JPS61201918A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPS61201918A
JPS61201918A JP4121885A JP4121885A JPS61201918A JP S61201918 A JPS61201918 A JP S61201918A JP 4121885 A JP4121885 A JP 4121885A JP 4121885 A JP4121885 A JP 4121885A JP S61201918 A JPS61201918 A JP S61201918A
Authority
JP
Japan
Prior art keywords
outer ring
bearing
rotating shaft
inner ring
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4121885A
Other languages
Japanese (ja)
Inventor
Shojiro Miyake
正二郎 三宅
Sadao Takahashi
高橋 貞男
Masayoshi Misawa
三沢 正吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4121885A priority Critical patent/JPS61201918A/en
Publication of JPS61201918A publication Critical patent/JPS61201918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To prevent in space or the like the looseness of a rotary shaft and to ensure its smooth rotation, by rotatablyt fitting the rotary shaft to outer rings mounted to bearing beds and supporting the peripheral surface of the rotary shaft through spherical inner rings. CONSTITUTION:A rotary shaft 3 integrally fits to its both ends an inner ring 7 forming its peripheral surface by a spherical surface 6, and a bracket 5 protrusively provides bearing beds 8a, 8b so as to surround these inner rings 7. These bearing beds 8a, 8b fit outer rings 10a, 10b forming their internal peripheral surface by a spherical surface 9 larger than the spherical surface 6. And a bearing device, integrally fitting one outer ring 10a to the bearing bed 8a and slidably fitting in a parallel direction to the rotary shaft the outer ring 10b to the bearing bed 8b, provides between said outer ring 10b and the bearing bed 8b a compression spring 11 resiliently pressing the outer ring 10b in a thrust direction.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、激しい熱膨張変化があっても常に回転軸をが
た付きなく円滑に支持し得る軸従来の技術〉 通信衛星等の宇宙空間に打ち上げられる飛行体に組込ま
れたアンテナのはね上げ機構や゛聾開機構成いは太陽電
池パドルの展開機構等は、非常に高い信頼度が要求され
ており1作動不調等の事故は許されない。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a shaft conventional technology capable of smoothly supporting a rotating shaft without rattling even under severe thermal expansion changes. The antenna flip-up mechanism, the deaf-opening configuration, the solar array paddle deployment mechanism, etc. built into the aircraft that will be launched in the near future are required to have extremely high reliability, and accidents such as malfunction cannot be tolerated.

一般に1回転系に関して宇宙空間で考慮しtければなら
ないことは、潤□滑油が使えないことと熱変化が著しく
大きいことである。こDような腹黒から、上述したはね
上げ機構や長間機構における回転軸は1通常、すベシ伝
動式の球面軸受等の自動調心性のあるものが用いられて
いる。
Generally speaking, things that must be taken into consideration in space regarding single rotation systems are that lubricating oil cannot be used and that thermal changes are extremely large. Because of this drawback, the rotating shaft in the above-mentioned flip-up mechanism or long-range mechanism is usually a self-aligning shaft such as a spherical bearing of the all-over transmission type.

発明が解決しようとする問題点〉 回転系とこnを支持する固定系とに材質上O相違がある
と、熱伝導本や熱膨張率等の違ハに起因してこれらの熱
変形量が異なってしまい、軸受部分に過大な応力を発生
する。特度(セ氏温度)もの温度変化がある場合には、
スラスト方向及びラジアル方向の変形が複合されて大き
く表れるため、この変形量を正確に把握することが非常
に難しく、この結果、軸受の食い付きや固着現象が発生
して回転軸の正常な回転が不可能となる危険性を有して
いた。
Problems to be Solved by the Invention> If there is a difference in material between the rotating system and the stationary system that supports it, the amount of thermal deformation between them will differ due to differences in heat conduction, coefficient of thermal expansion, etc. This causes excessive stress on the bearing part. If there is a temperature change of a certain degree (degrees Celsius),
Since the deformation in the thrust direction and radial direction is compounded and appears large, it is very difficult to accurately grasp the amount of deformation.As a result, bearings may seize or stick, preventing normal rotation of the rotating shaft. There was a risk that it would become impossible.

熱変形に基づく回転軸の回転不能となる事態を防止する
ため、軸受のクリアランスを大きく設定することも考え
られるが、このようなりリアランスは必然的に軸受のが
た付きとして表れるため1回転系の位置決め誤差の原因
になる。特に、宇宙空間は無重力なために小さな外乱に
よって回転系が微小変位してしまい、高精度な位置決め
を達成できない等の問題点があった。
In order to prevent the rotary shaft from becoming unable to rotate due to thermal deformation, it is possible to set a large bearing clearance, but such clearance will inevitably appear as bearing rattling, so This will cause positioning errors. In particular, since there is no gravity in outer space, small disturbances can cause small displacements of the rotating system, making it impossible to achieve highly accurate positioning.

本発明はかかる知見に基づき、宇宙空間等においても回
転軸のがた付きがなく、シかも円滑な回転を行い得る高
信頼性の軸受装置を提供することを目的とする。
Based on this knowledge, it is an object of the present invention to provide a highly reliable bearing device that can rotate smoothly even in outer space without rattling the rotating shaft.

く問題点を解決するための手段〉 本発明による軸受装置は、外周面が球面で形成され且つ
回転軸に取付けられた内輪と、この内輪の前記外周面が
回転自在に当接する球面を内周面に形成すると共に軸受
台に支持された外輪と、この外輪と前記軸受台との間及
び前記内輪と前記回転軸との間のうちの少なくとも一方
に介装されて前記外輪及び前記内輪のうちの少なくとも
一方を前記回転軸と平行な方向に弾性変位させる弾性部
材とを具えたものである。
Means for Solving Problems> A bearing device according to the present invention includes an inner ring having a spherical outer circumferential surface and attached to a rotating shaft, and a spherical surface on which the outer circumferential surface of the inner ring rotatably abuts. an outer ring formed on a surface and supported by a bearing pedestal, and an outer ring interposed between the outer ring and the bearing pedestal and between the inner ring and the rotating shaft; and an elastic member that elastically displaces at least one of the rotational shafts in a direction parallel to the rotation axis.

く作   用〉 回転軸は軸受台に取付けられた外輪に対して回転自在に
嵌合された内輪を介して支持されておシ、内輪と共に外
輪に対して自動調心しながら回転する。これらに大きな
熱膨張がめった場合には、弾性部材が弾性変形して内輪
と外輪とを相対的に回転軸の長手方向lこ変位させ、内
輪と外輪との接触圧が過大となるのを防止して常にがた
付きのない回転軸の回転を確保する。
Function: The rotating shaft is supported via an inner ring that is rotatably fitted to an outer ring attached to a bearing stand, and rotates together with the inner ring while self-centering with respect to the outer ring. If large thermal expansion occurs in these, the elastic member elastically deforms and displaces the inner ring and outer ring relative to each other in the longitudinal direction of the rotating shaft, thereby preventing the contact pressure between the inner ring and outer ring from becoming excessive. to ensure that the rotating shaft always rotates without rattling.

く実 施 例〉 本発明をパドル展開装置に応用した一実施例の主要部の
構造を表す第1図及びその全体の外観を表す第2図に示
すように、パドルlに固設された一対の支柱2にはそn
ぞれ回転軸3が一体的に一直線状をなすように固着され
てお〕、これら回転軸3とベース4上に突設さnた一対
のブラケット5との間に本実施例の軸受装置が介装され
る。回転軸30両端部には外周面が一定曲率半径の球面
6で形成された内輪7が一体的に嵌着されておシ、これ
ら内輪7を囲むように軸受台8a、8bがブラケット5
に突設さnている。こnら軸受台ga、8bには内周面
が球面6よルも大きな一定曲率半径の球面9で形成さn
た外輪10a。
Embodiment As shown in FIG. 1 showing the structure of the main part of an embodiment in which the present invention is applied to a paddle deploying device, and FIG. 2 showing the overall appearance, a pair of On pillar 2 of
The rotating shafts 3 are integrally fixed to each other in a straight line, and the bearing device of this embodiment is installed between the rotating shafts 3 and a pair of brackets 5 protruding from the base 4. Intervened. An inner ring 7 whose outer peripheral surface is formed of a spherical surface 6 with a constant radius of curvature is integrally fitted to both ends of the rotating shaft 30, and bearing stands 8a and 8b are mounted on a bracket 5 so as to surround these inner rings 7.
It is installed protrudingly. These bearing stands ga, 8b have an inner peripheral surface formed of a spherical surface 9 with a constant radius of curvature larger than that of the spherical surface 6.
outer ring 10a.

10bが嵌合され、内輪70球面68これら外輪10 
a、  10 bの球面9が回転自在に支持し、自動調
心機能を持たせている。一方の外輪10aは軸受台8a
に対して一体的に嵌着さn1他方の外輪10bは軸受台
8bに対して回転軸3と平行な方向(第1図中、左右方
向)に摺動自在に嵌合されておル、この外輪lObと軸
受台8bとの間には外輪fobをスラスト方向に弾性的
に押圧する圧縮ばね11が設けられている。つt)、内
輪7と外輪10a、lObとの接触圧はこ9圧縮はね1
1のばね力に基づ、いて設定されている。
10b are fitted, and the inner ring 70 spherical surface 68 these outer rings 10
The spherical surfaces 9 of a and 10 b rotatably support and have a self-centering function. One outer ring 10a is a bearing stand 8a
The other outer ring 10b is fitted into the bearing stand 8b so as to be slidable in a direction parallel to the rotating shaft 3 (in the left-right direction in FIG. 1). A compression spring 11 that elastically presses the outer ring fob in the thrust direction is provided between the outer ring lOb and the bearing stand 8b. t), the contact pressure between the inner ring 7 and the outer rings 10a and lOb is 9 compression spring 1
It is set based on the spring force of 1.

従って、図示しないモータやばね等の駆動源の作動によ
シ、パドルlは回転軸3を中心に回動するが、内輪7の
球面6と外輪10a。
Therefore, due to the operation of a drive source such as a motor or a spring (not shown), the paddle l rotates around the rotating shaft 3, and the spherical surface 6 of the inner ring 7 and the outer ring 10a.

10bの球面9とは1曲率半径の相違によ)線接触して
低摩擦抵抗が保たれ1円滑な回転を行う。一方、熱膨張
等によシ回転軸3がスラスト方向及びラジアル方向に変
形した場合には、内輪7の変−位によシ外輪10bが圧
縮ばね11のばね力に抗して第1図中、右方向に押し戻
さnて軸受台8b内を摺動し、内輪7と外輪lOa *
  10 bとの接触圧が過大とならないように変位す
る。この結果、内輪7と外輪10a、10bとは常に接
触状態にあシ、大きな温度変化があってもがた付きのな
い円滑な回転を可能とする。
It is in line contact with the spherical surface 9 of 10b (due to the difference in radius of curvature) to maintain low frictional resistance and perform smooth rotation. On the other hand, when the rotating shaft 3 is deformed in the thrust direction and radial direction due to thermal expansion or the like, the outer ring 10b resists the spring force of the compression spring 11 due to the displacement of the inner ring 7, as shown in FIG. , is pushed back to the right and slides inside the bearing stand 8b, and the inner ring 7 and outer ring lOa *
10b is displaced so that the contact pressure with b is not excessive. As a result, the inner ring 7 and the outer rings 10a, 10b are always in contact with each other, allowing smooth rotation without wobbling even when there is a large temperature change.

なお、本実施例では外輪10bを軸受台8bに対して回
転軸3と平行な方向に摺動自在としたが、この外輪10
bと接触する内輪7を回転軸31こ対してこれと平行な
方向に摺動自在に嵌合し1皿ばねやコイルばね等の弾性
部材を介して外輪に押し付けるようにしても良く、これ
らの構造を一方の軸受台8a側にも採用することは当然
可能である。又、摺動面やこの摺動面を有する部材1例
えば内輪7中軸受台8b及び外輪10a、lob%弗素
樹脂等の低摩擦係数の部材で形成したル、或いは二硫化
モリブデンや二硫化タングステン等の自己潤滑性能に優
れた部材で形成すると。
Note that in this embodiment, the outer ring 10b is slidable on the bearing stand 8b in a direction parallel to the rotating shaft 3;
The inner ring 7 in contact with the rotating shaft 31 may be slidably fitted in a direction parallel to the rotating shaft 31 and pressed against the outer ring via an elastic member such as a disc spring or a coil spring. It is of course possible to adopt the same structure on one side of the bearing stand 8a. In addition, the sliding surface and the member 1 having this sliding surface, such as the inner ring 7, middle bearing pedestal 8b, and outer ring 10a, are made of a material with a low coefficient of friction such as fluororesin, or molybdenum disulfide, tungsten disulfide, etc. When formed from a material with excellent self-lubricating performance.

回転抵抗の減少に効果がある。Effective in reducing rotational resistance.

上述した実施例では球面6,9をそnぞれ単一の曲率半
径で形成したが1本発明の他の一実施例の軸受装置の一
方の断面構造を表す第3図に示すように、軸受台12に
取付けらnた外輪13の内周面と回転軸14に嵌合さn
た円輪15の外周面とにそれぞn曲率半径の異なる球面
16,17.18.19を形成し、スラスト荷重が大き
い場合には曲率半径の小さな球面16.18を接触させ
、ラジアル荷重が大きい場合には曲率半径の大きな球面
17.19を接触させるようにしても良い。
In the embodiment described above, the spherical surfaces 6 and 9 were each formed with a single radius of curvature, but as shown in FIG. The inner peripheral surface of the outer ring 13 attached to the bearing stand 12 and the rotating shaft 14 are fitted together.
Spherical surfaces 16, 17, 18, and 19 with different radii of curvature are formed on the outer circumferential surface of the circular ring 15. When the thrust load is large, the spherical surfaces 16 and 18 with the small radius of curvature are brought into contact with each other to reduce the radial load. If the radius of curvature is large, spherical surfaces 17 and 19 with a large radius of curvature may be brought into contact.

又、本発明による軸受装置の別な一実施例の断面構造を
表す第4図に示すように1弾性部材として回転軸20に
取付けられた内輪21を回転自在に支持する外輪22と
、軸受台23とを連結する板ばね24を用い、この板ば
ね24の弾性変形によって外輪22を回転軸20と平行
な方向に変位させることも可能である。
Further, as shown in FIG. 4 showing the cross-sectional structure of another embodiment of the bearing device according to the present invention, an outer ring 22 rotatably supports an inner ring 21 attached to a rotating shaft 20 as one elastic member, and a bearing stand. It is also possible to displace the outer ring 22 in a direction parallel to the rotating shaft 20 by using a leaf spring 24 that connects the outer ring 23 with the rotary shaft 23 by elastic deformation of the leaf spring 24.

この場合1回転軸20に対する内輪21の取付は状態に
よっては、本発明の別な他の一実施例の断面構造を表す
第5図に示すように、外輪25と板ばね26とを一体の
もので作って軸受台27に固定し、回転軸28に嵌合さ
れた内輪29をこの回転軸28と外輪25と  46図
面〈で挟圧把持するような構造も可能であ〕、と   
 第の場合には特にスラスト荷重に対して有効で  主
要fある。更に、本発明の更に別な一実施例の断  ず
正を面構造を表す第6図に示すように、回転軸3〇  
 −実1の軸端に内輪31を一体的に形成し、板ばね 
   又、33と一体の外輪33にこの内輪31を当接
  は回喝させるようにしても良い。これら第5図及び
  21゜第6図に示した内輪29.31及び外輪25
.  23゜シ2゜ シロ。
In this case, depending on the situation, the inner ring 21 may be attached to the rotating shaft 20 by integrating the outer ring 25 and the leaf spring 26 as shown in FIG. 5, which shows the cross-sectional structure of another embodiment of the present invention. It is also possible to have a structure in which the inner ring 29, which is made of and fixed to the bearing stand 27 and is fitted onto the rotating shaft 28, is clamped between the rotating shaft 28 and the outer ring 25.
In the second case, there is a major f which is particularly effective against thrust loads. Furthermore, as shown in FIG. 6, which shows the front surface structure of still another embodiment of the present invention, the rotating shaft 30
-Inner ring 31 is integrally formed on the shaft end of real 1, and leaf spring
Alternatively, the inner ring 31 may be brought into contact with and rotated by the outer ring 33 which is integrated with the inner ring 33. Inner ring 29.31 and outer ring 25 shown in Fig. 5 and Fig. 6
.. 23゜shi 2゜shiro.

〈発明の効果〉 本発明の軸受装置によると、常に内輪と外輪とが弾性部
材のばね力で接触しておプ、大きな温度変化による熱変
形が発生した場合には弾性部材が弾性変形して内輪と外
輪との接触状態を平常に保つので、安定した回転トルク
にて回転軸の回転が可能であシ、外的条件に影響されな
い高信頼性の軸受装置を得られる。
<Effects of the Invention> According to the bearing device of the present invention, the inner ring and the outer ring are always in contact with each other due to the spring force of the elastic member, and when thermal deformation due to a large temperature change occurs, the elastic member is elastically deformed. Since the contact state between the inner ring and the outer ring is maintained normally, the rotating shaft can be rotated with stable rotational torque, and a highly reliable bearing device that is not affected by external conditions can be obtained.

)簡単な説明 【図は本発明による軸受装置の一実施例の蓼の断面図、
第2図はその全体の外観を表「図、第3図〜第6図は本
発明のそnぞれ1例の構造を表す断面図である。
) Brief explanation [The figure is a cross-sectional view of the bottom of an embodiment of the bearing device according to the present invention,
FIG. 2 shows the overall appearance, and FIGS. 3 to 6 are sectional views each showing the structure of one example of the present invention.

図中の符号で3.14,20,29,30云軸、6,9
,16/’−19は球面、7,15゜29.31は内輪
、8a、8b、12゜27は軸受台、10a、10b、
13゜25.33杜外輪、11は圧縮1′イ゛ね、24
゜32は板ばねである。
The numbers in the diagram are 3.14, 20, 29, 30 axis, 6, 9
, 16/'-19 is a spherical surface, 7, 15゜29.31 is an inner ring, 8a, 8b, 12゜27 is a bearing stand, 10a, 10b,
13゜25.33mm outer ring, 11 is compression 1', 24
゜32 is a leaf spring.

Claims (1)

【特許請求の範囲】[Claims] 外周面が球面で形成され且つ回転軸に取付けられた内輪
と、この内輪の前記外周面が回転自在に当接する球面を
内周面に形成すると共に軸受台に支持された外輪と、こ
の外輪と前記軸受台との間及び前記内輪と前記回転軸と
の間のうちの少なくとも一方に介装されて前記外輪及び
前記内輪のうちの少なくとも一方を前記回転軸と平行な
方向に弾性変位させる弾性部材とを具えた軸受装置。
an inner ring having a spherical outer circumferential surface and attached to a rotating shaft; an outer ring having an inner circumferential surface formed with a spherical surface against which the outer circumferential surface of the inner ring rotatably contacts; and an outer ring supported by a bearing stand; an elastic member that is interposed between at least one of the bearing stand and between the inner ring and the rotating shaft to elastically displace at least one of the outer ring and the inner ring in a direction parallel to the rotating shaft; A bearing device equipped with.
JP4121885A 1985-03-04 1985-03-04 Bearing device Pending JPS61201918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121885A JPS61201918A (en) 1985-03-04 1985-03-04 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121885A JPS61201918A (en) 1985-03-04 1985-03-04 Bearing device

Publications (1)

Publication Number Publication Date
JPS61201918A true JPS61201918A (en) 1986-09-06

Family

ID=12602257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121885A Pending JPS61201918A (en) 1985-03-04 1985-03-04 Bearing device

Country Status (1)

Country Link
JP (1) JPS61201918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063479B2 (en) * 2000-01-13 2006-06-20 Secretary Of Agency Of Industrial Science And Technology Link mechanism of surgical robot
JP2007223545A (en) * 2006-02-24 2007-09-06 Aichi Mach Ind Co Ltd Shift operation device
JP2011226413A (en) * 2010-04-21 2011-11-10 Mitsubishi Electric Corp Fuel supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571819A (en) * 1980-05-31 1982-01-07 Kuesutaa:Kk Bush

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571819A (en) * 1980-05-31 1982-01-07 Kuesutaa:Kk Bush

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063479B2 (en) * 2000-01-13 2006-06-20 Secretary Of Agency Of Industrial Science And Technology Link mechanism of surgical robot
JP2007223545A (en) * 2006-02-24 2007-09-06 Aichi Mach Ind Co Ltd Shift operation device
JP2011226413A (en) * 2010-04-21 2011-11-10 Mitsubishi Electric Corp Fuel supply device

Similar Documents

Publication Publication Date Title
US3516717A (en) Bearing
JP2714453B2 (en) Elastic bearings for automotive drag links
US3306620A (en) Thermally stable lip seal
US3948371A (en) Self centering clutch release bearing
CN103890425A (en) Double bearing assembly for rotating shaft
US2163884A (en) Brake
JP2013512397A (en) Elastic bearing mount
US4886378A (en) Thrust bearing device
US4076191A (en) Spacecraft component rotation means
KR970066143A (en) Friction clutch
US5160149A (en) Seal rotor mount
JPS61201918A (en) Bearing device
JPS60157530A (en) Elastic rotary-slide bearing
US20020139633A1 (en) Release assembly for use with a friction clutch
US6616145B2 (en) Face seal device for high rotational speeds
JPS63308214A (en) Bearing device
US5562349A (en) Bearing assembly having thermal compensation
JPS639811Y2 (en)
EP0993565A1 (en) Actuator having protected screw mechanism, and brake calliper comprising such actuator
JPH02503711A (en) Thrust bearing support device with tilt position correction mechanism
US3704920A (en) Combination clamping and bearing system
JPH0599237A (en) Magnetic bearing/shaft assembly
JPS60201111A (en) Oscillative bearing mechanism
US4514016A (en) Low friction pivot
JPH0212354Y2 (en)