JPH0212354Y2 - - Google Patents

Info

Publication number
JPH0212354Y2
JPH0212354Y2 JP1985119919U JP11991985U JPH0212354Y2 JP H0212354 Y2 JPH0212354 Y2 JP H0212354Y2 JP 1985119919 U JP1985119919 U JP 1985119919U JP 11991985 U JP11991985 U JP 11991985U JP H0212354 Y2 JPH0212354 Y2 JP H0212354Y2
Authority
JP
Japan
Prior art keywords
shape memory
sliding surface
driven ring
ring
temperature conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985119919U
Other languages
Japanese (ja)
Other versions
JPS6228968U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985119919U priority Critical patent/JPH0212354Y2/ja
Publication of JPS6228968U publication Critical patent/JPS6228968U/ja
Application granted granted Critical
Publication of JPH0212354Y2 publication Critical patent/JPH0212354Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 本考案は、機器の回転軸部の軸封技術に係り、
さらに詳しくは摺動発熱等による温度変化に伴な
つて摺動面圧が自動的に制御されるメカニカルシ
ールを提供せんとするものである。
[Detailed description of the invention] [Purpose of the invention] The present invention relates to shaft sealing technology for the rotating shaft of equipment.
More specifically, it is an object of the present invention to provide a mechanical seal in which sliding surface pressure is automatically controlled in accordance with temperature changes due to sliding heat generation and the like.

通常、メカニカルシールの摺動材であるシート
リングおよび従動リングは、両者の摺動によつて
発熱し、温度が上昇する。該両リングが高温にな
ると、 摺動面の摩耗の促進 熱的不均衡を原因とする熱割れの発生 摺動面同士の融着 摺動材内部における発泡現象 等の損耗が起こり易くなるが、これに対する従来
の構成対策のほとんどはフラツシング等による昇
温軽減方策あるいは耐熱性材料の使用、耐熱衝撃
性の改善のいずれかに属していると言つても過言
ではなく、機器の稼働中において摺動材の昇温に
伴ない摺動面圧を制御する技術としてはたとえば
メカニカルシール内に温度検出センサを内蔵し、
面圧を制御する外部のアクチユエータが該センサ
からの情報にもとづいて駆動するよう構成された
もの等が考えられるが、高価となるばかりでなく
装置が大型化してしまうため実用性に乏しいもの
であつた。
Normally, the seat ring and the driven ring, which are the sliding members of a mechanical seal, generate heat due to sliding motion between the two, and their temperature increases. When both rings become hot, wear and tear such as accelerated wear on the sliding surfaces, occurrence of thermal cracking due to thermal imbalance, fusion between the sliding surfaces, and foaming inside the sliding material is likely to occur. It is no exaggeration to say that most of the conventional structural countermeasures for this problem belong to measures to reduce temperature rise through flushing, etc., use of heat-resistant materials, and improvement of thermal shock resistance. As a technology to control the sliding surface pressure as the temperature of the material increases, for example, a temperature detection sensor is built into the mechanical seal.
A configuration in which an external actuator that controls the surface pressure is driven based on information from the sensor is conceivable, but this is not only expensive but also increases the size of the device, making it impractical. Ta.

本考案は、以上の点に鑑み、形状記憶合金をも
つて前記温度センサとアクチユエータとの組み合
わせによる面圧の自動制御機構と同様の作用を得
ることを目的としてなされたものである。
In view of the above points, the present invention has been made with the aim of obtaining the same effect as the automatic surface pressure control mechanism using a combination of the temperature sensor and actuator using a shape memory alloy.

〔考案の構成〕[Structure of the idea]

この目的達成のため、本考案は、従動リングを
シートリングへ向けて押圧付勢する弾性手段とし
て、一端が前記従動リングの反摺動面側に常時圧
接するスプリングと、形状記憶合金製であつて低
温条件では伸長して一端が前記従動リングの反摺
動面側に圧接し、高温条件では収縮してその自由
長が前記低温条件における取付長以下の長さとな
る2方向の形状記憶処理がなされたスプリングと
を、周方向に交互に配設したものである。
To achieve this objective, the present invention uses a spring made of a shape memory alloy and a spring whose one end is in constant pressure contact with the non-sliding surface side of the driven ring as an elastic means for pressing the driven ring toward the seat ring. shape memory treatment in two directions, such that it expands under low temperature conditions and one end presses against the non-sliding surface side of the driven ring, and contracts under high temperature conditions and its free length is equal to or less than the installation length under low temperature conditions. These springs are arranged alternately in the circumferential direction.

TiNi系合金等、形状記憶合金は、ある遷移
(変態)温度の上下で結晶相が異なり、遷移は非
拡散型マルテンサイト変態によつて進行する。こ
種の合金のうち、1方向の形状記憶特性のもの
は、一定の形状を記憶させた後、これを変形させ
ると、遷移温度以上に加熱昇温させるだけで、該
変形が解消され、記憶させた元の形状に戻るが、
これを再び遷移温度以下に降温させても前記変形
した状態の形状にはならない。これに対し、2方
向(全方向)性の形状記憶特性を有するものは、
遷移温度の高温側、低温側の流温度領域でそれぞ
れ形状を記憶させることができるもので、2方向
への可逆的な繰返し動作特性が得られる。なお形
状記憶合金の遷移温度は、各種添加元素によつて
調整することができる。
Shape memory alloys such as TiNi alloys have different crystal phases above and below a certain transition (transformation) temperature, and the transition proceeds by non-diffusion martensitic transformation. Among these types of alloys, those with unidirectional shape memory memorize a certain shape and then deform it, the deformation is canceled by simply heating it above the transition temperature, and the memory is restored. It returns to its original shape, but
Even if the temperature is lowered to below the transition temperature again, the shape of the deformed state will not be achieved. On the other hand, those with bidirectional (omnidirectional) shape memory characteristics,
The shape can be memorized in the flow temperature regions on the high temperature side and the low temperature side of the transition temperature, and reversible repeatable operation characteristics in two directions can be obtained. Note that the transition temperature of the shape memory alloy can be adjusted by various additive elements.

本考案において、形状記憶合金製スプリングは
2方向の形状記憶がなされているものであり、従
動リングとシートリングの摺動発熱により昇温し
た雰囲気温度が一定の低温範囲内にあれば、この
形状記憶合金製スプリングは従動リングの反摺動
面側に常時圧接するスプリングとともに従動リン
グをシートリングへ押し付けるが、前記雰囲気温
度が高温になると、形状記憶合金製スプリングは
その自由長が低温条件における取付長以下の長さ
に収縮するので、従動リングに対する押圧は前記
従動リングの反摺動面側に常時圧接するスプリン
グのみで行なわれる。したがつて従動リングの摺
動面には、形状記憶合金製スプリングと対応する
部分の面圧低下により液溜りとなるうねりが生じ
てシートリングの摺動面との間の潤滑性が著しく
向上し、摺動発熱量が低下するとともに該熱が効
率よく除去される。また、これによつて雰囲気温
度が前記低温範囲まで降下すれば、形状記憶合金
製スプリングは伸長して再び従動リングに圧接
し、摺動面圧を通常の状態に復帰させる。
In the present invention, the shape memory alloy spring has shape memory in two directions, and if the ambient temperature, which is heated due to the sliding heat generation between the driven ring and the seat ring, is within a certain low temperature range, it will retain its shape. The memory alloy spring presses the driven ring against the seat ring together with the spring that is always in pressure contact with the non-sliding surface side of the driven ring. However, when the ambient temperature becomes high, the free length of the shape memory alloy spring will change when installed under low temperature conditions. Since the driven ring is compressed to a length smaller than the length of the driven ring, the driven ring is pressed only by the spring that is always in pressure contact with the non-sliding surface side of the driven ring. Therefore, on the sliding surface of the driven ring, undulations that form liquid pools are generated due to the decrease in surface pressure in the area corresponding to the shape memory alloy spring, and the lubricity between the sliding surface and the seat ring is significantly improved. , the amount of heat generated by sliding is reduced and the heat is efficiently removed. When the ambient temperature drops to the low temperature range, the shape memory alloy spring expands and comes into pressure contact with the driven ring again, returning the sliding surface pressure to its normal state.

〔実施例〕〔Example〕

以下、本考案の好適な実施例を第1図および第
2図にもとづいて説明する。
Hereinafter, a preferred embodiment of the present invention will be described based on FIGS. 1 and 2.

11はハウジング12内周にOリング13を介
して気密的に担持固定された非回転のシートリン
グ、14はハウジング12に遊貫挿通された回転
軸15の外周にOリング16を介して気密的に外
挿されるとともに、該回転軸15の段部に外挿嵌
着されたカラー17に保持されて周方向等配状に
かつ交互に配設されてなる形状記憶合金製コイル
スプリング18a…および一般の金属製コイルス
プリング18b…(第3図参照)によつて軸方向
に弾性付勢され、ノツクピン19…によつてトル
クが伝達されて回転軸15とともに回転し、前記
シートリング11に摺接する従動リングである。
11 is a non-rotating seat ring that is airtightly supported and fixed on the inner periphery of the housing 12 via an O-ring 13; 14 is a non-rotating seat ring that is airtightly supported and fixed on the outer periphery of a rotating shaft 15 that is loosely inserted through the housing 12 via an O-ring 16; Shape-memory alloy coil springs 18a are held by collars 17 which are externally inserted into the stepped portion of the rotating shaft 15, and are alternately and equidistantly arranged in the circumferential direction. The driven member is elastically biased in the axial direction by metal coil springs 18b (see FIG. 3), rotates together with the rotating shaft 15 by transmitting torque through the knock pins 19, and slides into the seat ring 11. It's a ring.

TiNi系合金等の形状記憶合金からなる前記コ
イルスプリング18aは、通常の低温条件では一
端が従動リング14の反摺動面側である背面1
4″に圧接し、遷移温度を超える高温条件ではそ
の自由長が前記低温条件における取付長l(従動
リング14背面およびカラー17との接触部間の
距離)以下の長さとなる2方向の形状記憶処理が
なされている。
Under normal low-temperature conditions, the coil spring 18a made of a shape memory alloy such as a TiNi-based alloy has one end located on the rear surface opposite to the sliding surface of the driven ring 14.
4'', and under high temperature conditions exceeding the transition temperature, its free length is equal to or less than the installation length l (distance between the back surface of driven ring 14 and the contact portion with collar 17) under low temperature conditions. Processing is being done.

上記構成によれば、遷移温度以下の低温時にお
いて、形状記憶合金製コイルスプリング18aと
一般の金属製コイルスプリング18bは同等のば
ね定数を有しているが、シートリング11と従動
リング14の摺動による発熱で遷移温度を超える
高温状態になると、形状記憶合金製コイルスプリ
ング18aは変態して収縮し、従動リング14に
対するばね作用をなさなくなつてしまうため、該
両リング11,14の摺動面11′,14′の面圧
は全体として低下する。また、従動リング14の
摺動面14′のうち、金属製コイルスプリング1
8bと対応する部分14′b近傍部は比較的大き
な面圧が保持されているが、他方形状記憶合金製
コイルスプリング18aと対応する部分14′a
の面圧は小さくなつているため、第1図に破線で
示すごとく該摺動面14′には周方向にわずかな
うねりが生じ、凹部となる14′aとシートリン
グ11の摺動面11′との間に油溜まりが形成さ
れて潤滑状態が良好となり、摺動発熱量は低下す
る。なお、発熱量の低下により、遷移温度以下の
低温状態となつた場合には形状記憶合金製コイル
スプリング18aが再び伸長し、両リング11,
14は元の摺動状態に復帰する。
According to the above configuration, at low temperatures below the transition temperature, the shape memory alloy coil spring 18a and the general metal coil spring 18b have the same spring constant, but the sliding between the seat ring 11 and the driven ring 14 When the shape-memory alloy coil spring 18a transforms and contracts when it reaches a high temperature state that exceeds the transition temperature due to heat generation due to movement, it no longer exerts a spring action on the driven ring 14, so that the sliding of both rings 11 and 14 is prevented. The surface pressure of surfaces 11' and 14' is reduced as a whole. Also, of the sliding surface 14' of the driven ring 14, the metal coil spring 1
A relatively large surface pressure is maintained near the portion 14'b corresponding to the shape memory alloy coil spring 18a, while the portion 14'a corresponding to the shape memory alloy coil spring 18a
Since the surface pressure on the seat ring 11 is decreasing, slight waviness occurs in the sliding surface 14' in the circumferential direction as shown by the broken line in FIG. An oil pool is formed between the two parts and the lubrication condition improves, and the amount of heat generated by sliding decreases. Note that when the temperature reaches a low temperature below the transition temperature due to a decrease in calorific value, the shape memory alloy coil spring 18a expands again, and both rings 11,
14 returns to its original sliding state.

〔考案の効果〕[Effect of idea]

以上の説明で明らかなとおり、本考案の面圧自
動制御型メカニカルシールは、従動リングを弾性
付勢せしめる手段として常時付勢力を有するスプ
リングと形状記憶合金製スプリングを周方向に交
互に設け、摺動発熱による雰囲気温度が高温にな
つた場合に形状記憶合金製スプリングの荷重が解
除されて摺動面の面圧が自動的に低下するととも
に、該摺動面に液溜りとなるうねりが形成されて
潤滑性が高まるよう構成したため、摺動面の熱に
よる摩耗の促進、熱割れの発生、摺動面同士の焼
付きおよび発泡現象等の損耗を防止することがで
き、装置の大型化を伴なうことなく温度検出セン
サーとアクチユエータとを用いた面圧自動制御機
構と同等の作用を得ることができる特徴を有し、
その実用的価値はきわめて高い。
As is clear from the above explanation, the surface pressure automatic control type mechanical seal of the present invention uses springs that have a constant biasing force and shape memory alloy springs arranged alternately in the circumferential direction as means for elastically biasing the driven ring. When the ambient temperature rises due to dynamic heat generation, the load on the shape memory alloy spring is released, the surface pressure on the sliding surface automatically decreases, and undulations that become liquid pools are formed on the sliding surface. Since the structure is designed to increase lubricity, it is possible to prevent wear and tear such as acceleration of wear due to heat on the sliding surfaces, generation of thermal cracks, seizure between sliding surfaces, and foaming phenomena, which can prevent equipment from increasing in size. It has the feature of being able to obtain the same effect as an automatic surface pressure control mechanism using a temperature detection sensor and actuator without any noise.
Its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案に係る面圧自動制御型メカニカル
シールの実施例を示しており、第1図は要部断面
図、第2図はコイルスプリングの配置説明図であ
る。 11……シートリング、11′,14′……摺動
面、12……ハウジング、14……従動リング、
15……回転軸、18a……形状記憶合金製コイ
ルスプリング、18b……一般の金属製コイルス
プリング。
The drawings show an embodiment of the automatic surface pressure control type mechanical seal according to the present invention, and FIG. 1 is a sectional view of the main part, and FIG. 2 is an explanatory diagram of the arrangement of a coil spring. 11... Seat ring, 11', 14'... Sliding surface, 12... Housing, 14... Driven ring,
15... Rotating shaft, 18a... Shape memory alloy coil spring, 18b... General metal coil spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハウジングと該ハウジング内周に遊貫された回
転軸との間にあつて、互いに密接摺回動するシー
トリングと従動リングとによつて機器内の流体を
密封するメカニカルシールにおいて、前記従動リ
ングを前記シートリングへ向けて付勢する弾性手
段として、一端が前記従動リングの反摺動面側に
常時圧接するスプリングと、形状記憶合金製であ
つて低温条件では伸長して一端が前記従動リング
の反摺動面側に圧接し、高温条件では収縮してそ
の自由長が前記低温条件における取付長以下の長
さとなる2方向の形状記憶処理がなされたスプリ
ングとを、周方向に交互に配設したことを特徴と
する面圧自動制御型メカニカルシール。
A mechanical seal that seals the fluid inside the device by a seat ring and a driven ring that are placed between a housing and a rotating shaft loosely passed through the inner periphery of the housing, and that slide and rotate in close contact with each other. The elastic means for biasing toward the seat ring includes a spring whose one end is always in pressure contact with the non-sliding surface side of the driven ring, and a spring made of a shape memory alloy that expands under low temperature conditions and whose one end is in pressure contact with the non-sliding surface of the driven ring. Springs that are pressed against the non-sliding surface side and undergo shape memory treatment in two directions that contract under high temperature conditions and have a free length equal to or less than the installation length under low temperature conditions are arranged alternately in the circumferential direction. A mechanical seal with automatic surface pressure control.
JP1985119919U 1985-08-06 1985-08-06 Expired JPH0212354Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985119919U JPH0212354Y2 (en) 1985-08-06 1985-08-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985119919U JPH0212354Y2 (en) 1985-08-06 1985-08-06

Publications (2)

Publication Number Publication Date
JPS6228968U JPS6228968U (en) 1987-02-21
JPH0212354Y2 true JPH0212354Y2 (en) 1990-04-06

Family

ID=31007746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985119919U Expired JPH0212354Y2 (en) 1985-08-06 1985-08-06

Country Status (1)

Country Link
JP (1) JPH0212354Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739543A (en) * 1993-07-28 1995-02-10 Eiji Toba Apparatus for measuring grasping power
FR2958990B1 (en) * 2010-04-14 2015-01-16 Commissariat Energie Atomique ELASTIC CONICAL WASHER AND ENVELOPE SEALING ELEMENT FOR EXERCISING A TARING
JP6247072B2 (en) * 2013-10-28 2017-12-13 日本ピラー工業株式会社 mechanical seal
GB201513310D0 (en) * 2015-07-29 2015-09-09 Delphi Int Operations Lux Srl High pressure fuel pumps

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047925B2 (en) * 1981-04-08 1985-10-24 日本エクスラン工業株式会社 Method for producing an acrylonitrile polymer spinning dope containing uniformly dispersed titanium oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047925U (en) * 1983-09-09 1985-04-04 トヨタ自動車株式会社 friction clutch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047925B2 (en) * 1981-04-08 1985-10-24 日本エクスラン工業株式会社 Method for producing an acrylonitrile polymer spinning dope containing uniformly dispersed titanium oxide

Also Published As

Publication number Publication date
JPS6228968U (en) 1987-02-21

Similar Documents

Publication Publication Date Title
US4227646A (en) Temperature-responsive valve
US2838244A (en) Viscous drive for fan
JPH0212354Y2 (en)
JP4456001B2 (en) Device for supplying a medium in the form of a gas and / or liquid to a rotating pressure fluid system
US20110100779A1 (en) Conductive cooling for clutches
JPH0811953B2 (en) Rubber actuator Seal shaft straight bellows and seal back thermo-actuator
US2925986A (en) Pressure operated valve
US3025087A (en) Sealing structure
US4278159A (en) Temperature controlled viscous fan drive
JP6884735B2 (en) Temperature sensitive control valve
US2331464A (en) Thermally responsive device
JP3753193B2 (en) Temperature-sensitive fluid fan and coupling device
JPS639811Y2 (en)
JP2009024832A (en) Temperature sensitive clutch mechanism
JPH0241392Y2 (en)
JPH0267500A (en) Temperature sensing type cooling fan assembly
CN107339434A (en) Seal assembly
US2838936A (en) Thermal responsive unit
US1043344A (en) Engine-cooling device.
JPS62101972A (en) Adjustable mechanical seal
GB2114294A (en) Temperature transducer
US3186230A (en) Thermo-actuator
GB2210938A (en) A seal assembly
US3319467A (en) Thermostatic device
US2022905A (en) Thermostatic piston