JPS61201788A - Wear resistant member - Google Patents
Wear resistant memberInfo
- Publication number
- JPS61201788A JPS61201788A JP4067085A JP4067085A JPS61201788A JP S61201788 A JPS61201788 A JP S61201788A JP 4067085 A JP4067085 A JP 4067085A JP 4067085 A JP4067085 A JP 4067085A JP S61201788 A JPS61201788 A JP S61201788A
- Authority
- JP
- Japan
- Prior art keywords
- wear
- hard particles
- matrix
- wear resistant
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、金属母相中に硬質粒子が分散している材料
でできている耐摩耗性部材に関し、特(二耐焼付性につ
いて改良された耐摩耗性部材に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a wear-resistant member made of a material in which hard particles are dispersed in a metal matrix, and particularly relates to a wear-resistant member made of a material in which hard particles are dispersed in a metal matrix. The present invention relates to a wear-resistant member.
一般に相手部材と接触して摺動したり、あるいは相手部
材を打撃しながら使用される耐摩耗性部材は、各種内燃
機関をはじめ、その他の機械、装置において広く利用さ
れており、例えば上記の摺動して使用されるものとして
はカムとロッカアームチップまたはローラ、また打撃し
ながら使用されるものにはパルプとバルブシート、さら
に摺動と打撃の両方が加わるものとしてはカムとタペッ
トなどがあり、これらの部材は元来それ自身が摩耗しな
いと同時に、相手部材も摩耗させないという特性が請求
される。Wear-resistant members that are generally used while sliding in contact with or striking a mating member are widely used in various internal combustion engines as well as other machines and devices. Items that are used while moving include cams and rocker arm tips or rollers, items that are used while hitting are pulp and valve seats, and items that are used while sliding and hitting are cams and tappets. These members are claimed to have the characteristic that they do not wear out themselves, and at the same time do not wear out the mating members.
従来、この種機械部品の耐摩耗性材料としては、金属母
相中に硬質粒子を分散させた鋳造材料や焼結材料が使用
され、その母相金属としては、例えば鉄、アルミニウム
、銅またはこれら金属元素と他の元素とからなる合金が
用いられ、一方硬質粒子としては、例えば金属または非
金属元素の炭化物、窒化物、炭窒化物、酸化物、硼化物
および各種の金属間化合物が利用されている。Conventionally, cast materials or sintered materials in which hard particles are dispersed in a metal matrix have been used as wear-resistant materials for this type of machine parts, and the matrix metal may be iron, aluminum, copper, or any of these. An alloy consisting of a metallic element and another element is used, while as hard particles, for example, carbides, nitrides, carbonitrides, oxides, borides and various intermetallic compounds of metallic or nonmetallic elements are used. ing.
上記の硬質粒子は母相金属より硬く、鋳造材料や焼結材
料に耐摩耗性を付与する役割を担っているが、この硬質
粒子にあまり硬いものを選ぶと。The above-mentioned hard particles are harder than the matrix metal and play a role in imparting wear resistance to cast materials and sintered materials, but if these hard particles are chosen to be too hard.
相手材によってはアブレーシブ摩耗が発生して相手材を
削り取ってしまうので、相手材に対して適当な硬質粒子
の組み合わせを選択する必要があるが、適当な硬質粒子
を選択してもなお摩耗が発生し、その一つは作動環境に
よる腐食摩耗であり、もう一つの摩耗は相手材と金属凝
着を起工ことによって生ずる凝着摩耗である。このうち
、前者の腐食摩耗については、防錆作用をそなえた潤滑
油や耐食性に富む材料組成などを選定することによって
防止できるけれども、後者の凝着摩耗を完全(=防止す
ることは本質的に困難であって、この凝着摩耗は特に同
種金属や合金化しやすい金属の間では発達しやすく、そ
れが著しくなると焼付を生ずるという問題がある。Depending on the mating material, abrasive wear may occur and scrape off the mating material, so it is necessary to select an appropriate combination of hard particles for the mating material, but even if the appropriate hard particles are selected, wear still occurs. However, one type of wear is corrosive wear due to the operating environment, and the other type of wear is adhesive wear caused by metal adhesion to the mating material. Of these, the former type of corrosive wear can be prevented by selecting lubricating oils with anti-rust properties and material compositions with high corrosion resistance, but the latter type of adhesive wear cannot be completely prevented. This adhesive wear is particularly difficult to develop between similar metals or metals that are easily alloyed, and when it becomes severe, seizure may occur.
そこで本発明者等は、耐摩耗性部材における上記の凝着
席耗を軽減して、その寿命を延ばすべく種々研究を重ね
た結果、この凝着は硬質粒子部分よりは金属母相表面に
おいて生じやすく、したがって金属母相表面よりも突出
した硬質粒子をその部材表面にあらかじめ形成させてお
けば、相手部材表面と母相表面とが直接接触する面積が
減少し、それによって凝着摩耗も軽減することを見出し
た。Therefore, the present inventors have conducted various studies to reduce the above-mentioned adhesive wear on wear-resistant members and extend their lifespan. As a result, the inventors have found that this adhesion is more likely to occur on the surface of the metal matrix than on the hard particle portion. Therefore, if hard particles that protrude beyond the metal matrix surface are formed on the surface of the component in advance, the area of direct contact between the mating component surface and the matrix surface will be reduced, thereby reducing adhesive wear. I found out.
この発明は、上記知見にもとづいてなされたものであっ
て、金属母相中に硬質粒子が分散している耐摩耗性材料
でできている耐摩耗性部材(二おいて、その部材表面が
、前記金属母相表面から0.2〜5μm突出している硬
質粒子を有することを特徴とする、耐焼付性のすぐれた
前記耐摩耗性部材を提供するものである。This invention was made based on the above findings, and consists of a wear-resistant member made of a wear-resistant material in which hard particles are dispersed in a metal matrix (2, the member surface is The present invention provides the above-mentioned wear-resistant member having excellent seizure resistance, which is characterized by having hard particles protruding by 0.2 to 5 μm from the surface of the metal matrix.
この発明において便用される母相金属としては、耐摩耗
性材料が鋳造材料および焼結材料のいずれの場合でも、
例えば鉄、又は鉄合金、銅又は銅合金、アルミニウム又
はアルミニウム合金、コバルト又はコバルト合金が使用
され、そしてこれらの母相@出中に分散させる硬質粒子
としては1通常1〜100μmの粒度を有するFe5C
、(Crepe)*sCa 。The matrix metals conveniently used in this invention include, regardless of whether the wear-resistant material is a cast material or a sintered material,
For example, iron or iron alloys, copper or copper alloys, aluminum or aluminum alloys, cobalt or cobalt alloys are used, and the hard particles dispersed in these matrixes are usually Fe5C having a particle size of 1 to 100 μm.
, (Crepe)*sCa.
NbC、VC、TiN 、AtN 、Al2O,r
Y、O,、Fego 。NbC, VC, TiN, AtN, Al2O,r
Y., O., Fego.
CuAt、などが使用されるが、この発明においては。CuAt, etc. are used in this invention.
母相金属や硬質粒子並びにその粒度は勿論上記のものに
限定されない。Of course, the matrix metal, the hard particles, and their particle sizes are not limited to those mentioned above.
この発明において母相表面から突出させる硬質粒子の突
出量が0.2μm未満では、相手部材表面と母相表面と
が接触しやすくなるために耐凝着摩耗性に所望の改善が
みられず、一方、それが5μmを越えると、突出した硬
質粒子によるアブレーシブ摩耗が著しくなるととも(−
1部材表面上で一部が埋め込まれた状態にある硬質粒子
がその表面から脱落する場合も生ずるので、この発明で
は硬質粒子の突出量を0.2〜5μmと限定した。In this invention, if the protruding amount of the hard particles protruding from the matrix surface is less than 0.2 μm, the desired improvement in adhesive wear resistance will not be seen because the mating member surface and the matrix surface will easily come into contact with each other. On the other hand, if it exceeds 5 μm, abrasive wear due to protruding hard particles becomes significant (-
Since hard particles that are partially embedded on the surface of one member may fall off from the surface, in this invention, the amount of protrusion of the hard particles is limited to 0.2 to 5 μm.
上記のように母相表面から硬質粒子を突出させるには、
従来方法によって製造された耐摩耗性部材表面の所定部
位を、例えば母相金属よりは硬く。To make hard particles protrude from the matrix surface as described above,
A predetermined portion of the surface of a wear-resistant member manufactured by a conventional method is made harder than, for example, the parent metal.
かつ硬質粒子よりは軟らかい砥粒でラップするか、ある
いは母相金属を化学的に溶出するなどの手段が利用され
る。In addition, methods such as lapping with soft abrasive grains rather than hard particles or chemically eluting the matrix metal are used.
ついで、実施例を参照しながらこの発明を説明する。 Next, the invention will be explained with reference to examples.
実施例1
まず、 Cr : 4 t4 、 Nb : 0.1
% + Mo : 0.1 % 。Example 1 First, Cr: 4t4, Nb: 0.1
% + Mo: 0.1%.
Mn : 0.54 、 に 0.2 % 、 Fe
:残り(以上重量%、以下特に断らない限り同様)の組
成を有する母相てり属中(=、粒度:3〜70μmを有
するMvsCa型炭化物及びMC型炭化物が合計で約3
0体積係分散している鉄基焼結材料(以下1人材という
)Cr : 4 ’11 W : 0.2 clb *
Mo : 0.1 tlp * V : 0.1%
* に 0.2 ’1 * Fe :残りの組成を有す
る母相金属中に粒度:1〜30μmを有するMosCa
、NLC及びMC型炭化物が合計約20体積係分散し
ている溶解高速度鋼(以下、B材という)およびCr
: 3% *Mo : 0.14 * W : 0.1
% +V : 0.1 % + Co : 5% 。Mn: 0.54, 0.2%, Fe
: The remaining (the above weight %, the same shall apply hereinafter unless otherwise specified) in the parent phase (=, particle size: 3 to 70 μm, MvsCa type carbide and MC type carbide having a total of about 3
0 volume coefficient dispersed iron-based sintered material (hereinafter referred to as 1 person) Cr: 4 '11 W: 0.2 clb *
Mo: 0.1 tlp*V: 0.1%
* to 0.2'1 *Fe: MosCa with particle size: 1 to 30 μm in parent phase metal with remaining composition
, a melting high-speed steel (hereinafter referred to as B material) in which NLC and MC type carbides are dispersed with a total volume coefficient of about 20, and Cr
: 3% *Mo: 0.14 *W: 0.1
% +V: 0.1% +Co: 5%.
’pi :O82% * に 0.2 % * Fe
:残り、の組成を有する母相金属中に、粒度:1〜20
μmを有するM、、C,、M、C及びMC型炭化物とT
iNが合計で約25体#を憾分散している鉄基焼結材料
(以下、C材という)を用意し、これらの材料からロッ
カアームチップを製造して、その各ロッカアームチップ
について、それぞれパッド面を研摩したままのものと、
その研摩後にアルミナパフ研摩を施したものとを用意し
た。'pi: O82% * to 0.2% * Fe
:Remaining, in the matrix metal having the composition, particle size: 1 to 20
M, , C, , M, C and MC type carbides with μm and T
An iron-based sintered material (hereinafter referred to as C material) in which approximately 25 iN particles are dispersed in total is prepared, rocker arm chips are manufactured from these materials, and each rocker arm chip has its own pad surface. The one that is still polished,
After polishing, alumina puff polishing was applied.
ついで、これらのロッカアームチップについて、母相表
面から突出した硬質粒子の突出量を表面粗さ計によって
測定するとともに、そのロッカアームチップを1400
ccのガソリンエンジン(;組み込み、そのエンジンで
、回転数: 1500r、p、m、eエンジン油:5A
E20.油温:55〜60℃。Next, for these rocker arm chips, the protrusion amount of hard particles protruding from the matrix surface was measured using a surface roughness meter, and the rocker arm chips were
cc gasoline engine (built-in, engine speed: 1500r, p, m, e engine oil: 5A
E20. Oil temperature: 55-60°C.
運転時間:200時間の条件において、上記各四ツカア
ームチップを摺動させて、そのチップと、その相手部材
となるチル鋳物製カムシャフトのカム部において生じた
摩耗量を表面粗さ計によって測定し、その結果を第1表
(;示した。Operating time: Under conditions of 200 hours, each of the four arm tips mentioned above was slid, and the amount of wear that occurred on the tip and the cam part of the chilled casting camshaft that was its counterpart was measured using a surface roughness meter. The results are shown in Table 1.
この第1表の結果から、研摩後にパフ研摩を施して母相
表面から硬質粒子を突出させた本発明のロッカアームチ
ップを使用した場合には、A−C材のいずれの材料にお
いても、研摩したままの比較チップに比べてそのチップ
およびカム部の摩耗量が共に少ないことがわかる。From the results in Table 1, it can be seen that when using the rocker arm tip of the present invention in which hard particles were protruded from the matrix surface by performing puff polishing after polishing, no It can be seen that the amount of wear on both the tip and the cam portion is smaller than that of the comparative tip.
第 1 表
実施例2
まず、Mo:0.1 % # Cr : 4 t6 a
Co : 5 Qk mFe:残り、の組成を有する
母相金属中に粒度:1〜40μmを有するMosCs及
びMsC型炭化炭化物計で約20体積係分散している鉄
基焼結材料の時効処理品(以下、D材という)およびB
i:o、2憾*Cu : 24 @ At:残り、の組
成を有する母相金属中成−粒度:1〜10μmを有する
Stが約23体積憾分散しているアルミニウム合金焼結
材料(以下、E材という)を用意し、これらの材料から
10×110X40の寸法を有する試験片を切り取って
研摩し、さら:二その後110X40の面の1つにグロ
ミアバ7研摩を施したものも製作した。Table 1 Example 2 First, Mo: 0.1% #Cr: 4 t6 a
An aged product of an iron-based sintered material in which MosCs and MsC type carbides having a particle size of 1 to 40 μm are dispersed in a matrix metal having a composition of Co: 5 Qk mFe: the remainder by a volumetric coefficient of about 20. Hereinafter referred to as D material) and B
An aluminum alloy sintered material (hereinafter referred to as Samples with dimensions of 10 x 110 x 40 were cut out from these materials and polished, and then one of the 110 x 40 sides was polished with Gromia AB7.
ついで、これらの試験片について、ブロックオンリング
による耐摩耗試験、すなわち、直径40調×厚さ15飼
の鋳鉄(Fe12)製円板からなる相手部材の外周に、
各試験片の1010X40の面を、D材で6麺、そして
E材では3KIIの荷重で押しつけ、潤滑油を両者の接
触面に供給しながら、上記円板を回転数: 2000
r、p、m、で15時間回転させて、各試験片の101
0X40面に上記円板の外周面を摺動させる試験、を施
し、その結果生じた各試験片および円板における摩耗量
を実施例1と同様1:調査した。この結果を次の第2表
に示す0
第 2 表
第2表の結果から、D材およびE材のいずれにおいても
、本発明試験片とその相手部材となった円板の摩耗量は
、硬質粒子を母相表面から突出させなかった比較試験片
とその相手部材となった円板の摩耗量よりもそれぞれ少
ないことがわかる。Next, these test pieces were subjected to a wear resistance test using a block-on-ring, that is, on the outer periphery of a mating member made of a cast iron (Fe12) disc with a diameter of 40 mm and a thickness of 15 mm.
The 1010 x 40 surface of each test piece was pressed with a load of 6 noodles for material D and 3KII for material E, and while supplying lubricating oil to the contact surfaces of both, the disk was rotated at a speed of 2000.
Rotate for 15 hours at r, p, m, and
A test was conducted in which the outer circumferential surface of the disk was slid on a 0x40 surface, and the amount of wear on each test piece and disk was investigated in the same manner as in Example 1. The results are shown in Table 2 below. From the results in Table 2, it can be seen that for both material D and material E, the amount of wear between the test piece of the present invention and the disk that was its counterpart was It can be seen that the amount of wear is smaller than that of the comparative test piece in which the particles did not protrude from the matrix surface and the disk that was its counterpart.
以上述べた説明から明らかなように、この発明によると
、棹々の耐摩耗性部材の凝着摩耗が著しく軽減されるの
で、従来その凝着摩耗によって耐摩耗性部材とその相手
部材との間に起きていた焼付を広範囲に防止できるとと
もに、これら部材の寿命を延ばすことができるという産
業上有益な効果を得ることができる。As is clear from the above description, according to the present invention, the adhesive wear of the wear-resistant member is significantly reduced. It is possible to prevent a wide range of seizures that have occurred in the past, and to prolong the life of these parts, which is an industrially beneficial effect.
Claims (1)
きている耐摩耗性部材において、その部材表面が、前記
金属母相表面から0.2〜5μm突出している硬質粒子
を有することを特徴とする、耐焼付性のすぐれた前記耐
摩耗性部材。In a wear-resistant member made of a wear-resistant material in which hard particles are dispersed in a metal matrix, the surface of the member has hard particles that protrude by 0.2 to 5 μm from the metal matrix surface. The above-mentioned wear-resistant member having excellent seizure resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4067085A JPS61201788A (en) | 1985-03-01 | 1985-03-01 | Wear resistant member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4067085A JPS61201788A (en) | 1985-03-01 | 1985-03-01 | Wear resistant member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61201788A true JPS61201788A (en) | 1986-09-06 |
Family
ID=12586959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4067085A Pending JPS61201788A (en) | 1985-03-01 | 1985-03-01 | Wear resistant member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61201788A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149765A (en) * | 2010-12-28 | 2012-08-09 | Nippon Piston Ring Co Ltd | Piston ring and method of manufacturing the same |
JP2013147307A (en) * | 2012-01-18 | 2013-08-01 | Seiko Epson Corp | Core pipe retaining device and image recording apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147155A (en) * | 1981-03-09 | 1982-09-10 | Sony Corp | Sliding member |
JPS601384A (en) * | 1983-06-17 | 1985-01-07 | Taiho Kogyo Co Ltd | Swash plate type compressor |
-
1985
- 1985-03-01 JP JP4067085A patent/JPS61201788A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147155A (en) * | 1981-03-09 | 1982-09-10 | Sony Corp | Sliding member |
JPS601384A (en) * | 1983-06-17 | 1985-01-07 | Taiho Kogyo Co Ltd | Swash plate type compressor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149765A (en) * | 2010-12-28 | 2012-08-09 | Nippon Piston Ring Co Ltd | Piston ring and method of manufacturing the same |
JP2013147307A (en) * | 2012-01-18 | 2013-08-01 | Seiko Epson Corp | Core pipe retaining device and image recording apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3298634B2 (en) | Sliding material | |
JP3327663B2 (en) | High temperature wear resistant sintered alloy | |
JP2005248234A (en) | Iron-based sintered alloy for valve seat | |
US4079720A (en) | Relative combination of a cylinder and a seal ring for internal combustion engines | |
US20030097904A1 (en) | Sintered alloy for valve seat having excellent wear resistance and method for producing the same | |
CN107008893B (en) | Manufacturing method, sintered alloy green compact and the sintered alloy of sintered alloy | |
JPS61144469A (en) | Sliding surface opposed structure | |
EP2915965A1 (en) | Engine valve | |
JPS61177400A (en) | Wear resistant sliding member | |
JPS61201788A (en) | Wear resistant member | |
JPS5864333A (en) | Aluminum alloy bearing | |
JP3370785B2 (en) | Copper-based sintered sliding material | |
PL81268B1 (en) | ||
JPH0480990B2 (en) | ||
US6335106B1 (en) | Slide bearing material | |
JP2637500B2 (en) | Sliding member | |
JPH0572456B2 (en) | ||
JPH0657387A (en) | Iron-base sintered alloy for valve seat | |
JPS60159154A (en) | Wear resistant sintered sliding material | |
JPH0351577A (en) | Oil splashing ring | |
JPH0258345B2 (en) | ||
JPS59170235A (en) | Wear resistant self-fluxing alloy for surface hardening | |
JPS62282150A (en) | Combination of piston-ring and cylinder | |
JPS5923865A (en) | Sliding member | |
JPH0337478A (en) | Rubbing member |