開始からの時間の経過を基に行なってもよい
Further, the canceling means detects optimization of the refrigerant distribution in the circuit based on a change in the degree of superheating of the suction gas refrigerant in the refrigerant circuit, and cancels the valve opening degree setting by the setting means. . Moreover, the cancellation of the valve opening degree setting by the cancellation means may be performed based on the passage of time from the start of operation.

(作    用  ) 運転開始時に、前記膨張弁(EV)が大開度に強制的に
保持されるから、吸入ガス冷媒の過熱度に関係なく、冷
媒循環量を太き(でき、この結果、冷媒分布を迅速に適
性化できるのであり、従って、暖房運転時においても良
好な立ち上がり特性が得られるのである。。
(Function) At the start of operation, the expansion valve (EV) is forcibly held at a large opening, so the refrigerant circulation amount can be increased regardless of the degree of superheating of the suction gas refrigerant, and as a result, the refrigerant distribution is can be quickly optimized, and therefore good start-up characteristics can be obtained even during heating operation.

(第1実施例) 第2図に示したものは、本発明に係る冷凍機を暖房装置
に適用したもので、室外ユニット(A)に圧縮機(1)
、蒸発器として作用する熱源側熱交換器(2)、吸入ガ
ス冷媒の過熱度を制御する電動式の膨張弁(以下、電動
弁という)(EV)を順次接続した回路を設ける一方、
室内ユニット(B)に凝縮器として作用する利用側熱交
換器(3)を配設して、これら室外ユニット(A)と室
内ユニツ) (B)とを連絡配管(C)で接続し、冷媒
を実線矢印で示すごとく循環させるごとくしている。
(First Embodiment) The refrigerator shown in FIG. 2 is one in which the refrigerator according to the present invention is applied to a heating device, in which a compressor (1) is installed in an outdoor unit (A).
, a heat source side heat exchanger (2) that acts as an evaporator, and an electrically operated expansion valve (hereinafter referred to as an electrically operated valve) (EV) that controls the degree of superheating of the suction gas refrigerant are sequentially connected.
A user-side heat exchanger (3) that acts as a condenser is installed in the indoor unit (B), and these outdoor units (A) and indoor units (B) are connected by connecting pipes (C), and the refrigerant are circulated as shown by solid arrows.

また、前記各熱交換器(2)(3)はいづれも対空気式
のもので、それぞれファン(F、 >  (F□)を付
設している。
Further, each of the heat exchangers (2) and (3) is of the air type, and each is equipped with a fan (F, > (F□)).

尚、(4)は受液器、(5)はアキュムレータである。Note that (4) is a liquid receiver, and (5) is an accumulator.

また、前記電動弁(EV)の弁開度制御は次のごとくし
ている。
Further, the valve opening degree of the electric valve (EV) is controlled as follows.

即ち、前記熱源側熱交換器(2)と前記圧縮機(1)と
を連絡する吸入ガス管(6)に、吸入ガス冷媒の温度を
検出する第1温度検出器(7)を付設する一方、前記受
液器(4)と前記吸入ガス管(6)とを、キャピラリー
チューブ(8)をも“つ検出回路(9)で接続し、該検
出回路(9)における前記チューブ(8)の出口側に蒸
発圧力相当飽和温度を検出する第2温度検出器(10)
を設けて、これら検出器(7)(10)の検出温度ヲ基
に、後記するマイクロコンピュータで過熱度を演算し、
この結果に基づいて前記過熱度が所望の設定過熱度(S
HO)になるように、前記電動弁(EV)の弁開度をパ
ルス制御するようにしている。
That is, a first temperature detector (7) for detecting the temperature of the suction gas refrigerant is attached to the suction gas pipe (6) that connects the heat source side heat exchanger (2) and the compressor (1). , the liquid receiver (4) and the suction gas pipe (6) are connected by a detection circuit (9) having a capillary tube (8), and the detection circuit (9) includes a capillary tube (8). A second temperature detector (10) on the outlet side that detects the saturation temperature equivalent to the evaporation pressure
A microcomputer to be described later calculates the degree of superheating based on the detected temperatures of these detectors (7) and (10),
Based on this result, the degree of superheat is adjusted to the desired set degree of superheat (S
The valve opening degree of the electric valve (EV) is pulse-controlled so that the electric valve (EV) becomes HO).

尚、本実施例においては、前記電動弁(EV)の過熱度
制御を行う制御手段は前記したごとくマイクロコンピュ
ータを用いて構成している。
In this embodiment, the control means for controlling the degree of superheating of the electric valve (EV) is configured using a microcomputer as described above.

以下、このマイクロコンピュータを用いた前記冷凍機の
制御回路を第3図に基づいて説明する。
Hereinafter, a control circuit for the refrigerator using this microcomputer will be explained based on FIG. 3.

M記マイクロコンピュータ(11)は通常(7) モの
で、中央演算処理装置(12)とROM、RAMとから
成るメモリ(13)とからなり、入力側にA/D変換器
(14)を介して前記第1、第2温度検出器(7)(1
0)を接続すると共に、運転スイッチ(15)、及び室
内サーモスタット(16)を接続している。また、出力
側には、前記電動弁(EV)と前記圧縮機(1)の駆動
用モータ(M)と前記各ファン(F、)(F、)とをそ
れぞれ駆動回路(17)(18)(35)(36)を介
して接続している。
The M microcomputer (11) is normally (7) M, so it consists of a central processing unit (12) and a memory (13) consisting of ROM and RAM, and an A/D converter (14) is connected to the input side. and said first and second temperature detectors (7) (1
0), and also an operation switch (15) and an indoor thermostat (16). Further, on the output side, drive circuits (17) and (18) connect the electric valve (EV), the drive motor (M) of the compressor (1), and each of the fans (F,) (F,), respectively. They are connected via (35) and (36).

以上のごとく構成する冷凍機において、前記運転スイッ
チ(15)と前記サーモスタット(16)との出力する
運転開始信号を入力して、前記電動弁(EV)の弁開度
を、標準運転時の開度(α)の2倍の開度(2α)(以
下、初期開度という)に強制的に設定する設定手段と、
運転開始後、過熱度が最初に設定過熱度(SH8)以上
から以下に変化したことを検出して、前記設定手段によ
る前記弁開度設定を解除する解除手段と を設けるのである。
In the refrigerator configured as described above, the operation start signal output from the operation switch (15) and the thermostat (16) is input, and the valve opening degree of the electric valve (EV) is adjusted to the opening degree during standard operation. a setting means for forcibly setting the opening degree (2α) (hereinafter referred to as the initial opening degree) that is twice the opening degree (α);
After the start of operation, a canceling means is provided for detecting that the degree of superheating first changes from above the set superheating degree (SH8) to below, and canceling the setting of the valve opening degree by the setting means.

これら各手段はいずれも前記マイクロコンピュータを用
いて達成するものである。
All of these means are achieved using the microcomputer.

本実施例においては、前記解除手段は、吸入ガス冷媒の
過熱度の変化を基に冷媒回路内の適正な冷媒分布を判定
し、前記設定手段による弁開度設定を解除するようにし
ているが、過熱度の変化を基に回路内の冷媒の適性な分
布を判定できる点を予め説明しておく。
In this embodiment, the canceling means determines an appropriate refrigerant distribution within the refrigerant circuit based on a change in the degree of superheating of the suction gas refrigerant, and cancels the valve opening degree setting by the setting means. It will be explained in advance that the appropriate distribution of the refrigerant in the circuit can be determined based on the change in the degree of superheating.

本発明者等は、暖房運転開始時、前記膨張弁の弁開度を
運転開始時に強制的に大開度に設定した場合に、過熱度
変化と冷媒分布との関係が概略下記のごとくなっている
ことを実験的に究明したのである(第9図参照)。即ち
、 運転開始時には、液冷媒が前記アキュムレータ(5)に
貯留されているので、過熱度は零(飽和状態)となって
いる。(状態■〜■) 前記運転開始により、前記アキュムレータ(5)の寝込
み冷媒が前記圧縮機(1)に吸入されていく一方、前記
圧縮機(54)から吐出されたガス冷媒は、前記利用側
熱交換器(3)のみならず連絡配管(C)及び室内側冷
媒配管が低温となっているので、室内ユニブ) (B)
側に順次滞留していく。この結果、冷媒が室内ユニット
(B)側に偏り、吸入ガス冷媒の過熱度が上昇していき
、この過熱度(SHo)が設定過熱度より大きくなる(
状態■〜■)。
The present inventors have found that when the opening degree of the expansion valve is forcibly set to a large opening degree at the start of heating operation, the relationship between the change in degree of superheating and the refrigerant distribution is roughly as follows. This was experimentally determined (see Figure 9). That is, at the start of operation, since the liquid refrigerant is stored in the accumulator (5), the degree of superheat is zero (saturated state). (Status ■ to ■) With the start of the operation, the stale refrigerant in the accumulator (5) is sucked into the compressor (1), while the gas refrigerant discharged from the compressor (54) is transferred to the user side. Since not only the heat exchanger (3) but also the connecting pipe (C) and the indoor refrigerant pipe are at a low temperature, the indoor unit) (B)
It gradually stays on the side. As a result, the refrigerant is biased toward the indoor unit (B), and the degree of superheating of the suction gas refrigerant increases, and this degree of superheating (SHo) becomes larger than the set degree of superheating (
Condition ■~■).

やがて、運転の継続により凝縮圧力が上昇し、この結果
、前記利用側熱交換器(3)に滞留していた液冷媒が再
び前記アキュムレータ(5)側に徐々に還流されていき
、この結果、過熱度が再び低下していく(状態■ 〜■
)。
Eventually, as the operation continues, the condensing pressure increases, and as a result, the liquid refrigerant that had accumulated in the user-side heat exchanger (3) gradually returns to the accumulator (5) side, and as a result, The degree of superheating is decreasing again (state ■ ~■
).

このようにして、冷媒が室外・室内ユニット(A)(B
)に適正に分布していき、前記過熱度が設定過熱度(S
HO)以下になった時、冷媒の分布はほぼ適性な状態と
なっていることが確認できたのである。
In this way, the refrigerant is transferred to the outdoor/indoor units (A) (B).
), and the superheat degree becomes the set superheat degree (S
It was confirmed that the refrigerant distribution was almost in an appropriate state when the temperature was below HO).

従って、前記吸入ガス冷媒の過熱度を検出することによ
り、間接的に良好な冷媒分布の状態を判定できるのであ
る。
Therefore, by detecting the degree of superheating of the suction gas refrigerant, it is possible to indirectly determine the state of good refrigerant distribution.

以下、前記コンピュータ(11)に組込むプログラムを
第4図のフローチャートを基に説明し、合わせて前記冷
凍機の作用も説明する。(尚、第9図参照のこと) 電源を投入すると、前記電動弁(EV)が閉鎖され、該
弁(EV)の弁開度のゼロ点調節が行われる(ステップ
1001以下、ステップの語を略す)。
Hereinafter, the program to be installed in the computer (11) will be explained based on the flowchart of FIG. 4, and the operation of the refrigerator will also be explained. (Please refer to FIG. 9) When the power is turned on, the electric valve (EV) is closed, and the valve opening of the valve (EV) is adjusted to zero point (from step 1001 onwards, the word "step" is used). omitted).

次に、室内側の運転スイッチ(15)、サーモスタット
(16)の信号を読み取り(101)、運転か、停止を
判断する(102)。
Next, the signals from the indoor operation switch (15) and thermostat (16) are read (101), and it is determined whether to operate or stop (102).

前記運転スイッチ(15)、サーモスタット(16)が
共にオン信号を出力していれば、さらに、運転開始か、
継続運転かを判断しく103)、運転開始であれば、前
記電動弁(EV)の弁開度を前記初期開度(2α)に設
定しく104)、圧縮機(1)を駆動する(105)。
If both the operation switch (15) and the thermostat (16) output ON signals, it is determined whether the operation has started or not.
It is determined whether the operation is to be continued (103), and if the operation is to be started, the valve opening of the electric valve (EV) is set to the initial opening (2α) (104), and the compressor (1) is driven (105). .

そして、3分間、前記電動弁(EV)を前記初期弁開度
に保持させたまま運転を継続する(108)。
Then, the operation is continued for 3 minutes with the electric valve (EV) maintained at the initial valve opening degree (108).

一方、ステップ(103)で継続運転であると判断され
れば、前記ステップ(104,105)を飛ばしてステ
ップ(106)に進む。
On the other hand, if it is determined in step (103) that the operation is continued, the step (104, 105) is skipped and the process proceeds to step (106).

そして、3分が経過すると前記各温度検出器(7)(1
0)からそれぞれ吸入ガス冷媒の温度、蒸発圧力相当飽
和温度を読み取り(107)、これらの温度を基に過熱
度、及び該過熱度に基づいて前記電動弁(EV)の変更
弁開度を算出する(108)(以下、検出過熱度をSH
という)。
Then, after 3 minutes have elapsed, each of the temperature detectors (7) (1)
The temperature of the suction gas refrigerant and the saturation temperature equivalent to the evaporation pressure are read from 0) (107), and the degree of superheating is calculated based on these temperatures, and the change valve opening degree of the electric valve (EV) is calculated based on the degree of superheating. (108) (Hereinafter, the detected superheat degree is SH
).

尚、運転開始後3分間は過熱度を算出しない理由は、こ
の間は過熱度を検出しても、その値が極めて不安定で信
頼性に乏しいこと、本実施例の場合は3分以内に冷媒分
布が適性となることがないからである。
The reason why the degree of superheat is not calculated for 3 minutes after the start of operation is that even if the degree of superheat is detected during this period, the value is extremely unstable and unreliable. This is because the distribution will never be appropriate.

これと同時に、前記電動弁(EV)が初期開度(2α)
であるか否かを判定しく109)、初期開度(2α)で
あれば(運転開始当初)、前記検出過熱度(SH)が前
記設定過熱度(SHo)以上から以下に変化したか否か
、換言すると、これらの偏差値(E=SHo−8)I)
が負から正に変化したか否かを判定する(110)。
At the same time, the electric valve (EV) has an initial opening degree (2α).
109), if the initial opening is (2α) (at the beginning of operation), whether the detected superheat degree (SH) has changed from above the set superheat degree (SHo) to below. , in other words, these deviation values (E=SHo-8)I)
It is determined whether or not has changed from negative to positive (110).

前記偏差値(E)が正のままである場合(第9図■〜■
)、正から負に変化した場合((3) )及び、負のま
まである場合(■〜■)には、ステップ(101)に復
帰して前記ルーチンを繰り返す。
If the deviation value (E) remains positive (Fig. 9 ■~■
), when it changes from positive to negative ((3)), and when it remains negative (■ to ■), the process returns to step (101) and the above routine is repeated.

しかして、前記ステップ(110)で前記偏差値(E)
が負から正に変化した場合(0前後)、即ち、前記検出
過熱度(S)()が前記設定過熱度(S)Io)以上か
ら以下に変化した場合には、冷媒回路内の冷媒分布がほ
ぼ適性になったことを判定して、前記電動弁(EV)の
弁開度を前記変更弁開度に調節する(111)。
Therefore, in the step (110), the deviation value (E)
When changes from negative to positive (around 0), that is, when the detected degree of superheat (S) () changes from more than the set degree of superheat (S) Io) to less than the set degree of superheat (S), the refrigerant distribution in the refrigerant circuit It is determined that the valve opening degree of the electric valve (EV) is almost suitable, and the valve opening degree of the electric valve (EV) is adjusted to the changed valve opening degree (111).

一旦、前記電動弁(E ’V )の弁開度が調節される
と、この弁開度は前記初期弁開度(2α)よりはるかに
小さいので、前記ステップ(IO2)で、常にr N 
OJ’と判定されて、ステップ(111)に飛んで前記
電動弁(EV)による過熱度制御が継続されるのである
Once the valve opening of the electric valve (E'V) is adjusted, since this valve opening is much smaller than the initial valve opening (2α), in the step (IO2), r N is always
When it is determined that the engine is OJ', the process jumps to step (111) and the superheat degree control by the electric valve (EV) is continued.

尚、ステップ(112)は運転停止または運転待機を指
示するステップである。
Note that step (112) is a step for instructing to stop operation or standby.

以上の如く運転開始時に、前記電動弁(EV)が大開度
に強制的に保持されるから、吸入ガス冷媒の過熱度に関
係なく、冷媒循環量を大きくでき、この結果、冷媒分布
を迅速に適性化できるのであり、しかも、この冷媒分布
の適性化を前記過熱度を基に検出して、前記電動弁(E
V)の過熱度制御を開始することができるので、従って
、暖房運転時においても良好な立ち上がり特性が得られ
るのである。
As described above, since the electric valve (EV) is forcibly held at a large opening at the start of operation, the amount of refrigerant circulation can be increased regardless of the degree of superheating of the suction gas refrigerant, and as a result, the refrigerant distribution can be quickly adjusted. Moreover, this optimization of the refrigerant distribution can be detected based on the degree of superheat, and the electric valve (E
Since the superheat degree control of V) can be started, good start-up characteristics can be obtained even during heating operation.

尚、上記実施例においては、過熱度の変化を直接検出し
て、この変化を基に前記解除手段で初期開度の設定を解
除するようにしたが、予め、運転開始後冷媒分布が適正
となる時間を実験的に求めておき、タイマー等を利用し
て、前記設定手段による設定を解除するようにしてもよ
い。
In the above embodiment, the change in the degree of superheating is directly detected, and the setting of the initial opening degree is canceled by the canceling means based on this change. It is also possible to experimentally obtain a time period in which the time period for which the time period is 1000 is reached, and then use a timer or the like to cancel the setting by the setting means.

(第2実施例) 第5図〜第8図に示したものは、本発明の冷凍機をマル
チ形の冷暖房装置に適用したものである。
(Second Embodiment) What is shown in FIGS. 5 to 8 is an example in which the refrigerator of the present invention is applied to a multi-type air-conditioning device.

第5図に基づいて冷媒回路の基本的な構成を説明すると
、圧縮機(1)、四路切換弁(21)、熱源側熱交換器
(2)及び液側主管(22)と、この液側主管(22)
から分岐する複数の波調支管(23) 、ガス側主管(
24)とこのガス側主管(24)から分岐する複数のガ
ス側支管(25)とを備えた1台の室外ユニット(A)
と、利用側熱交換器(3)とファン(F、)とを備え、
複数の連絡配管(C)を介して前記波調支管(23)と
ガス側支管(25)との間に並列的に接続する複数台の
室内ユニツ) (B)とから成るもので、前記四路切換
弁(21)の切換えにより冷暖房運転可能としたもので
ある。
The basic configuration of the refrigerant circuit is explained based on FIG. Side main pipe (22)
Multiple harmonic branch pipes (23) branching from the gas side main pipe (
24) and a plurality of gas side branch pipes (25) branching from this gas side main pipe (24).
and a user-side heat exchanger (3) and a fan (F,),
It consists of a plurality of indoor units (B) connected in parallel between the harmonic branch pipe (23) and the gas side branch pipe (25) via a plurality of connecting pipes (C), and Heating and cooling operation is possible by switching the road switching valve (21).

そして、第5図に示したものは、以上の如く構成するマ
ルチ形冷暖房装置において、前記波調支管(23)に第
1電動弁(EV、 〜EV、)をそれぞれ介装すると共
に、前記液側主管(22)に、第2電動弁(EV、)を
介装して、前記第1電動弁(EV、〜EV、)と前記第
2電動弁(EV4)との間の液側主管(22)に受液器
(4)を介装するの、である。尚、(2B)はドライヤ
である。
What is shown in FIG. 5 is a multi-type air conditioning system configured as described above, in which first electric valves (EV, -EV,) are respectively interposed in the wave harmonic branch pipes (23), and the A second electric valve (EV, ) is interposed in the side main pipe (22), and a liquid side main pipe ( 22) is interposed with a liquid receiver (4). Note that (2B) is a dryer.

前記冷凍機の制御回路は第6図に示すが、第4図に示し
た第1実施例と基本的に同じであるから説明は省略する
。尚、第6図中(28)はマルチプレクサ−1(31〜
34)はそれぞれ駆動回路である。
The control circuit for the refrigerator is shown in FIG. 6, but since it is basically the same as the first embodiment shown in FIG. 4, the explanation will be omitted. In addition, (28) in Fig. 6 is the multiplexer 1 (31 to
34) are respective drive circuits.

前記第1電動弁(EV、−EV、) は、暖房運転時に
、各利用側熱交換器(3)の出口側の高圧液冷媒の過冷
却度を、また、冷房運転時は吸入ガス冷媒の過熱度を調
節する膨張機構として作用させるものである。
The first electric valve (EV, -EV,) controls the degree of subcooling of the high-pressure liquid refrigerant on the outlet side of each user-side heat exchanger (3) during heating operation, and controls the degree of subcooling of the intake gas refrigerant during cooling operation. It acts as an expansion mechanism to adjust the degree of superheat.

同様に、前記第2電動弁(EV、)は暖房運転時に、前
記吸入ガス冷媒の過熱度を、また、冷房運転時には、高
圧液冷媒の過冷却度を調節するものである。
Similarly, the second electric valve (EV) adjusts the degree of superheating of the suction gas refrigerant during heating operation, and adjusts the degree of subcooling of the high-pressure liquid refrigerant during cooling operation.

前記第1、第2電動弁(EV、 〜EV4)は、主とし
て一つのパルスで一定角度回転するパルスモータを用い
、マイクロコンビエータより出力される発信パルス信号
により弁開度を調整できるように構成している。
The first and second electric valves (EV, -EV4) mainly use a pulse motor that rotates by a certain angle with one pulse, and are configured so that the valve opening degree can be adjusted by a transmission pulse signal output from a micro combinator. are doing.

ここで本発明の構成と本実施例における構成との対応関
係を説明しておくと、暖房運転時においては、前記熱源
側熱交換器(2)が本発明における蒸発器に対応し、ま
た、前記第2電動弁(EV4)が本発明における過熱度
制御用の膨張弁(EV)に対応している。
Here, to explain the correspondence between the configuration of the present invention and the configuration of this embodiment, during heating operation, the heat source side heat exchanger (2) corresponds to the evaporator of the present invention, and The second electric valve (EV4) corresponds to the expansion valve (EV) for superheat degree control in the present invention.

同様に、冷房運転時においては、前記利用側熱交換器(
3)が本発明における蒸発器に対応し、また、前記第1
電動弁(EV□〜S)が過熱度制御用の膨張弁(EV)
としてに対応している。
Similarly, during cooling operation, the user-side heat exchanger (
3) corresponds to the evaporator in the present invention, and the first
The electric valve (EV□~S) is an expansion valve (EV) for controlling the degree of superheating.
It corresponds to

以下、暖房運転時に限定して説明する。The following explanation will be limited to the heating operation.

前記第2電動弁(EV4)による過熱度制御は第1実施
例と同じであって、吸入ガス管(6)及び前記検出回路
(9)に付設する第1、第2温度検出器(7)(10)
の出力を基にマイクロコンピュータで過熱度を算出し、
この計算結果に基づいて前記第2膨張弁(EV、)の弁
開度を制御するようにしている。
The degree of superheat control by the second electric valve (EV4) is the same as in the first embodiment, and the first and second temperature detectors (7) attached to the suction gas pipe (6) and the detection circuit (9) (10)
A microcomputer calculates the degree of superheating based on the output of
Based on this calculation result, the valve opening degree of the second expansion valve (EV) is controlled.

また、第1電動弁(EV、〜、)の弁開度の制御は、高
圧液冷媒の過冷却度を直接検出しておこなうのではなく
、まず室内ユニット(B)の運転台数に対応して初期設
定し、(例えば1室運転においては150パルスとし、
2室運転では100ハルストし、更に3室運転では70
パルス)、ソの後に、各波調支管(23)に付設する各
第3温度検出器(27)で各高圧液冷媒の温度を検出し
て、これらの検出値が等しくなるように前記各電動弁(
EV、#3)の弁開度を再調節するようにしている。こ
の再調整の理由は、前記過冷却度の微調整する狙いもあ
るが、主に各利用側熱交換器(3)間での冷媒の偏流を
防止するためである。
In addition, the valve opening degree of the first electric valve (EV, ~,) is not controlled by directly detecting the degree of supercooling of the high-pressure liquid refrigerant, but is first controlled in accordance with the number of operating indoor units (B). Initial setting (for example, 150 pulses for single room operation,
100 Hulst in 2-compartment operation, and 70 in 3-compartment operation
After pulse), the temperature of each high-pressure liquid refrigerant is detected by each third temperature detector (27) attached to each wave harmonic branch pipe (23), and the temperature of each electric motor is adjusted so that these detected values are equal. valve(
EV, #3) valve opening degree is readjusted. The reason for this readjustment is to finely adjust the degree of subcooling, but it is mainly to prevent uneven flow of the refrigerant between the user-side heat exchangers (3).

しかして、上記以外の点で、第2実施例と第1実施例と
の運転制御に係る構成の相違点は以下の通りである。
However, other than the above-mentioned points, the differences in the configurations related to operation control between the second embodiment and the first embodiment are as follows.

■ 前記第2電動弁(EV、)を初期開度設定から通常
の過熱度制御に変更するタイミングを、前記過熱度(S
H)が前記設定過熱度(SH,)以下となり、かつ、零
となって安定した(第9図■〜■)後、更に、該設定過
熱度(SHO)以上に上昇した時(■)とする。
■ The timing at which the second electric valve (EV) is changed from the initial opening setting to the normal superheat degree control is determined by the superheat degree (S).
H) becomes below the set superheat degree (SH,) and stabilizes at zero (Fig. 9 ■ to ■), and then further increases to above the set superheat degree (SHO) (■). do.

■ 前記第2電動弁(EV4)の弁開度をPID制御と
する。即ち、20秒毎に吸入ガス冷媒の過熱度(SH)
を検出して、この過熱度(SH)と設定過熱度(SH,
)との偏差値(EmSHO−SH)を算出し、現サンプ
リングまでの3回の各偏差値データ(EO,E、、E、
)を基に、下記する算定式を使用して前記第2電動弁(
EV4)の変更弁開度を算出するごとくしている。
(2) The valve opening of the second electric valve (EV4) is controlled by PID. That is, the degree of superheat (SH) of the suction gas refrigerant is changed every 20 seconds.
This superheat degree (SH) and the set superheat degree (SH,
), and calculate the deviation value (EmSHO-SH) from each of the three times up to the current sampling (EO, E, , E,
), the second electric valve (
It is like calculating the change valve opening degree of EV4).

変更弁開度= AX (El−E2)+BX E2+C
X (E2−2X E1+EO(但し、A、B、Cはそ
れぞれ係数である。)以下、前記マイクロコンピュータ
(11)に組込むプログラムを第7、第8図に示すフロ
ーチャートを基に説明、する。
Changed valve opening = AX (El-E2)+BX E2+C
X (E2 - 2

ステップ(10’3)までは第1実施例と同じであるか
ら説明を省略する。
Since the steps up to step (10'3) are the same as in the first embodiment, the explanation will be omitted.

尚、ステップ(104)において、第1電動弁(EV、
〜、)の弁開度をそれぞれ運転室300パルス分、停止
室120パルス分に設定する一方、第2電動弁(EV、
)の弁開度を標準運転時の開度(170パルス分)より
かなり大きい弁開度(350パルス分)に設定するので
ある。
Note that in step (104), the first electric valve (EV,
The opening degrees of the valves (~, ) are set to 300 pulses in the driving chamber and 120 pulses in the stop chamber, respectively, while the second electric valve (EV,
) is set to a much larger valve opening (350 pulses) than the opening during standard operation (170 pulses).

ステップ(120)でステップ(107)で読込んだ検
出温度を基に吸入ガス冷媒の過熱度(SH)及び前記偏
差値(EmSHO−8H)を算出する。
In step (120), the degree of superheating (SH) of the suction gas refrigerant and the deviation value (EmSHO-8H) are calculated based on the detected temperature read in step (107).

前記第2電動弁(EV4)が現在PID制御されている
か否かを判定する(121)。運転当初は前記したごと
く前記第2電動弁(EV、)の弁開度は一定に設定され
ているから、運転当初においてはステップ(121)で
rNOJと判定されステップ制御が選択される(122
)。
It is determined whether the second electric valve (EV4) is currently under PID control (121). At the beginning of operation, as described above, the valve opening degree of the second electric valve (EV) is set to a constant value, so at the beginning of operation, rNOJ is determined in step (121), and step control is selected (122).
).

そして、前記偏差値(E:初回のデータをE。Then, the deviation value (E: initial data is E.

という)が読み込まれているか否かが判定される(12
3)。初回のサンプリング時は読み込まれていないので
ステップ(124)に進み、前記偏差値(E O)を読
み込む。その後、ステップ(101)に復帰し、次のサ
ンプリングで再びステップ(123)に到達すると、今
度はrYEsJと判断され、ステップ(125)に進み
、その時の前記偏差値(El)を読み込み(12El)
、更に、同様にして、次のサンプリング時にステップ(
125)を経て、ステップ(127)でその時の偏差値
(E、)を読み込む。
) is loaded (12
3). Since it has not been read during the first sampling, the process proceeds to step (124) and the deviation value (E O) is read. After that, the process returns to step (101), and when it reaches step (123) again in the next sampling, it is determined that it is rYEsJ this time, and the process proceeds to step (125), where the deviation value (El) at that time is read (12El).
, Furthermore, in the same way, step (
125), and the deviation value (E, ) at that time is read in step (127).

その次のサンプリング時には、偏差値(Eo。At the time of the next sampling, the deviation value (Eo.

E、、E、)とも読み込まれているから、ステップ(1
28)に進み、前記3つの偏差値(EO〜E2)を基に
過熱度が安定したか否かを判定する。尚、l Eo−E
l  I +  I El  −Em  l 、IEo
−EmI < 1.5℃であれば安定と判断する。
E,,E,) are also read, so step (1
Proceeding to step 28), it is determined whether the degree of superheating has stabilized based on the three deviation values (EO to E2). In addition, l Eo-E
l I + I El −Em l , IEo
-EmI < 1.5°C is considered stable.

しかして、第9図に示すように、運転開始後■〜■の状
態に至るまで、即ち、過熱度(SH)が一旦上昇し、再
び減少して零(飽和)になるまでは、前記偏差値(E)
は安定化せず、従って、それまではステップ(128)
からステップ(129)に進み、EoにE、を、また、
ElにE。
As shown in FIG. 9, after the start of operation, until the state of ■ to ■ is reached, that is, the degree of superheat (SH) increases once and then decreases again until it reaches zero (saturation), the deviation is Value (E)
is not stabilized, so until then step (128)
Proceed to step (129) and set E to Eo, and
E to El.

を代入し、次のサンプリングでE3を読み込む(127
)。
and read E3 at the next sampling (127
).

そして、第9図■〜■の状態となって、ステップ(12
8)で前記偏差値が安定したと判定されると、ステップ
(130)に進み、前記偏差値(E、)がマイナスであ
ることが判定されると、初めて前記第2電動弁(EV4
)の開度を20パルス分閉鎖側に調節する(131)。
Then, the state shown in Figure 9 ■ to ■ is reached, and step (12
When it is determined in step 8) that the deviation value is stable, the process proceeds to step (130), and when it is determined that the deviation value (E, ) is negative, the second electric valve (EV4
) is adjusted to the closed side by 20 pulses (131).

この調整後、再びこれらのステップが繰り返され、ステ
ップ(131)で順次前記第2電動弁(EV、)が閉鎖
側に調節される。
After this adjustment, these steps are repeated again, and in step (131), the second electric valve (EV) is sequentially adjusted to the closing side.

この結果、ステップ(130)において、前記偏差値(
E)がプラスと判断されると、即ち、再び前記過熱度(
SH)が設定過熱度(SHO)より大きくなると(第9
図、■の状態)、その時の前記第2電動弁(EV4)が
初期開度か否か判断され、すでに初期開度でないので「
NO」と判断されてステップ(132)で、第1電動弁
(EV1〜.)の弁開度を再設定する。(1室運転;2
50パルス、2室運転;200パルス、3室運転;15
0パルス) そして、前記第2電動弁(EV、)の弁開度のPID制
御を開始するのである(133)。
As a result, in step (130), the deviation value (
E) is determined to be positive, that is, the superheat degree (
When SH) becomes larger than the set superheat degree (SHO) (9th
In the state shown in Figure (2), it is determined whether the second electric valve (EV4) is at the initial opening or not, and since it is not already at the initial opening,
If the determination is NO, the valve opening degree of the first electric valve (EV1 to EV1) is reset in step (132). (1 room operation; 2
50 pulses, 2 chamber operation; 200 pulses, 3 chamber operation; 15
0 pulse) Then, PID control of the valve opening of the second electric valve (EV) is started (133).

このPID制御は第8図に示す通りであって、その時の
前記偏差値(E、)を読み込み(134)、前記した変
更弁開度計算式により第2電動弁(EV4)の変更弁開
度を算出しく135)、弁開度を変更するのである。(
136)。
This PID control is as shown in FIG. 8. The deviation value (E,) at that time is read (134), and the change valve opening of the second motor-operated valve (EV4) is calculated using the change valve opening calculation formula described above. 135) and change the valve opening degree. (
136).

この後、第1電動弁(EV、〜、)も同様にして、各弁
毎にフィードバック制御するのであって、制御式 %式%) で変更弁開度を算出し、これに基づいて前記第1電動弁
(EV、〜、)を調節する(ステップ136〜144)
After this, the first electric valve (EV, ~,) is also feedback-controlled for each valve in the same way, and the changed valve opening degree is calculated using the control formula (% formula %), and based on this, the 1 Adjust the electric valve (EV, ~,) (steps 136 to 144)
.

尚、E−は、第3温度検出器(27)で検出した凝縮液
冷媒の温度(t+−3)の平均値(t。)と前記各電動
弁(EV、〜、)に対応する検出温度(1+〜、)との
各差(偏差値)を、また、Eo−〜E、″は連結した3
回のサンプリング時の各前記偏差値を示している。
In addition, E- is the average value (t.) of the temperature (t+-3) of the condensate refrigerant detected by the third temperature detector (27) and the detected temperature corresponding to each of the electric valves (EV, ~,). (1+~,), and Eo-~E,'' is the connected 3
The deviation values at the time of sampling are shown.

(発明の効果 ) 以上の如く本発明は、運転開始信号の入力により前記膨
張弁(EV)の弁開度を、標準運転時の開度よりも大き
な開度に強制的に設定する初期開度設定手段と、 前記設定手段による前記膨張弁(EV)の弁開度設定を
解除する解除手段と を設けたから、暖房運転時など、運転開始時における冷
媒回路中の冷媒分布が不均一であっても、極めて良好な
立ち上がり特性が得られるのであり、短時間で通常の運
転状態に達することができるのである。
(Effects of the Invention) As described above, the present invention provides an initial opening that forcibly sets the valve opening of the expansion valve (EV) to a larger opening than the opening during standard operation by inputting an operation start signal. Since the setting means and the canceling means for canceling the valve opening degree setting of the expansion valve (EV) by the setting means are provided, the refrigerant distribution in the refrigerant circuit at the start of operation, such as during heating operation, is uneven. However, extremely good start-up characteristics can be obtained, and normal operating conditions can be reached in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2〜4図は本発明
の第1実施例に係る図面で、第2図は冷媒回路図、第3
図は制御回路図、第4図はマイクロコンピュータに組込
むプログラムを示すフローチャート、第5〜9図は本発
明の第2実施例に係る図面で、第5図は冷媒回路図第6
図は制御回路図、第7図、第8図はマイクロコンピュー
タに組込むプログラムのフローチャート、第9図は運転
状態を示す説明図、第10図は従来技術を示す冷媒回路
図である。 (2)・・・・・熱源側熱交換器(蒸発器)(EV)・
・・・・電動弁(過熱度制御用の膨張弁) (EV4)・・・・・第2電動弁(過熱度制御用の膨張
弁) 第4図 興5 第8図 [有] 第9図
Fig. 1 is a diagram corresponding to the claims of the present invention, Figs. 2 to 4 are drawings related to the first embodiment of the present invention, Fig. 2 is a refrigerant circuit diagram, and Fig. 3 is a diagram corresponding to the claims of the present invention.
6 is a control circuit diagram, FIG. 4 is a flowchart showing a program to be incorporated into the microcomputer, FIGS. 5 to 9 are drawings related to the second embodiment of the present invention, and FIG.
FIG. 7 is a control circuit diagram, FIGS. 7 and 8 are flowcharts of programs to be incorporated into the microcomputer, FIG. 9 is an explanatory diagram showing operating conditions, and FIG. 10 is a refrigerant circuit diagram showing a conventional technique. (2)・・・Heat source side heat exchanger (evaporator) (EV)・
...Motor-operated valve (expansion valve for superheat control) (EV4)...Second motor-operated valve (expansion valve for superheat control) Fig. 4 Ko 5 Fig. 8 [Yes] Fig. 9

Claims (1)

【特許請求の範囲】[Claims] (1)蒸発器(2)の入口側に設ける開度調整可能な電
動式の膨張弁(EV)と、該蒸発器(2)の出口側冷媒
の過熱度を検出する過熱度検出手段と、該検出手段の出
力を基に前記膨張弁(EV)の弁開度を前記出口側冷媒
の過熱度が設定過熱度に成るように制御する制御手段と
を備える冷凍機において、 運転開始信号の入力により前記膨張弁(EV)の弁開度
を、標準運転時の開度よりも大きな開度に強制的に設定
する初期開度設定手段と、 前記設定手段による前記膨張弁(EV)の弁開度設定を
解除する解除手段と を備えたことを特徴とする電動式の膨張弁を備えた冷凍
機。
(1) an electrically operated expansion valve (EV) with adjustable opening provided on the inlet side of the evaporator (2); and superheat degree detection means for detecting the degree of superheat of the refrigerant on the outlet side of the evaporator (2); and a control means for controlling the valve opening degree of the expansion valve (EV) based on the output of the detection means so that the degree of superheat of the outlet side refrigerant becomes a set degree of superheat, the operation start signal being input. initial opening setting means for forcibly setting the opening of the expansion valve (EV) to a larger opening than the opening during standard operation; and A refrigerator equipped with an electric expansion valve, characterized in that it is equipped with a release means for canceling the temperature setting.
JP4512085A 1985-03-06 1985-03-06 Refrigerator with electric type expansion valve Granted JPS61202052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4512085A JPS61202052A (en) 1985-03-06 1985-03-06 Refrigerator with electric type expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4512085A JPS61202052A (en) 1985-03-06 1985-03-06 Refrigerator with electric type expansion valve

Publications (2)

Publication Number Publication Date
JPS61202052A true JPS61202052A (en) 1986-09-06
JPH0544581B2 JPH0544581B2 (en) 1993-07-06

Family

ID=12710409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4512085A Granted JPS61202052A (en) 1985-03-06 1985-03-06 Refrigerator with electric type expansion valve

Country Status (1)

Country Link
JP (1) JPS61202052A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446539A (en) * 1987-08-10 1989-02-21 Hitachi Ltd Method of controlling inverter-loaded air conditioner
JP2006071263A (en) * 2004-08-03 2006-03-16 Saginomiya Seisakusho Inc Controller for cooling system
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
WO2016136979A1 (en) * 2015-02-27 2016-09-01 東芝キヤリア株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152360A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPS5644566A (en) * 1979-09-20 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS5733756A (en) * 1980-08-09 1982-02-23 Nippon Denso Co Refrigerating plant
JPS59225258A (en) * 1983-06-02 1984-12-18 松下電器産業株式会社 Controller for flow rate of refrigerant of refrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152360A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPS5644566A (en) * 1979-09-20 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS5733756A (en) * 1980-08-09 1982-02-23 Nippon Denso Co Refrigerating plant
JPS59225258A (en) * 1983-06-02 1984-12-18 松下電器産業株式会社 Controller for flow rate of refrigerant of refrigeration cycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446539A (en) * 1987-08-10 1989-02-21 Hitachi Ltd Method of controlling inverter-loaded air conditioner
JP2006071263A (en) * 2004-08-03 2006-03-16 Saginomiya Seisakusho Inc Controller for cooling system
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
WO2016136979A1 (en) * 2015-02-27 2016-09-01 東芝キヤリア株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH0544581B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US5231845A (en) Air conditioning apparatus with dehumidifying operation function
US5044425A (en) Air conditioner having a refrigerant heater
JPH074756A (en) Air-conditioning device
JPS61202052A (en) Refrigerator with electric type expansion valve
JPH1038398A (en) Controller of electric expansion valve
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JPH0239179Y2 (en)
JP2686371B2 (en) Air conditioner
JP6771508B2 (en) Air conditioner
JPH0942792A (en) Heat pump multi-system
JPH10141796A (en) Heat pump system
JP2755040B2 (en) Heat pump system
JP3353367B2 (en) Air conditioner
JPH0510626A (en) Air conditioner
WO2024040915A1 (en) Air conditioner
JPH0349016B2 (en)
WO2023203593A1 (en) Refrigeration cycle device and control method
JPH0471139B2 (en)
JPH081343B2 (en) Air conditioner
JPH0579894B2 (en)
JPS6332256A (en) Heat pump system
JPH10148428A (en) Heat pump system
JPS61202056A (en) Refrigerator with electric type expansion valve
JPH0454864B2 (en)
JPH03217767A (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term