JPS61144469A - Sliding surface opposed structure - Google Patents

Sliding surface opposed structure

Info

Publication number
JPS61144469A
JPS61144469A JP26518784A JP26518784A JPS61144469A JP S61144469 A JPS61144469 A JP S61144469A JP 26518784 A JP26518784 A JP 26518784A JP 26518784 A JP26518784 A JP 26518784A JP S61144469 A JPS61144469 A JP S61144469A
Authority
JP
Japan
Prior art keywords
sliding surface
powder
cast iron
plateau
pair structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26518784A
Other languages
Japanese (ja)
Other versions
JPH0517994B2 (en
Inventor
Akira Harayama
原山 章
Kazunori Mizutani
水谷 和憲
Mikio Uchiyama
幹夫 内山
Masateru Yagi
八木 正輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Izumi Automotive Industry Co
TPR Co Ltd
Original Assignee
Izumi Automotive Industry Co
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izumi Automotive Industry Co, Teikoku Piston Ring Co Ltd filed Critical Izumi Automotive Industry Co
Priority to JP26518784A priority Critical patent/JPS61144469A/en
Publication of JPS61144469A publication Critical patent/JPS61144469A/en
Publication of JPH0517994B2 publication Critical patent/JPH0517994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Abstract

PURPOSE:To improve wear-resistance and scuffing-resisting property by setting a sliding surface where hard particles are uniformly dispersed and buried against a sliding surface to which mixed powder composed of high chrome cast iron powder, Mo powder and so on is plasma-sprayed. CONSTITUTION:Hard particles 5 such as fine Sic particles or the like are uniformly dispersed and buried in the interior of an oil sump groove portion 3 of a specified pattern, and the surface of a plateau portion 4 surrounded by the groove portion on one surface formed by iron steel or cast iron. Mixed powder formed by mixing mixed powder of high chrome cast iron of a specified composition and Fe-C-Cr alloy and Mo powder at a specified ratio or mixed powder further mixed with self-welding alloy powder is plasma sprayed to the other sliding surface. It is important to minimize the average particle size of hard particles, and to specify the buried-in area rate of hard particles, the occupied area rate of the plateau portion and the maximum surface roughness of the plateau portion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐摩耗性、耐スカッフィング性が要求される相
対的摺動部材の摺動面対構造、特に内燃機関、コンプレ
ッサー或いはポンプ等に用いられるシリンダ(シリンダ
スリーブ、シリンダライナ及びシリンダブロック等を含
む、以下同じ)とピストンリングの様な機能部品の摺動
面が対向して構成される摺動面対構造に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to sliding surface pair structures of relative sliding members that require wear resistance and scuffing resistance, particularly for internal combustion engines, compressors, pumps, etc. The present invention relates to a sliding surface pair structure in which the sliding surfaces of a functional component such as a cylinder (including a cylinder sleeve, a cylinder liner, a cylinder block, etc., the same applies hereinafter) and a piston ring face each other.

(従来の技術) 内燃機関は近年とみに高性能化されるとともに一方では
公害対策や省エネルギ一対策のために、ピストンリング
やシリンダなど°機能部品に対する負荷は益々増大し要
求品質もより高度なものとなっている。即ちこれらの機
能部品に対しては、高温高負荷の条件下における潤滑油
消費量(LOC)の低減に耐え得る耐摩耗性、耐スカッ
フィング性と同時に軽量化や摩擦損失の低減等が強く希
求され、この要請に対応する摺動面間の性状、換言すれ
ば相対的摺動部材のより望ましい組合せ或いは相性のよ
い摺動面対構造が追究されている。
(Prior art) Internal combustion engines have become more efficient in recent years, and at the same time, in order to prevent pollution and save energy, the load on functional parts such as piston rings and cylinders is increasing, and the required quality is becoming more sophisticated. It becomes. In other words, these functional parts are strongly required to have wear resistance and scuffing resistance that can withstand a reduction in lubricating oil consumption (LOC) under conditions of high temperature and high load, as well as weight reduction and reduction of friction loss. In order to meet this requirement, properties between sliding surfaces, in other words, more desirable combinations of relative sliding members or compatible sliding surface pair structures are being pursued.

前記要請に対応する一方のシリンダライナ摺動面の耐摩
耗処理方法が特開昭52−138797号公報に開示さ
れている。この方法によると、SiCを含むスラリー又
はペーストを用いてラフピング工具によりシリンダ等の
摺動面に螺旋溝を形成するとともにSiC粒子を埋め込
む工程、前工程よりも細かい粒度のSiC粒子によって
各溝の間のピークを削り取り、微粒子の鋭い角部を除去
するとともに突出している微粒子を押し込む工程、更に
必要があれば前工程よりも微粒子を含ませたホーニング
シューで仕上げラッピングを施す工程よりなる耐摩耗処
理が行われる。この処理方法は、鋳鉄又は鋼製のシリン
ダ或いはシリンダライナーに一部実用化され、シリンダ
自身の耐摩耗性において優れた性能を発揮し、又コスト
面においても特殊耐摩耗鋳鉄或いはクロムめっきシリン
ダに較べ大幅な低減を可能とするとともに鋼製薄肉シリ
ンダに適用した場合には軽量化及び既製エンジンブロッ
ク使用範囲でボアアップを可能にすることから夫れなり
の評価を受けているものである。
JP-A-52-138797 discloses a wear-resistant treatment method for one cylinder liner sliding surface that meets the above requirements. According to this method, a slurry or paste containing SiC is used to form spiral grooves on the sliding surface of a cylinder etc. using a roughing tool, and SiC particles are embedded in the grooves. Wear-resistant treatment consists of a process of scraping off the peaks of the particles, removing sharp corners of the particles, pushing in the protruding particles, and, if necessary, finishing lapping with a honing shoe containing finer particles than in the previous process. It will be done. This treatment method has been put to practical use in some cylinders or cylinder liners made of cast iron or steel, and it shows excellent performance in terms of the wear resistance of the cylinder itself, and is also cost-effective compared to special wear-resistant cast iron or chrome-plated cylinders. It is highly acclaimed because it enables a large reduction in weight, and when applied to thin-walled steel cylinders, makes it possible to reduce weight and increase the bore within the range of use of ready-made engine blocks.

(発明が解決しようとする問題点) 然しなから、この処理を施したシリンダの場合にはシリ
ンダ自身の耐摩耗性において抜群の性能を示すものの一
方では相手ピストンリングを甚だしく摩耗させてしまう
と云う欠陥があり、近時の高性能機関の苛酷な運転条件
の下では自ら適用範囲に制約を受けざるを得ないのが現
状である。
(Problem to be solved by the invention) However, although cylinders that have undergone this treatment exhibit outstanding performance in terms of wear resistance of the cylinder itself, it also causes significant wear on the mating piston ring. Due to its flaws, the current situation is that it has no choice but to be limited in its applicability under the harsh operating conditions of modern high-performance engines.

従って、前記処理を施したシリンダの適用範囲を拡大す
るため°には前述の要求特性を充足する摺動面対構造、
即ち、相性のよいピストンリングの開発及びシリンダ自
体の改良が要望される所以であるが、現在、これに対応
する望ましい組合せは見出されていない。
Therefore, in order to expand the range of application of the cylinder subjected to the above-mentioned treatment, it is necessary to develop a sliding surface pair structure that satisfies the above-mentioned required characteristics.
That is, there is a desire to develop piston rings that are compatible with each other and to improve the cylinder itself, but at present no desirable combination has been found.

(問題点を解決するための手段および作用)本発明は、
前述の要求に対応し、かつ在来の問題点を解消して前記
SiC粒子を埋設した摺動面の利点を十二分に活用する
摺動面対構造、就中、微細なSiC粒子を特定パターン
の油溜り溝部の内部及び該溝部によって囲まれたプラト
ー部の表面に分散埋設した鉄鋼又は鋳鉄からなる改良さ
れた摺動面(A)に特定組成の高クロム鋳鉄とFe −
C−Cr合金との混合粉末とMo粉末とを特定割合で混
合した混合粉末又は更に自溶合金粉末を混合した混合粉
末をプラズマ溶射した摺動面(B)を組合わせて構成さ
れる摺動面対構造を提供しようとするものである。
(Means and effects for solving the problems) The present invention has the following features:
A sliding surface pair structure that satisfies the above-mentioned requirements, eliminates the conventional problems, and fully utilizes the advantages of the sliding surface embedded with SiC particles, and in particular, specifies fine SiC particles. High chromium cast iron of a specific composition and Fe-
A sliding surface made of a combination of sliding surfaces (B) that have been plasma sprayed with a mixed powder made by mixing a mixed powder with a C-Cr alloy and Mo powder in a specific ratio, or a mixed powder made by further mixing a self-fluxing alloy powder. It attempts to provide a face-to-face structure.

本発明の第1の特徴は(以下第1発明という)鉄鋼又は
鋳鉄からなる母材に配列された特定パターンの油溜り溝
部と面積率で3〜12%該溝部の内部及びプラトー部に
均一に分散埋設された平均粒径5〜20μmの硬質粒子
とを有しかつ上面が平滑化された摺動面(A)と、粒度
が74μmより粗粒でない高クロム鋳鉄粉末とFe−C
−Cr合金粉末とを混合して組成を重量比でC3,0〜
7.0%、Cr25〜55%を含有し残部が実質的にF
eとした混合粉末65〜95重量%と更に粒度が74μ
mより粗粒でないMo粉末5〜35重量%とを混合した
混合粉末をプラズマ溶射してなる溶射層を有する摺動面
(B)とから構成される摺動面対構造にある。
The first feature of the present invention (hereinafter referred to as the first invention) is that oil sump grooves in a specific pattern are arranged in a base material made of steel or cast iron, and the area ratio of 3 to 12% is uniformly distributed inside the grooves and on the plateau. A sliding surface (A) having dispersed and buried hard particles with an average particle size of 5 to 20 μm and a smoothed upper surface, high chromium cast iron powder with a particle size not coarser than 74 μm, and Fe-C.
- Mix with Cr alloy powder to change the composition by weight from C3.0 to
7.0%, Cr25-55%, and the remainder is substantially F.
65 to 95% by weight of mixed powder as e and further particle size of 74μ
It has a sliding surface pair structure consisting of a sliding surface (B) having a thermal sprayed layer formed by plasma spraying a mixed powder mixed with 5 to 35% by weight of Mo powder whose particles are not coarser than m.

本発明の第2の特徴は(以下第2発明という)鉄鋼又は
鋳鉄からなる母材に配列された特定パターンの油溜り溝
部と面積率で3〜12%該溝部の内部及びプラトー部に
均一に分散埋設された平均粒径5〜20μmの硬質粒子
とを有し、かつ上面が平滑化された摺動面(A)と、粒
度が74μmより粗粒でない高クロム鋳鉄粉末とFe−
C−Cr合金粉末とを混合して組成を重量比でC3,0
〜7.0%、Cr 25〜55%を含有し残部が実質的
にFeとした混合粉末65〜85重量%、粒度が74μ
mより粗粒でないMo粉末5〜25重量%及び粒度が7
4μmより粗粒でない自溶合金粉末5〜25重量%とを
混合した混合粉末をプラズマ溶射してなる溶射層を有す
る摺動面(B)とから構成される摺動面対構造にある。
The second feature of the present invention (hereinafter referred to as the second invention) is that oil sump grooves of a specific pattern are arranged in a base material made of steel or cast iron, and the area ratio of 3 to 12% is uniformly distributed inside the grooves and on the plateau. A sliding surface (A) having hard particles with an average particle diameter of 5 to 20 μm dispersed and buried therein and having a smoothed upper surface, high chromium cast iron powder with a grain size not coarser than 74 μm, and Fe-
By mixing with C-Cr alloy powder, the composition becomes C3,0 by weight ratio.
~7.0%, 65-85% by weight mixed powder containing 25-55% Cr and the balance being substantially Fe, particle size 74μ
5 to 25% by weight of Mo powder that is not coarser than m and the particle size is 7
It has a sliding surface pair structure comprising a sliding surface (B) having a sprayed layer formed by plasma spraying a mixed powder mixed with 5 to 25% by weight of a self-fluxing alloy powder having grains not coarser than 4 μm.

作用 而して、上記第1発明及び第2発明は、摺動面(A)自
身の耐摩耗性を損することなく充分その特性を発揮させ
るように摺動面(A)を構成するとともに、相手材(例
えばピストンリング)としての摺動面(B)の摩耗を大
幅に低減させるように摺動面(B)が構成され、これら
の構成を組合わせることによって双方の摺動面の摩耗特
性をバランスさせることが可能となりかつ内燃機関等の
潤滑油消費量°の低減、ブローパイやスカッフィングの
防止ひいては機関性能の維持及び寿命延長を図ることが
出来るから摺動面(A)を有する摺動部材(例えばシリ
ンダ)の適用範囲を拡大し得るのである。
As a result, the first and second inventions configure the sliding surface (A) so as to fully exhibit its characteristics without impairing the wear resistance of the sliding surface (A) itself. The sliding surface (B) is configured to significantly reduce the wear of the sliding surface (B) as a material (for example, a piston ring), and by combining these configurations, the wear characteristics of both sliding surfaces can be improved. A sliding member having a sliding surface (A) is used because it is possible to achieve balance, reduce lubricating oil consumption in internal combustion engines, prevent blow-pipe and scuffing, maintain engine performance, and extend the life of the engine. For example, the range of application of cylinders can be expanded.

発W畳1ケ匪戊 以下、本発明の具体的構成について述べる。第1図は摺
動面(A)を構成するシリンダライナの縦断面図であっ
て(1)はシリンダライナ、(2)はシリンダライナの
内周面である摺動面、第2図は本発明を適用したシリン
ダライナ(1)の摺動面(A)を示す第1図のA部の拡
大断面図であって(3)はその内周面の略々全周に亘っ
て施された連続及び不連続の螺旋状交叉溝からなる油溜
り溝部、(4)は核油溜り溝部(3)によって囲まれた
平滑な摺動面部(以下プラトー部と云う)、(5)は核
油溜り溝部の内部及び前記プラトー部に埋設された硬質
粒子、第3図(a)は硬質粒子(5)が該油溜り溝部の
内部及びプラトー部に埋設された直後のシリンダライナ
摺動面(A)の表面状況を模型的に示す一部拡大断面図
、第3図(b)は仕上加工後の第3図(a)に対応する
一部拡大断面図、第4図は、触針をシリンダライナ内周
面の軸方向に移動させて得られる断面曲線又はカットオ
フ値2.5 m / m以上の粗らさ曲線(6)(JI
S BO601−1970)の一部を説明する図面であ
り、ここで断面曲線(6)の平均線に平行な任意の直線
即ち基線(7)がある一定の基準となる長さしく例えば
2.5m/m)の間で該曲線(6)の実体部を切断する
長さを1.、Il、、l、、β4,15とすると、該曲
線(6)の基線(7)におけるプラトー率(プラトー部
の占有比率)は次式によって求められる。
The specific configuration of the present invention will be described below. Fig. 1 is a vertical cross-sectional view of the cylinder liner that constitutes the sliding surface (A), in which (1) is the cylinder liner, (2) is the sliding surface which is the inner peripheral surface of the cylinder liner, and Fig. 2 is the main part. Fig. 1 is an enlarged cross-sectional view of section A in Fig. 1 showing the sliding surface (A) of the cylinder liner (1) to which the invention is applied; (4) is a smooth sliding surface surrounded by the core oil reservoir groove (3) (hereinafter referred to as the plateau portion); (5) is the core oil reservoir. Hard particles buried inside the groove and in the plateau. FIG. 3(a) shows the cylinder liner sliding surface (A) immediately after the hard particles (5) are buried inside the oil sump groove and in the plateau. Fig. 3(b) is a partially enlarged sectional view corresponding to Fig. 3(a) after finishing processing, and Fig. 4 shows the stylus attached to the cylinder liner. A cross-sectional curve obtained by moving the inner circumferential surface in the axial direction or a roughness curve with a cutoff value of 2.5 m/m or more (6) (JI
S BO601-1970) is a drawing illustrating a part of SBO601-1970), in which an arbitrary straight line parallel to the average line of the cross-sectional curve (6), that is, a base line (7) is a certain standard length, for example, 2.5 m. /m), the length of cutting the substantial part of the curve (6) is 1. , Il, , l, , β4,15, the plateau rate (occupancy ratio of the plateau portion) at the base line (7) of the curve (6) is determined by the following equation.

し xioo  <%) 而して本発明に係る一方の摺動面(A)を有するシリン
ダライナを得るためには、StC等の硬質粒子を含むス
ラリー又はペースト状物を混入した研摩液を用いラフピ
ング工具或いはホーニングシューにより該シリンダライ
ナ(1)の内周面を回転及び往復運動させることによっ
て得られる。即ち、この加工により硬質粒子(5)は工
具の運動により特定されるパターン、例えば交叉する螺
旋軌道に沿って菱形模様を形成するように油溜り溝部(
3)を刻み込むと同時に核油溜り溝部(3)の内部及び
プラトー部(4)に埋設され、又同時に核油溜り溝部に
よって囲まれた略菱形のプラトー部(4)が形成される
(第2図〜第3図(a)(b)参照)。この場合、初期
工程で比較的低い工具圧力によって油溜り溝部(3)の
みを形成し、次工程で圧力を増し、油溜り溝部(3)の
深さ及び幅を増大させると同時に硬質粒子を核油溜り溝
部(3)の内部及びプラトー部(4)に埋込むようにす
る公知の手法を用いることも出来る。上記のように2工
程の操作を用いるとき、第2工程では善導の間のシリン
ダライナ内周面の凸起部が削り取られ硬質粒子の鋭いエ
ッチが除去されると共に突出している硬質粒子が更に溝
の内部及びプラトー部に押し込まれる。前記何れの手法
の場合においてもプラトー部(4)及び硬質微粒子(5
)により構成される摺動面(A)の上面が平滑化された
シリンダライナ(第3図(b))を得るために前記工程
の後シリンダライナ内周面は更に細かい粒度の硬質粒子
を含むスラリー等を混入した研摩液を用いてラッピング
又はホーニング仕上げするか、或いは細かい粒度の砥石
をもったホーニングシューによって研摩仕上げされてそ
れ以前の工程の凹凸が取除かれる。その後洗滌及び脱脂
される。ここで核油溜り溝部(3)の深さ、幅、硬質粒
子(5)の埋込み面積率、プラトー部(4)の占有面積
率等は母材の材質、硬質粒子のサイズ、工具圧力、回転
数、加工速度及び時間等の因子によって支配される。こ
れらの因子の選定については後述する。
<%) Therefore, in order to obtain a cylinder liner having one sliding surface (A) according to the present invention, roughing is performed using a polishing liquid mixed with a slurry or paste containing hard particles such as StC. It is obtained by rotating and reciprocating the inner peripheral surface of the cylinder liner (1) using a tool or honing shoe. That is, by this processing, the hard particles (5) are formed into oil sump grooves (
3) is buried in the interior of the core oil reservoir groove (3) and the plateau (4), and at the same time, a substantially rhombic plateau (4) surrounded by the core oil reservoir groove is formed (second (See Figures 3(a) and 3(b)). In this case, only the oil sump groove (3) is formed using a relatively low tool pressure in the initial process, and the pressure is increased in the next process to increase the depth and width of the oil sump groove (3) and at the same time nucleate the hard particles. It is also possible to use a known method of embedding it inside the oil sump groove (3) and the plateau (4). When a two-step operation is used as described above, in the second step, the protrusions on the inner circumferential surface of the cylinder liner between the leading edges are scraped off, the sharp edges of the hard particles are removed, and the protruding hard particles are further grooved. is pushed into the interior and plateau area. In any of the above methods, the plateau part (4) and the hard fine particles (5
) In order to obtain a cylinder liner (FIG. 3(b)) in which the upper surface of the sliding surface (A) constituted by The surface is finished by lapping or honing using a polishing liquid mixed with slurry or the like, or it is polished by a honing shoe with a fine-grained grindstone to remove the unevenness from the previous process. It is then washed and degreased. Here, the depth and width of the core oil reservoir groove (3), the embedded area ratio of the hard particles (5), the occupied area ratio of the plateau part (4), etc. are determined by the material of the base material, the size of the hard particles, the tool pressure, and the rotation. It is governed by factors such as number, processing speed and time. The selection of these factors will be described later.

本発明者等は公知の手法に従って作成したシリンダライ
ナがそれ自身の耐摩耗性、耐スカッフィング性に優れて
いるにも拘わらず相手ピストンリングの摩耗を促進する
点に着目し鋭意その原因を追究した結果、摺動面(A)
に分散埋設されるSiC等の硬質粒子の平均粒径を更に
微細化すること、硬質粒子の埋込み面積率、プラトー部
の占有面積率(プラトー率)及びプラトー部の最大表面
粗らさ等を特定することが摺動面(B)との関係におい
て特に重要であることを発見し第1及び第2発明の共通
した特徴である一方の摺動面(A)の構成を創出したも
のである。
The inventors of the present invention focused on the fact that the cylinder liner produced according to a known method accelerates the wear of the mating piston ring despite its own excellent wear resistance and scuffing resistance, and diligently investigated the cause of this. Result, sliding surface (A)
further refine the average particle size of hard particles such as SiC dispersed and buried in The inventors discovered that this is particularly important in relation to the sliding surface (B), and created a structure for one of the sliding surfaces (A) that is a common feature of the first and second inventions.

本発明に係る一方の摺動面(A)において硬質粒子とし
てはSiC+Alz03.Crz03.Si3N4より
なる群から選ばれた単一粒子を用いることが出来るが、
母材に対して強固に保持されるように硬質粒子が埋込ま
れる性質、すなわち埋込み性、加工中に硬質粒子が破砕
されない性質すなわち耐破砕性等からSiC粒子を用い
ることが望ましい。SiC等の硬質粒子はなるべく鋭い
角部をもったものが埋込効率(すなわち加工圧力に対す
る埋込深さ比率)の面で好ましく、その粒子サイズは埋
込むべき母材の材質、工具圧力等にも関係するがシリン
ダライナ(摺動面A)の耐摩耗性、耐スカッフィング性
を損うことなく、しかも相手ピストンリング(摺動面B
)の摩耗を低減するためには埋め込まれた後の平均粒径
を5〜20μmに限定することが必要である。即ち、平
均粒径が5μm未満ではシリンダライナ自身の耐摩耗性
に不足を来たし20μmを越える硬質粒子を埋込むとそ
の埋込み面積率(3〜12%)を維持しつつ分散性(密
度)に欠け、相対的に軟質である母材が漸次摩耗すると
、硬質粒子の局部的面圧が高(なってスカッフィングを
誘発し相手ピストンリングの摩耗を促進するおそれがあ
る。より好ましい範囲は7〜15μmである。従って硬
質粒子は適正粒度で微細かつ均一にシリンダライナ摺動
面に対して埋込まれていることが重要である。
The hard particles on one sliding surface (A) according to the present invention are SiC+Alz03. Crz03. Although a single particle selected from the group consisting of Si3N4 can be used,
It is desirable to use SiC particles because of the property that the hard particles are embedded so as to be firmly held in the base material, that is, the embeddability, and the property that the hard particles are not crushed during processing, that is, the crush resistance. It is preferable for hard particles such as SiC to have sharp corners as much as possible in terms of embedding efficiency (i.e., the ratio of embedding depth to processing pressure), and the particle size depends on the material of the base material to be embedded, tool pressure, etc. This is related to the wear resistance and scuffing resistance of the cylinder liner (sliding surface A).
), it is necessary to limit the average particle size after embedding to 5 to 20 μm. That is, if the average particle diameter is less than 5 μm, the cylinder liner itself will lack wear resistance, and if hard particles exceeding 20 μm are embedded, dispersibility (density) will be lacking while maintaining the embedded area ratio (3 to 12%). When the relatively soft base material gradually wears out, the local surface pressure of the hard particles becomes high (which may induce scuffing and accelerate wear of the mating piston ring. The more preferable range is 7 to 15 μm. Therefore, it is important that the hard particles have an appropriate particle size and are embedded finely and uniformly into the cylinder liner sliding surface.

硬質微粒子のシリンダライナ摺動面に対する埋込み面積
率の限定理由は3%未満ではシリンダライナ自身の耐摩
耗性、耐スカッフィング性が不充分であり、12%を越
えると相手ピストンリングの摩耗を増大させ摺動面対構
造としてバランスされた摩耗が実現されないので3〜1
2%の範囲とする。より好ましい範囲は5〜10%であ
る。螺旋状交叉溝に囲まれたプラトー部の占有面積率(
プラトー率)については、プラトー率1.0%の基線(
8)から2μm(h)の深さにおいて75〜95%とす
ることが好ましい。その限定理由は、プラトー率75%
未満では必然的に油溜り溝部が増加してり、O,C上昇
を来たすので好ましくなく、一方、95%を越えると逆
に油溜り溝部が減少してスカッフィングの傾向が増大す
るからである。より好ましい範囲は80〜90%である
。又、プラトー率をプラトー率1.0%の基線(8)か
ら2μmとしたのはエンジンの馴らし運転初期のシリン
ダ摺動面の保油量が適正化されり、O,Cを必要最小限
に抑制し得るとともにプラトー率75〜95%(受圧面
積75〜95%)に至るに要する摩耗量は約2μm以下
となるから初期馴染み運転に要する時間も短縮し得るか
らである(第5図参照)。シリンダのプラトー部の最大
表面粗らさはエンジンの馴らし運転初期における表面性
状として重要であり、それが3μm未満では表面の保油
性に欠は初期スカッフィング発生のおそれがあり、7μ
mを越えると局部面圧が上昇してこれ又初期スカッフィ
ング発生の原因となるので3〜7μmの範囲に限定する
。好ましい範囲は3〜5μmである。又、母材の材質と
してはSTKM、STK。
The reason for limiting the area ratio of hard particles embedded in the sliding surface of the cylinder liner is that if it is less than 3%, the wear resistance and scuffing resistance of the cylinder liner itself will be insufficient, and if it exceeds 12%, the wear of the mating piston ring will increase. 3 to 1 because balanced wear is not achieved between the sliding surface and the structure.
The range shall be 2%. A more preferable range is 5 to 10%. Occupancy area ratio of the plateau part surrounded by the spiral cross groove (
Regarding the plateau rate), the baseline with a plateau rate of 1.0% (
It is preferable to set it as 75-95% at the depth of 2 micrometers (h) from 8). The reason for this limitation is that the plateau rate is 75%.
If it is less than 95%, the number of oil sump grooves will inevitably increase, resulting in an increase in O and C, which is undesirable.On the other hand, if it exceeds 95%, the number of oil sump grooves will decrease, increasing the tendency for scuffing. A more preferable range is 80 to 90%. In addition, the reason why the plateau rate was set to 2 μm from the base line (8) with a plateau rate of 1.0% was to optimize the amount of oil retained on the cylinder sliding surface at the initial stage of engine break-in, and to minimize O and C. This is because the amount of wear required to reach a plateau rate of 75 to 95% (pressure receiving area of 75 to 95%) is approximately 2 μm or less, and the time required for initial break-in operation can also be shortened (see Figure 5). . The maximum surface roughness of the plateau portion of the cylinder is important as a surface quality at the initial stage of engine running-in; if it is less than 3 μm, the surface will lack oil retention and may cause initial scuffing;
If it exceeds m, the local surface pressure will increase and this will also cause initial scuffing, so it is limited to a range of 3 to 7 μm. The preferred range is 3 to 5 μm. In addition, the base material is STKM or STK.

STC,5O5−TK、5Cr−TK、SCM−TK等
の鉄鋼或いはあらゆる種類の鋳鉄を用いることが出来る
Steel such as STC, 5O5-TK, 5Cr-TK, SCM-TK, or any type of cast iron can be used.

そして前記要件を満足する一方の摺動面(A)を得るに
は、通常、第1工程(溝入れ及びSiC’Rk粒子の′
埋込み)において、(120〜280メツシユの平均粒
径)の5iC微粒子を含むスラリーを用いシリンダ摺動
面をホーニングシュー圧力0.5〜2.0 kglon
” 、回転数×ストロークx時間:50〜25Orpm
/min X 20〜60回/1Ilin×1〜3分の
条件で、又第2工程(仕上)において(280〜800
メツシユの平均粒径)のSiC微粒子を含むスラリーを
用いホーニングシュー圧力0.5〜2.0 kg/cm
”、回転数xストロークx時間:50〜250rpm 
/win X 20〜60回/l1in×1〜3分の条
件でシリンダ摺動面を仕上ホーニングすればよい。
In order to obtain one sliding surface (A) that satisfies the above requirements, the first step (grooving and
In the embedding process, the cylinder sliding surface was honed using a slurry containing 5iC particles with an average particle size of 120 to 280 mesh at a honing shoe pressure of 0.5 to 2.0 kglon.
”, rotation speed x stroke x time: 50~25Orpm
/min x 20-60 times/1 line x 1-3 minutes, and in the second step (finishing)
A honing shoe pressure of 0.5 to 2.0 kg/cm was used using a slurry containing SiC fine particles with an average particle diameter of mesh.
”, rotation speed x stroke x time: 50 to 250 rpm
The cylinder sliding surface may be finish honed under the conditions of /win x 20 to 60 times/l1in x 1 to 3 minutes.

斯くして、第1工程の後では第3図(a)、第2工程の
後では第3図(b)に示したような表面状態が得られる
が第1工程の加工条件及びシリンダ母材の材質殊にその
均質性の如何によっては、第3図(C)に示すようにS
iC微粒子がシリンダ母材中に埋没した表面状態を呈す
る場合がある。
In this way, the surface state as shown in FIG. 3(a) after the first step and as shown in FIG. 3(b) after the second step is obtained, but the processing conditions of the first step and the cylinder base material Depending on the material, especially its homogeneity, S
In some cases, the iC particles exhibit a surface state in which they are buried in the cylinder base material.

このような表面状態の場合、シリンダの第1次摺動面は
比較的軟質かつ低融点の母材によってその殆んどが占め
られてしまうので境界潤滑等の苛酷な条件下ではスカッ
フィングを誘発するおそれがあるが、第3図(b)図示
の表面状態でかつSiC微粒子の全埋込み面積率3〜1
2%に対し、30%以下であれば第3図(C)の表面状
態が混在しても実害はない。
In the case of such a surface condition, most of the primary sliding surface of the cylinder is occupied by the relatively soft, low-melting point base material, which may induce scuffing under severe conditions such as boundary lubrication. Although there is a possibility that the surface state shown in FIG. 3(b) and the total embedded area ratio of SiC fine particles are 3 to 1
Compared to 2%, if it is 30% or less, there is no actual harm even if the surface condition shown in FIG. 3(C) is present.

次いで、本発明に係る他方の摺動面(B)について述べ
る。
Next, the other sliding surface (B) according to the present invention will be described.

摺動面(B)の共通した特徴は高クロム鋳鉄粉末とFe
−c−Cr合金粉末との混合粉末と更にMo粉末とを混
合した混合粉末をプラズマ溶射することにあり、その意
義は高クロム鋳鉄粉末Fe−C−Cr合金粉末及びMo
粉末とが夫々相互補完的作用によって、該摺動面(B)
の摺動面(A)に対する相性を飛躍的に向上させ、双方
の摩耗を適度にバランスさせると共に耐スカッフィング
性を改善し、以って内燃機関の耐久性信軌性をより高度
化するところにある。
The common features of the sliding surface (B) are high chromium cast iron powder and Fe.
- Plasma spraying a mixed powder of a mixed powder with a c-Cr alloy powder and further a mixture of Mo powder.
The sliding surface (B) is
Dramatically improves compatibility with the sliding surface (A), moderately balances wear on both sides, and improves scuffing resistance, thereby further enhancing the durability and reliability of internal combustion engines. be.

高クロム鋳鉄とは「鉄鋼材料便覧、昭和42年6月30
日発行」第865頁、表22.26及び表の下の説明に
示されている成分を基本とし、Cr含有量に富み、クロ
ム炭化物が鋳鉄基地中に均一に分散されている性質が摺
動部材(B)の成分として利用される。すなわち高クロ
ム鋳鉄溶射層は安定した炭化物形態として微細に分散さ
せ、耐熱、耐摩耗性に優れると共に耐食性殊に稀硫酸腐
食に対する抵抗性も良好であるので、斉硬度のクロム炭
化物粉末や高炭素のFe−Cr合金粉末を単独で溶射す
る場合よりも高クロム鋳鉄溶射成分は相手材(シリンダ
)の摩耗を促進することはない。尚、高クロム鋳鉄は鋳
造状態で白鋳鉄組織を呈し、搗砕性に優れるので粉末の
製造が容易である他、炭化物、Fe−C−Cr合金粉末
等と比較して安価に入手できる点でも混合粉末としてプ
ラズマ溶射する利点が多い。又、摺動面(B)に適用す
る高クロム鋳鉄粉末としては搗砕粉末に限らずアトマイ
ズ粉末を使用してもよい。然し高クロム鋳鉄の場合には
鋳鉄溶解等の点からCr含有量に自ら限度があり、その
単独溶射ではピストンリングの摩耗を増大させる傾向が
ある。
What is high chromium cast iron? “Steel Materials Handbook,” June 30, 1962.
Based on the ingredients shown in Table 22.26 and the explanation below the table on page 865 of "Japanese Edition", the sliding property is rich in Cr content and has chromium carbide uniformly dispersed in the cast iron matrix. It is used as a component of member (B). In other words, the high chromium cast iron thermal spray layer is finely dispersed in the form of stable carbides, and has excellent heat resistance and wear resistance, as well as corrosion resistance, especially resistance to dilute sulfuric acid corrosion. The high chromium cast iron thermal spraying component does not accelerate the wear of the mating material (cylinder) as compared to when Fe--Cr alloy powder is thermally sprayed alone. In addition, high chromium cast iron exhibits a white cast iron structure in the cast state and has excellent crushability, making it easy to produce powder, and it is also available at a lower price than carbide, Fe-C-Cr alloy powders, etc. There are many advantages to plasma spraying as a mixed powder. Furthermore, the high chromium cast iron powder applied to the sliding surface (B) is not limited to ground powder, but atomized powder may also be used. However, in the case of high chromium cast iron, there is a limit to the Cr content due to cast iron melting, etc., and single thermal spraying of high chromium cast iron tends to increase wear on piston rings.

従って、高クロム鋳鉄よりCr含有量の高いFe−C−
Cr合金粉末を混合した混合粉末を耐スカッフィング性
に優れたMo粉末と共にプラズマ溶射することによって
夫々の欠点を補完し摺動面(A)との相性に極めて優れ
た摺動面(B)が得られるのである。
Therefore, Fe-C- has a higher Cr content than high chromium cast iron.
By plasma spraying a mixed powder containing Cr alloy powder together with Mo powder, which has excellent scuffing resistance, the drawbacks of each are compensated for and a sliding surface (B) that is extremely compatible with the sliding surface (A) can be obtained. It will be done.

Fe−C−Cr合金粉末としては中炭素以上のFe−C
r(フェロクロム)合金粉末就中、高炭素Fe−Cr(
フェロクロム)合金粉末が望ましい。
As Fe-C-Cr alloy powder, Fe-C with medium carbon or higher
r (ferrochrome) alloy powder, especially high carbon Fe-Cr (
Ferrochrome) alloy powder is preferable.

次いで、高クロム鋳鉄粉末とFe−C−Cr合金粉末と
の混合粉末及びMo粉末の組成限度理由について述べる
Next, the reason for the composition limit of the mixed powder of high chromium cast iron powder and Fe-C-Cr alloy powder and Mo powder will be described.

高クロム鋳鉄とFe−C−Cr合金の主要成分であるC
rは強い炭化物形成作用をもつ元素であって夫々の中に
含有されるCの大部分をCr、 C3゜Cr、、C,等
の炭化物として固定する。これらの炭化物は夫々の鋳鉄
及び合金の基地中に均一微細に分散しており、混合溶射
された摺動面(B)中にも介在相として含まれ、摺動面
(A)の硬質粒子に対する耐摩耗性及び耐スカッフィン
グ性を付与する重要な作用をもつ。この混合粉末中のC
r含有量は25%未満では摺動面(B)中の炭化物の量
が不足してピストンリング自身の耐摩耗性及び耐スカッ
フィング性が低下し、55%を越えるとピストンリング
の耐摩耗性が向上する反面、相手シリンダの摩耗を促進
する。従ってCr含有量は25〜55重量%の範囲とす
るが、より好ましくは30〜55重量%更に最も望まし
い範囲は35〜50重量%である。
C is the main component of high chromium cast iron and Fe-C-Cr alloy.
r is an element that has a strong carbide-forming action and fixes most of the carbon contained therein as carbides such as Cr, C3°Cr, C, etc. These carbides are uniformly and finely dispersed in the base of each cast iron and alloy, and are also included as an intervening phase in the mixed sprayed sliding surface (B), and are effective against the hard particles of the sliding surface (A). It has an important effect of imparting wear resistance and scuffing resistance. C in this mixed powder
If the r content is less than 25%, the amount of carbide in the sliding surface (B) will be insufficient and the wear resistance and scuffing resistance of the piston ring itself will decrease, and if it exceeds 55%, the wear resistance of the piston ring will deteriorate. Although this improves the performance, it also accelerates the wear of the mating cylinder. Therefore, the Cr content should be in the range of 25 to 55% by weight, more preferably 30 to 55% by weight, and most preferably 35 to 50% by weight.

Cはそのほとんどが前記鋳鉄又は合金中でCrと結合し
て、前記クロム炭化物を生成する範囲に留めるべきであ
り、そのためには混合粉中のC含有量は3〜7重量%、
好ましくは4〜6重量%の範囲とする。即ち、C含有量
が3%未満では生成される炭化物の絶対量が不足して耐
摩耗性が不充分であり、又7%を越えると被溶射基材と
の密着性を阻害する遊離炭素(黒鉛)が高Cr鋳鉄中に
発生するおそれがあるので、7%以下に留めることが望
ましい。尚、上記C及びCr以外に鋳鉄材としての他の
成分例えばSi、Mn、P、S或いはGo、V、Ni等
は前記特性を害しない範囲で少量含有してもよい。
Most of C should be kept within a range where most of it combines with Cr in the cast iron or alloy to form the chromium carbide, and for this purpose, the C content in the mixed powder should be 3 to 7% by weight.
Preferably it is in the range of 4 to 6% by weight. That is, if the C content is less than 3%, the absolute amount of carbides produced will be insufficient, resulting in insufficient wear resistance, and if it exceeds 7%, free carbon ( Since there is a risk that graphite (graphite) may be generated in high Cr cast iron, it is desirable to keep the content to 7% or less. In addition to the above-mentioned C and Cr, other components of the cast iron material, such as Si, Mn, P, S, Go, V, Ni, etc., may be contained in small amounts within a range that does not impair the above-mentioned characteristics.

次に高クロム鋳鉄粉末とFe−C−Cr合金粉末との混
合粉末を74μm以下の粒度に限定した理由について述
べる。
Next, the reason why the mixed powder of high chromium cast iron powder and Fe-C-Cr alloy powder is limited to a particle size of 74 μm or less will be described.

一般に溶射層は気孔を有し、これが油溜りとなって耐ス
カッフィング性に貢献するが一方気孔が粗大になると溶
射粒子間の自己結合力が不足して摺動中に溶射粒子が脱
落して摺動面間に介在し、ピストンリング及び相手シリ
ンダが摩耗する結果を招く。そこで潤滑油保持及び双方
の摺動面の耐摩耗性の面から気一孔率、気孔の大きさ及
びその分布状態を適正に制御すべきであり、これは溶射
法をプラズマ溶射と特定した場合主として溶射材料特に
溶射粉末の粒度に大きく影響されるから前記諸点を勘案
して74μm以下の粒度に限定した。
Generally, thermal sprayed layers have pores, which act as oil pockets and contribute to scuffing resistance. However, when the pores become coarse, the self-bonding force between the sprayed particles is insufficient, causing the sprayed particles to fall off during sliding. The piston ring and mating cylinder are interposed between the moving surfaces, resulting in wear of the piston ring and the mating cylinder. Therefore, from the viewpoint of lubricant retention and wear resistance of both sliding surfaces, the porosity, pore size, and distribution state should be appropriately controlled. Since it is largely influenced by the particle size of the thermal spraying material, especially the thermal spray powder, the particle size was limited to 74 μm or less in consideration of the above points.

更に、溶射の作業性ひいては溶射層の性質も溶射粉末粒
度によって影響を受は余りに微粉になると流動性が低下
し、溶射ノズルへの粉末の安定供給が困難になるのでこ
の面から20μm以上の粒度が好ましい。
Furthermore, the workability of thermal spraying and the properties of the thermal spray layer are also affected by the particle size of the thermal spray powder.If the powder becomes too fine, the fluidity will decrease and it will be difficult to stably supply the powder to the thermal spray nozzle. is preferred.

本発明の第1発明における他方の摺動面(B)において
は更にMoが混合溶射される。Mo単独溶射は耐スカッ
フィング性に優れているものの、耐アブレーシブ摩耗に
劣る他、耐酸化性に劣るため溶射層内のMo粒子相互の
結合力が弱く、応々にして眉間剥離を起し易い欠陥があ
る。
Mo is further mixed and sprayed on the other sliding surface (B) in the first aspect of the present invention. Although thermal spraying of Mo alone has excellent scuffing resistance, it has poor abrasive wear resistance and poor oxidation resistance, so the bonding force between Mo particles in the sprayed layer is weak, resulting in defects that tend to cause peeling between the eyebrows. There is.

本発明においては、Mo粉末は高クロム鋳鉄とFe−C
−Cr合金粉末との混合粉末とプラズマ溶射法によって
混合溶射されるから、各溶射粒子は溶融状態において共
存しMo粒子自身の低い耐酸化性も緩和される。
In the present invention, Mo powder is used for high chromium cast iron and Fe-C
Since the mixed powder with the -Cr alloy powder is mixed and sprayed by the plasma spraying method, each sprayed particle coexists in a molten state, and the low oxidation resistance of the Mo particles themselves is alleviated.

Mo粉末は単独粉末でもよいが、Mo微粒子を有機その
他のバインダーで結合したMo造粒粉末を使用すれば、
Mo粒子が微細に分散した溶射層が得られ各溶射粒子間
の結合強度の向上が期待される。しかも単独粉末ではM
oの昇華性故に使用できない超微粉も造粒することによ
って均一分布性が良好となるので使用可能となる。第1
発明及び第2発明における他方の摺動面(B)において
Mo粉末を74μ以下の粒度としたのは、74μmより
も粗粒であると溶射層の表面気孔率が高くなり耐アブレ
ーシブ摩耗性が劣化する地均−分布性が損われるからで
ある。
Mo powder may be a single powder, but if you use Mo granulated powder in which Mo fine particles are bound with an organic or other binder,
A sprayed layer in which Mo particles are finely dispersed is obtained, and it is expected that the bonding strength between the sprayed particles will be improved. Moreover, single powder M
Ultrafine powder, which cannot be used due to its sublimation property, can be used by granulating it to improve uniform distribution. 1st
The reason why the Mo powder on the other sliding surface (B) in the invention and the second invention is made to have a particle size of 74 μm or less is because if the particle size is coarser than 74 μm, the surface porosity of the sprayed layer will increase and the abrasive wear resistance will deteriorate. This is because the distribution of land is impaired.

そしてMo粉末の粒度は好ましくは5μm以上である。The particle size of the Mo powder is preferably 5 μm or more.

次に第1発明における他方の摺動面(B)のMo粉末混
合量の限度理由については、その混合量が5%未満では
Mo独自の耐スカッフィング性各溶射粒子間の結合強度
の向上による摺動面相互間のアブレーシブな摩耗に対す
る抵抗性等の効果が発揮されず、35%を越えると溶射
層の耐酸化性が劣化して、内燃機関運転中に粒子間結合
力が急速に低下する結果を招きアブレーシブ摩耗を促す
。従って、Mo粉末の混合量は5〜35重量%の範囲、
好ましくは10〜30重量%の範囲とする。一方、高ク
ロム鋳鉄粉末とFe−C−Cr合金粉末との混合粉末の
混合量は前述の混合粉末中のCr及びC含有量ひいては
溶射層中のCr及びC含有量によって限定されるが、M
o粉末混合量に見合って65〜95重量%、好ましくは
70〜90重量%である。
Next, regarding the reason for the limit on the amount of Mo powder mixed on the other sliding surface (B) in the first invention, if the amount mixed is less than 5%, Mo's unique scuffing resistance will be reduced due to the improvement in the bonding strength between each sprayed particle. Effects such as resistance to abrasive wear between moving surfaces are not exhibited, and if it exceeds 35%, the oxidation resistance of the sprayed layer deteriorates, resulting in a rapid decrease in interparticle bonding force during internal combustion engine operation. This causes abrasive wear. Therefore, the amount of Mo powder mixed is in the range of 5 to 35% by weight,
Preferably it is in the range of 10 to 30% by weight. On the other hand, the amount of mixed powder of high chromium cast iron powder and Fe-C-Cr alloy powder is limited by the Cr and C content in the above-mentioned mixed powder and also the Cr and C content in the sprayed layer.
o It is 65 to 95% by weight, preferably 70 to 90% by weight, depending on the amount of powder mixed.

そして前記混合粉末中の高クロム鋳鉄粉末の混合量は好
ましくは25〜45重量%である。第2発明における他
方の摺動面(B)は高クロム鋳鉄粉末とFe−C−Cr
合金粉末との混合粉末、Mo粉末及び自溶合金粉末の組
合わせを特色とするものである。
The amount of high chromium cast iron powder in the mixed powder is preferably 25 to 45% by weight. The other sliding surface (B) in the second invention is made of high chromium cast iron powder and Fe-C-Cr.
It is characterized by a combination of mixed powder with alloy powder, Mo powder, and self-fluxing alloy powder.

自溶合金は自溶成分として一般的にB及び/又はSiを
含有し、主成分としてN i+ C01F er及びN
i−Crの少なくとも1種を残部として含有する。
Self-fluxing alloys generally contain B and/or Si as self-fluxing components, and N i+ C01F er and N as main components.
The remainder contains at least one type of i-Cr.

その組成の例は「金属表面処理便覧、改訂新版」第97
0頁に示されている。一般に耐熱性及び耐酸化性が良好
である上記NLCo、Cr等を含有する自溶合金粉末を
前記粉末と混合溶射すると溶射層内で高クロム鋳鉄とF
e−C−Cr合金との各混合粒子及びMo粒子は自溶合
金により強固に分散保持され、この結果溶射層の強度も
格段と高められる。又自溶合金を用いると母材との密着
強度が向上し、又気孔率も低目に調節され、さらに溶射
後の摺動面を加工仕上した際に極めて平滑な上面が得ら
れ摺動初期の相手材との馴染み上杆結果を得る。
An example of its composition is "Metal Surface Treatment Handbook, Revised New Edition" 97th
It is shown on page 0. When a self-fluxing alloy powder containing the above-mentioned NLCo, Cr, etc., which generally has good heat resistance and oxidation resistance, is mixed and sprayed with the powder, high chromium cast iron and F
The particles mixed with the e-C-Cr alloy and the Mo particles are firmly dispersed and held by the self-fluxing alloy, and as a result, the strength of the sprayed layer is significantly increased. In addition, when a self-fluxing alloy is used, the adhesion strength with the base material is improved, the porosity is controlled to a low level, and when the sliding surface is processed and finished after thermal spraying, an extremely smooth upper surface can be obtained, making it possible to improve the adhesion strength in the initial stage of sliding. Obtain results that are compatible with the mating material.

上述のように自溶合金は耐酸化性が高くかつ溶射層の強
度及び母材との密着強度も高められるので、熱負荷が高
く酸化も厳しい内燃機関の運転条件下でのピストンリン
グ等の性能が改善される。
As mentioned above, self-fluxing alloys have high oxidation resistance and can also improve the strength of the sprayed layer and the adhesion strength to the base material, so they improve the performance of piston rings, etc. under the operating conditions of internal combustion engines with high heat loads and severe oxidation. is improved.

自溶合金粉末の量は上記特性の他に他の混合粉末との相
対的割合を考慮して定められ、殊に高クロム鋳鉄粉とF
e−C−Cr合金粉末との混合粉末がもたらす耐摩耗性
を阻害しないように5〜25重量%の範囲とする。自溶
合金粉末の混合量が5%未満では前記効果が十分でなく
、25%を越えると必然的に高クロム鋳鉄粉末とFe−
C−Cr合金粉末との混合粉末の量、即ちクロム炭化物
の生成量及びMo粉末の混合割合が相対的に低下して摺
動面(A)との相性が劣化するより好ましい範囲は10
〜25重量%である。第2発明における他方の摺動面(
B)は各混合粉末の特色を兼備し総合したものであると
同時に単独粉末における欠点を相互に補完するものであ
って、摺動面(A)との相性が各粒子の共存によって改
善されるものである゛。各粉末の混合量は第1発明にお
ける他の摺動面(B)と同様の理由によって限定される
が粉末相互の関連から高クロム鋳鉄粉末とFe −C−
Cr合金粉末との混合粉末65〜85重量%、Mo粉末
5〜25重量%、自溶合金粉末5〜25重量%である。
The amount of self-fluxing alloy powder is determined by taking into account the above characteristics as well as the relative proportion with other mixed powders, especially high chromium cast iron powder and F
The content is set in the range of 5 to 25% by weight so as not to impede the wear resistance provided by the mixed powder with the e-C-Cr alloy powder. If the amount of self-fluxing alloy powder mixed is less than 5%, the above effect will not be sufficient, and if it exceeds 25%, high chromium cast iron powder and Fe-
A more preferable range is 10 in which the amount of the mixed powder with the C-Cr alloy powder, that is, the amount of chromium carbide produced and the mixing ratio of the Mo powder is relatively reduced and the compatibility with the sliding surface (A) is deteriorated.
~25% by weight. The other sliding surface in the second invention (
B) combines and integrates the characteristics of each mixed powder, and at the same time complements the shortcomings of individual powders, and the compatibility with the sliding surface (A) is improved by the coexistence of each particle. It is something. The mixing amount of each powder is limited for the same reason as the other sliding surface (B) in the first invention, but due to the relationship between the powders, high chromium cast iron powder and Fe-C-
The mixed powder with the Cr alloy powder is 65 to 85% by weight, the Mo powder is 5 to 25% by weight, and the self-fluxing alloy powder is 5 to 25% by weight.

そこでより好ましい範囲は夫々65〜80重量%、10
〜25重量%、10〜25重量%である。自溶合金粉末
の粒度は74μmより粗粒になると、溶射時の粒子溶融
が不足して気孔の増大又は粗大化、粒子間結合力、母材
との密着性の劣化及び溶射層中の各成分の分散不均一等
望ましくない結果を招来する。好ましい粒度は10μm
以上であり、これよりも微粒では溶射中に自溶合金が過
度に溶解し溶射層の物性が劣化する。斯様に自溶合金粉
末を混合溶射すると耐熱酸化性、その被覆密度、粒子間
結合力、母材との密着性及び加工性が向上し摺動特性上
より安定した仕上面が得られる。自溶合金粉末を混合し
て溶射した場合の気孔率は5〜15%気孔の大きさは5
μm以下に調整され、しかも気孔は均一に分布している
Therefore, more preferable ranges are 65 to 80% by weight and 10% by weight, respectively.
-25% by weight, 10-25% by weight. When the particle size of the self-fluxing alloy powder becomes coarser than 74 μm, particle melting during thermal spraying is insufficient, resulting in enlargement or coarsening of pores, deterioration of interparticle bonding strength, deterioration of adhesion with the base material, and various components in the thermal spray layer. This results in undesirable results such as non-uniform dispersion. The preferred particle size is 10μm
If the particles are finer than this, the self-fluxing alloy will dissolve excessively during thermal spraying, and the physical properties of the thermal sprayed layer will deteriorate. When the self-fluxing alloy powder is mixed and sprayed in this way, thermal oxidation resistance, coating density, interparticle bonding strength, adhesion to the base material, and workability are improved, and a finished surface with more stable sliding properties can be obtained. When sprayed with a mixture of self-fluxing alloy powder, the porosity is 5 to 15% and the pore size is 5.
The pores are adjusted to be smaller than μm, and the pores are evenly distributed.

第1発明及び第2発明における他の摺動面(B)は、母
材としての鋳鉄又は鋼材に直接溶射した場合でも可成り
な密着強度を得られるが、より苛酷な条件下で使用する
場合には下地溶射としてM。
The other sliding surface (B) in the first and second inventions can obtain considerable adhesion strength even when directly sprayed onto cast iron or steel as the base material, but when used under more severe conditions. M as a base thermal spray.

−Ni系合金(Mo75%)等を用いてもよい。-Ni alloy (75% Mo) or the like may be used.

実施例 1 規定寸法に加工しかつ脱脂洗滌した88φ(外径)m/
mX36φ(内径) m/mx178 m/m(長さ)
の鋼製シリンダライナ(材質: STEM相当材相当円
周面を平均粒径(220メツシユ)のSiC粒子を含む
スラリーを用いて、ホーニングシュー圧力1.0kg/
口2、回転数×ストロークX時間:80rpm+ /a
kin X  30回/m1nX2分の条件で、その内
周摺動面に螺旋状交叉溝を加工すると同時に該溝内及び
プラトー部にSiC粒子を埋め込み、次いで、平均粒径
400メツシユのSiC微粒子を含むスラリーを用い、
ホーニングシュー圧力1.0 kg/ C11l ” 
、回転数Xストロークx時間:80rpa+/n+1n
X30回/m1nXZ分の条件で内周摺動面を研摩仕上
し、最後に灯油で洗滌し常法により脱脂した。
Example 1 88φ (outer diameter) m/mm processed to specified dimensions and degreased and cleaned
mX36φ (inner diameter) m/mx178 m/m (length)
The circumferential surface of a steel cylinder liner (material: equivalent to STEM material) was honed using a slurry containing SiC particles with an average particle size (220 mesh), and a honing shoe pressure of 1.0 kg/
Mouth 2, rotation speed x stroke x time: 80 rpm + /a
kin Using slurry,
Honing shoe pressure 1.0 kg/C11l”
, rotation speed x stroke x time: 80rpa+/n+1n
The inner peripheral sliding surface was polished and finished under the conditions of X30 times/m1nXZ minutes, and finally washed with kerosene and degreased by a conventional method.

この加工によって得られたシリンダライナの摺動面(A
)はSiC粒子が埋め込み面積率で約7%螺旋状交叉溝
及びプラトー部に均一に埋め込まれ、該交叉溝によって
囲まれた略菱形のプラトー部の占有面積率(プラトー率
)は約82%、該プラトー部の最大表面粗らさは約4μ
m、であった。一方、86φm/m(外径)X2.5m
/m (幅)×4、Orn/m(厚)の球状黒鉛鋳鉄製
ピストンリング(TOP リング)の外周面に削設した
溝内にM。
The sliding surface of the cylinder liner obtained by this process (A
), SiC particles are uniformly embedded in the spiral cross grooves and plateau portions with an embedded area ratio of approximately 7%, and the occupied area ratio (plateau ratio) of the approximately rhombic plateau portion surrounded by the cross grooves is approximately 82%. The maximum surface roughness of the plateau portion is approximately 4μ
It was m. On the other hand, 86φm/m (outer diameter) x 2.5m
/m (width) x 4, Orn/m (thickness) in a groove cut into the outer peripheral surface of a spheroidal graphite cast iron piston ring (TOP ring).

−Ni系合金を約20μmの厚さに下地溶射した後下記
に示す組成及び粒度を有する高クロム鋳鉄粉とFe−C
−Cr合金粉末との混合粉末及びMo粉末とを混合した
混合粉末(第1発明)と、第1発明に更にNi−Cr自
溶合金粉末を混合した混合粉末(第2発明)とを夫々M
ll!TC03Mガンを用いてプラズマ溶射し、混合溶
射層の厚さが180μmで該溝が完全に充填され、かつ
表面粗らさが0.5〜1,5μmになるように研摩加工
を施し供試ピストンリングとした。又、2 nd、 o
il リングにはCrめっきリングを用いた。尚、比較
例としてシリンダライナには実施例と同一材質、同一処
理を施したものを用いピストンリングには硬質クロムめ
っき及び各種プラズマ溶射を施したものを用いた。
- High chromium cast iron powder and Fe-C having the composition and particle size shown below after being thermally sprayed with Ni-based alloy to a thickness of about 20 μm
-A mixed powder obtained by mixing a mixed powder with -Cr alloy powder and a Mo powder (first invention), and a mixed powder obtained by further mixing Ni-Cr self-fluxing alloy powder into the first invention (second invention), respectively.
ll! Plasma spraying was carried out using a TC03M gun, and the sample piston was polished so that the thickness of the mixed sprayed layer was 180 μm, the grooves were completely filled, and the surface roughness was 0.5 to 1.5 μm. It was made into a ring. Also, 2nd, o
A Cr-plated ring was used as the il ring. As a comparative example, the cylinder liner was made of the same material and subjected to the same treatment as in the example, and the piston ring was plated with hard chromium and subjected to various types of plasma spraying.

各実施例及び比較例に用いた溶射粉末の組成及び粒度は
下記のとおりである。
The composition and particle size of the thermal spray powder used in each example and comparative example are as follows.

・高クロム鋳鉄搗砕粉末 35.4%Cr 、 5.87%G、 1.33%Si
、0.24%Mn残部Fe及び不純物からなる鋳鉄を6
3μm以下でかつ20μm以上にボールミルで搗砕・F
e−C−Cr合金粉末 JIS G2303 FCrH+  63# m以下6
8.4%Cr、6.65%G、 0.14%Si残部F
e・Ni−Cr自溶合金粉末 JIS H8303MSFNi  631t m以下1
6.9%Cr、 3.2%B、3.5%St、 0.6
6%C22,8%Fe、残部Ni。
・High chromium cast iron crushed powder 35.4%Cr, 5.87%G, 1.33%Si
, 0.24% Mn, balance Fe and impurities.
Grind with a ball mill to 3 μm or less and 20 μm or more
e-C-Cr alloy powder JIS G2303 FCrH+ 63# m or less 6
8.4%Cr, 6.65%G, 0.14%Si balance F
e・Ni-Cr self-fluxing alloy powder JIS H8303MSFNi 631t m or less 1
6.9%Cr, 3.2%B, 3.5%St, 0.6
6% C22, 8% Fe, balance Ni.

・Mo粉末 99%以上MO53μm以下 ・比較例の混合粉末: CrzC3粉末 44μm以下
: Ti(h  粉末 53μm以下 ・比較例の硬質クロムめっき:めっき厚さ0.3m/+
硬さHV980 尚、第1表に本発明に係るピストンリング(摺動面B)
と比較例としてのピストンリングの各溶射粉末の混合割
合、高クロム鋳鉄粉末とFe −C−Cr合金粉末との
混合粉末のC及びCr含有量、各溶射層の表面気孔率、
仕上面の表面粗らさ及び表面硬さを示す。供試エンジン
及びテスト条件は以下のとおりであった。
・Mo powder 99% or more MO 53 μm or less ・Mixed powder of comparative example: CrzC3 powder 44 μm or less: Ti(h powder 53 μm or less ・Hard chrome plating of comparative example: Plating thickness 0.3 m/+
Hardness HV980 Table 1 shows piston rings (sliding surface B) according to the present invention.
and the mixing ratio of each sprayed powder for a piston ring as a comparative example, the C and Cr content of the mixed powder of high chromium cast iron powder and Fe-C-Cr alloy powder, the surface porosity of each sprayed layer,
Indicates the surface roughness and surface hardness of the finished surface. The test engine and test conditions were as follows.

内径(86φn+/m) X行程(102m/m ) 
X 4気筒總排気量 2369cc  74PS  デ
ィーゼルエンジン使用燃料:JI52号軽油 潤滑油=
CC級#30運転条件: 3800rpIlx全負荷X
 100Hr水温 110℃ 油温100℃ 前記処理を施した鋼製シリンダライナ(摺動面A)と第
1表の本発明及び比較例のピストンリングを組付け、台
上耐久摩耗比較テストを行った結果を第6図に示す。
Inner diameter (86φn+/m) X stroke (102m/m)
X 4-cylinder displacement 2369cc 74PS Diesel engine Fuel used: JI No. 52 diesel oil Lubricating oil =
CC class #30 operating conditions: 3800rpIlx full load
100 hours Water temperature: 110°C Oil temperature: 100°C Results of bench durability and wear comparison tests performed by assembling the treated steel cylinder liner (sliding surface A) with the piston rings of the present invention and comparative example shown in Table 1. is shown in Figure 6.

第6図において、シリンダライナの摩耗量はTOPリン
グ上死点位置における100 Hr当りの各45°方向
計測値の平均摩耗量(μm)を示し、ピストンリングの
摩耗量はTOPリングの平均外周摩耗量(μm)を示す
In Figure 6, the amount of wear on the cylinder liner is the average amount of wear (μm) measured in each 45° direction per 100 hours at the top dead center position of the TOP ring, and the amount of wear on the piston ring is the average outer circumferential wear of the TOP ring. The amount (μm) is shown.

第6図の結果を見ると、現用の組合わせである比較例(
A)はシリンダ摩耗において極めて優れた性能を示すも
のの相手リングを異常に摩耗させ摺動面対構造としての
相性において好ましくないことが明瞭に把握される。比
較例CB)〜(D)は相手リングの摩耗において大幅に
改善されたが、シリンダ摩耗の増加が見られ、充分では
ない。これに対し本発明の実施例である(E)及び(F
)の場合は、比較例(A)に較ベシリンダ摩耗はやや悪
化するものの略々満足すべき水準にあり、リング摩耗に
おいては比較例(A)の夫々約174゜1/6に激減し
ている。従って、本発明は各摺動面(A)及び(B)の
相乗的作用により相互の相性が飛躍的に改善された理想
的な摺動面対構造と云うことが出来る。
Looking at the results in Figure 6, we can see that the comparative example (
Although A) shows extremely excellent performance in terms of cylinder wear, it is clearly understood that it causes abnormal wear on the mating ring and is unfavorable in terms of compatibility as a sliding surface pair structure. Comparative Examples CB) to (D) showed significant improvement in the wear of the mating ring, but an increase in cylinder wear was observed, which was not sufficient. In contrast, (E) and (F) are examples of the present invention.
), the cylinder wear is slightly worse compared to Comparative Example (A), but it is at a generally satisfactory level, and the ring wear is drastically reduced to about 174° 1/6 of Comparative Example (A). . Therefore, the present invention can be said to be an ideal sliding surface pair structure in which mutual compatibility is dramatically improved by the synergistic action of each sliding surface (A) and (B).

実施例 2 規定寸法に加工しかつ脱脂洗滌した94(外径)φm/
mX90(内径)φm / m x 167 m / 
m(長さ)の鋳鉄製シリンダライナ(材質二FC30相
当材)の内周面を平均粒径(220メソシユ)のSiC
粒子を含むスラリーを用いてホーニングシュー圧力1.
0kg/cIII2、回転数XストロークX時間: 8
0rpm /win X 30回/m1nX2分の条件
でその内周摺動面に螺旋状交叉溝を加工すると同時に、
該溝内及びプラトー部にSiC粒子を埋め込み、次いで
平均粒径(400メツシユ)のSiC微粒子を含むスラ
リーを用い、ホーニングシュー圧力1.0kg/am”
回転数xストローク×時間=80rpn+ /+++i
n X 30回/lll1n×2分の条件で内周摺動面
を研摩仕上し最後に灯油で洗滌し常法により脱脂した。
Example 2 94 (outer diameter) φm processed to specified dimensions and degreased and cleaned
mX90 (inner diameter) φm / m x 167 m /
The inner circumferential surface of a cast iron cylinder liner (material equivalent to 2FC30) with a length of
Honing shoe pressure using slurry containing particles 1.
0kg/cIII2, rotation speed x stroke x time: 8
At the same time, a spiral cross groove is machined on the inner circumferential sliding surface under the conditions of 0 rpm/win x 30 times/m1n x 2 minutes,
SiC particles were embedded in the groove and plateau portion, and then a honing shoe pressure of 1.0 kg/am was applied using a slurry containing SiC fine particles with an average particle size (400 mesh).
Rotation speed x stroke x time = 80rpn+ /+++i
The inner peripheral sliding surface was polished and finished under the conditions of n x 30 times/lllln x 2 minutes, and finally washed with kerosene and degreased by a conventional method.

この加工処理によって得られたシリンダライナの摺動面
(A)はSiC粒子が埋め込み面積率で約8%螺旋状交
叉溝及びプラトー部に均一に埋め込まれ、該交叉溝によ
って囲まれた略菱形のプラトー部の占有面積率(プラト
ー率)は約89%、該プラトー部の表面粗らさは約5μ
mであった。
The sliding surface (A) of the cylinder liner obtained by this processing has SiC particles uniformly embedded in the spiral cross grooves and plateau portions at an embedding area ratio of approximately 8%, and has a roughly rhombic shape surrounded by the cross grooves. The occupied area ratio of the plateau portion (plateau ratio) is approximately 89%, and the surface roughness of the plateau portion is approximately 5μ.
It was m.

一方、90φm/m(外径) X 2.5 m/m (
幅)X3.8m/m(厚)の球状黒鉛鋳鉄製ピストンリ
ング(TOPリング)の外周面に削設した溝内には実施
例1と同一の下地溶射を施した後回−組成、同一粒度の
各粉末の混合粉末(第1発明)を同一条件で同一厚さに
なるようプラズマ溶射し、かつ同一の表面粗らさになる
ように研摩加工したものを供試ピストンリングとした、
又2nd、oN リングにはCrめっきリングを用いた
On the other hand, 90φm/m (outer diameter) x 2.5 m/m (
The groove cut into the outer circumferential surface of a spheroidal graphite cast iron piston ring (TOP ring) with width) x 3.8 m/m (thickness) was coated with the same base thermal spraying as in Example 1. A mixed powder of each powder (first invention) was plasma sprayed under the same conditions to the same thickness and polished to the same surface roughness, and the sample piston ring was
Furthermore, a Cr-plated ring was used for the 2nd and oN rings.

第8図は本発明に係るピストンリングの断面図であって
、(8)はピストンリング、(9)は摺動面の溝(10
)は溶射層を示す。
FIG. 8 is a sectional view of a piston ring according to the present invention, where (8) is a piston ring, (9) is a groove (10) on a sliding surface.
) indicates a sprayed layer.

尚、比較例として、シリンダライナには実施例と同様の
処理を施した鋳鉄製シリンダライナ及び無処理の鋳鉄製
シリンダライナを用い、ピストンリングには外周面に削
設した溝内にMo線材をMETC03にガンを用いて火
炎溶射したMo溶射ピストンリングを用いた。(表面気
孔率約20%、硬さHrs V 700)第2表に本発
明及び比較例の組合わせを示す。
As a comparative example, a cast iron cylinder liner treated in the same manner as in the example and an untreated cast iron cylinder liner were used, and the piston ring had a Mo wire inserted into a groove cut on the outer circumferential surface. A Mo sprayed piston ring that was flame sprayed using a gun was used for METC03. (Surface porosity approximately 20%, hardness Hrs V 700) Table 2 shows combinations of the present invention and comparative examples.

第2表 供試エンジン及びテスト条件は以下のとおりであった。Table 2 The test engine and test conditions were as follows.

内径(90φm/m) X行程(86m/m) x 4
気筒總排気量 2188cc 72PS/4200rp
mディーゼルエンジン 使用燃料:JIS2号軽油 潤滑油:#30運転条件:
路上走行 計測までの走行距離47.606 k m 第2表に示した本発明と比較例の組合わせにおけるシリ
ンダライナとピストンリングとの実車走行後における摩
耗比較テスト結果を第7図に示す。
Inner diameter (90φm/m) X stroke (86m/m) x 4
Cylinder displacement 2188cc 72PS/4200rp
m Diesel engine Fuel used: JIS No. 2 light oil Lubricating oil: #30 Operating conditions:
Driving on the road Mileage distance until measurement: 47.606 km FIG. 7 shows the results of a wear comparison test of the cylinder liner and piston ring after driving on an actual vehicle in the combinations of the present invention and the comparative example shown in Table 2.

第7図においてシリンダライナの摩耗量はTOPリング
上死点位置における10.OOOKm当りの各45@方
向計測値の平均摩耗量(μm)を示し、ピストンリング
の摩耗量はTOPリングの平均外周摩耗量(μm)を示
す。
In Fig. 7, the amount of wear on the cylinder liner is 10. The average wear amount (μm) of each 45 @ direction measurement value per OOOKm is shown, and the wear amount of the piston ring is the average outer circumferential wear amount (μm) of the TOP ring.

第7図のテスト結果によれば、比較例(H)は比較例(
G)に較ベシリンダライナ摩耗は約70%に減少するか
り・ング摩耗においては約3.9倍に激増している。こ
れに対し、本発明(F)では比較例CG)に較ベシリン
ダ摩耗で約50%に減少し、リング摩耗で約90%に減
少している。又、本発明(F)は比較例(H)に較べ、
シリンダ摩耗で約75%、リング摩耗で約1/4に大幅
に改善されている。
According to the test results in FIG. 7, the comparative example (H) is different from the comparative example (H).
Compared to G), the cylinder liner wear is reduced by about 70%, but the cylinder liner wear is dramatically increased by about 3.9 times. On the other hand, in the present invention (F), compared to comparative example CG), the cylinder wear is reduced to about 50%, and the ring wear is reduced to about 90%. In addition, the present invention (F) has the following characteristics compared to the comparative example (H):
Cylinder wear has been significantly improved by approximately 75%, and ring wear has been reduced to approximately 1/4.

従って、上記結果からも本発明の摺動面対構造の優位性
が明白に把握される。
Therefore, the superiority of the sliding surface pair structure of the present invention is clearly understood from the above results.

(発明の効果) 本発明は一方の摺動面(A)に分散埋設されるSiC等
の硬質粒子の平均粒径の微細化、該硬質粒子の埋込み面
積率、プラトー部の占有面積率(プラトー率)及びプラ
トー部の最大表面粗らさ等を特定することによって摺動
面(A)の表面性状を改善し、又他の摺動面(B)に高
クロム鋳鉄粉末とFe−C−Cr合金粉末との混合粉末
とMO粉末とを特定割合で混合した混合粉末をプラズマ
溶射してなる溶射層(第1発明)或いは前記第1発明の
混合粉末に更に自溶合金粉末を特定割合で混合した混合
粉末をプラズマ溶射してなる溶射層(第2発明)を適用
することによって各粉末の欠点を補完して、摺動面(A
)との相性を飛躍的に向上させ従来の欠陥であった摺動
面(B)の摩耗を大幅に低減し双方の摩耗を適度にバラ
ンスさせることに成功したものである。従って、本発明
は、従来のSiC粒子を埋込んだ摺動部材の欠陥を是正
しその特性を十二分に発揮させることができるからその
適用範囲を拡大し得るとともに内燃機関等の耐久性、信
頼性をより向上し得る摺動面対構造を提供する点におい
て実用上顕著な効果を奏するものである。
(Effects of the Invention) The present invention aims to reduce the average particle diameter of hard particles such as SiC dispersed and embedded in one sliding surface (A), increase the embedded area ratio of the hard particles, and increase the occupied area ratio of the plateau portion (plateau area ratio). The surface quality of the sliding surface (A) was improved by specifying the maximum surface roughness of the plateau portion, etc., and the other sliding surface (B) was coated with high chromium cast iron powder and Fe-C-Cr. A sprayed layer formed by plasma spraying a mixed powder obtained by mixing a mixed powder with an alloy powder and an MO powder in a specific ratio (first invention), or a self-fluxing alloy powder further mixed in a specific ratio with the mixed powder of the first invention By applying a thermal spray layer (second invention) formed by plasma spraying mixed powders, the defects of each powder can be compensated for and the sliding surface (A
), the wear on the sliding surface (B), which was a defect in the conventional method, was significantly reduced, and the wear on both surfaces was successfully balanced appropriately. Therefore, the present invention can correct the defects of the conventional sliding member embedded with SiC particles and fully exhibit its characteristics, thereby expanding the scope of its application and improving the durability of internal combustion engines, etc. This has a significant practical effect in providing a sliding surface pair structure that can further improve reliability.

尚、上述の説明においては内燃機関のシリンダライナと
ピストンリングの組合わせを例示して説明したが、本発
明はこの例示に留まることなく、耐摩耗性、耐スカツフ
イング性が要求される如何なる摺動面対構造にも適用し
得ることは勿論である。
In the above explanation, the combination of a cylinder liner and a piston ring of an internal combustion engine has been explained as an example, but the present invention is not limited to this example, and can be applied to any sliding device that requires wear resistance and scuffing resistance. Of course, it can also be applied to a face-to-face structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリンダライナの縦断面図、第2図は本発明に
係るシリンダライナの摺動面を示す第1図のA部拡大断
面図、第3図(a)は本発明に係るシリンダライナ摺動
面の仕上加工前の表面状況を模型的に示す一部拡大断面
図、第3図(b)は仕上加工後の第3図(a)に対応す
る一部拡大断面図、第3図(c)は硬質粒子がシリンダ
ライナ母材中に埋没した表面状態を示す第3図(b)に
準じた一部拡大断面図、第4図はプラトー率計算法の説
明図、第5図はシリンダライナ摺動面の表面粗らさを示
す酬説明図、第6図は本発明に係る鋼製シリンダライナ
と、本発明及び比較例のピストンリングを組付は台上耐
久摩耗比較テストを行った結果を示すグラフ、第7図は
シリンダライナとして本発明に係る鋳鉄製シリンダライ
ナ及び無処理の鋳鉄製シリンダライナを用い、本発明と
比較例のピストンリングとの組合わせにおける実車走行
後の摩耗比較テスト結果を示すグラフ、第8図は本発明
に係るピストンリングの断面図。 1ニジリンダライナ、 2:摺動面、 3:油溜り溝部、   4ニブラド一部、5:硬質粒子
、    6:断面曲線、7:基線、       8
:ピストンリング、9:外周摺動面の溝、 10:溶射
層、H二油溜り溝部の深さ。 第3図 第4図 第5図
FIG. 1 is a vertical sectional view of a cylinder liner, FIG. 2 is an enlarged sectional view of section A in FIG. 1 showing the sliding surface of the cylinder liner according to the present invention, and FIG. FIG. 3(b) is a partially enlarged sectional view schematically showing the surface condition of the sliding surface before finishing processing, and FIG. 3(b) is a partially enlarged sectional view corresponding to FIG. 3(a) after finishing processing. (c) is a partially enlarged cross-sectional view similar to Fig. 3 (b) showing the surface state in which hard particles are buried in the cylinder liner base material, Fig. 4 is an explanatory diagram of the plateau rate calculation method, and Fig. 5 is Figure 6 is an explanatory diagram showing the surface roughness of the sliding surface of the cylinder liner, and the steel cylinder liner according to the present invention and the piston rings of the present invention and comparative examples were assembled and subjected to a bench durability and wear comparison test. Figure 7 is a graph showing the results of the analysis, and shows the wear after running on an actual vehicle in the combination of the present invention and the comparative piston ring using the cast iron cylinder liner according to the present invention and the untreated cast iron cylinder liner as the cylinder liner. Graph showing comparative test results, FIG. 8 is a sectional view of a piston ring according to the present invention. 1 Nijilinda liner, 2: Sliding surface, 3: Oil sump groove, 4 Nibrad part, 5: Hard particles, 6: Cross-sectional curve, 7: Base line, 8
: Piston ring, 9: Groove on outer circumferential sliding surface, 10: Sprayed layer, depth of H2 oil reservoir groove. Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、鉄鋼又は鋳鉄からなる母材に配列された特定パター
ンの油溜り溝部と面積率で3〜12%該溝部の内部及び
プラトー部に均一に分散埋設された平均粒径5〜20μ
mの硬質粒子とを有しかつ上面が平滑化された摺動面(
A)と、粒度が74μmより粗粒でない高クロム鋳鉄粉
末とFe−C−Cr合金粉末とを混合して組成を重量比
でC3.0〜7.0%、Cr25〜55%を含有し残部
が実質的にFeとした混合粉末65〜95重量%と更に
粒度が74μmより粗粒でないMo粉末5〜35重量%
とを混合した混合粉末をプラズマ溶射してなる溶射層を
有する摺動面(B)とから構成される摺動面対構造。 2、油溜り溝部の特定パターンが連続及び不連続螺旋状
交叉溝状である特許請求の範囲第1項記載の摺動面対構
造。 3、油溜り溝部によって囲まれた摺動面(A)における
プラトー部の占有面積率(プラトー率)がプラトー率1
.0%の基線から2μmの深さにおいて75〜95%で
ある特許請求の範囲第1項記載の摺動面対構造。 4、硬質粒子がSiC、Al_2O_3、Cr_2O_
3、Si_3N_4よりなる群から選ばれた単一粒子で
ある特許請求の範囲第1項記載の摺動面対構造。 5、摺動面(A)のプラトー部の最大表面粗らさが3〜
7μm、摺動面(B)の表面粗らさが3.0μm以下で
ある特許請求の範囲第1項記載の摺動面対構造。 6、鉄鋼又は鋳鉄からなる母材に配列された特定パター
ンの油溜り溝部と面積率で3〜12%該溝部の内部及び
プラトー部に均一に分散埋設された平均粒径5〜20μ
mの硬質粒子とを有し、かつ上面が平滑化された摺動面
(A)と、粒度が74μmより粗粒でない高クロム鋳鉄
粉末とFe−C−Cr合金粉末とを混合して組成を重量
比でC3.0〜7.0%、Cr25〜55%を含有し残
部が実質的にFeとした混合粉末65〜85重量%、粒
度が74μmより粗粒でないMo粉末5〜25重量%及
び粒度が74μmより粗粒でない自溶合金粉末5〜25
重量%とを混合した混合粉末をプラズマ溶射してなる溶
射層を有する摺動面(B)とから構成される摺動面対構
造。 7、油溜り溝部の特定パターンが連続及び不連続螺旋状
交叉溝状である特許請求の範囲第6項記載の摺動面対構
造。 8、油溜り溝部によって囲まれた摺動面(A)における
プラトー部の占有面積率(プラトー率)がプラトー率1
.0%の基線から2μmの深さにおいて75〜95%で
ある特許請求の範囲第6項記載の摺動面対構造。 9、硬質粒子がSiC、Al_2O_3、Cr_2O_
3、Si_3N_4よりなる群から選ばれた単一粒子で
ある特許請求の範囲第6項記載の摺動面対構造。 10、摺動面(A)のプラトー部の最大表面粗らさが3
〜7μm、摺動面(B)の表面粗らさが3.0μm以下
である特許請求の範囲第6項記載の摺動面対構造。 11、自溶合金粉末がNi−Cr系合金からなる特許請
求の範囲第6項記載の摺動面対構造。
[Scope of Claims] 1. A specific pattern of oil sump grooves arranged in a base material made of steel or cast iron, and an average grain size uniformly dispersed and buried inside the grooves and plateaus at an area ratio of 3 to 12%. 5~20μ
m hard particles and a smoothed upper surface (
A), high chromium cast iron powder whose grain size is not coarser than 74 μm, and Fe-C-Cr alloy powder are mixed to form a composition containing 3.0 to 7.0% C, 25 to 55% Cr, and the balance by weight. 65 to 95% by weight of a mixed powder containing substantially Fe and further 5 to 35% by weight of Mo powder whose particle size is not coarser than 74 μm.
A sliding surface pair structure comprising a sliding surface (B) having a sprayed layer formed by plasma spraying a mixed powder mixed with the above. 2. The sliding surface pair structure according to claim 1, wherein the specific pattern of the oil sump groove portion is a continuous or discontinuous spiral or intersecting groove shape. 3. The occupied area ratio (plateau ratio) of the plateau part on the sliding surface (A) surrounded by the oil sump groove part is plateau ratio 1
.. The sliding surface pair structure according to claim 1, wherein the sliding surface pair structure is 75 to 95% at a depth of 2 μm from the 0% base line. 4. Hard particles are SiC, Al_2O_3, Cr_2O_
3. The sliding surface pair structure according to claim 1, which is a single particle selected from the group consisting of Si_3N_4. 5. The maximum surface roughness of the plateau part of the sliding surface (A) is 3~
The sliding surface pair structure according to claim 1, wherein the surface roughness of the sliding surface (B) is 3.0 μm or less. 6. A specific pattern of oil reservoir grooves arranged in a base material made of steel or cast iron and an average grain size of 5 to 20μ uniformly dispersed and buried inside the grooves and plateaus with an area ratio of 3 to 12%.
A composition is prepared by mixing a sliding surface (A) having hard particles of m and a smoothed upper surface, high chromium cast iron powder with a grain size not coarser than 74 μm, and Fe-C-Cr alloy powder. 65 to 85% by weight of a mixed powder containing 3.0 to 7.0% of C and 25 to 55% of Cr with the balance being substantially Fe, 5 to 25% by weight of Mo powder with a particle size not coarser than 74 μm, and Self-fluxing alloy powder 5 to 25 whose particle size is not coarser than 74 μm
A sliding surface pair structure comprising a sliding surface (B) having a sprayed layer formed by plasma spraying a mixed powder mixed with % by weight. 7. The sliding surface pair structure according to claim 6, wherein the specific pattern of the oil sump groove portion is a continuous or discontinuous spiral cross groove shape. 8. The occupied area ratio (plateau ratio) of the plateau part on the sliding surface (A) surrounded by the oil sump groove part is plateau ratio 1
.. The sliding surface pair structure according to claim 6, wherein the sliding surface pair structure is 75 to 95% at a depth of 2 μm from the 0% base line. 9. Hard particles are SiC, Al_2O_3, Cr_2O_
3. The sliding surface pair structure according to claim 6, which is a single particle selected from the group consisting of Si_3N_4. 10. The maximum surface roughness of the plateau part of the sliding surface (A) is 3
The sliding surface pair structure according to claim 6, wherein the sliding surface (B) has a surface roughness of 3.0 μm or less. 11. The sliding surface pair structure according to claim 6, wherein the self-fluxing alloy powder is made of a Ni-Cr alloy.
JP26518784A 1984-12-18 1984-12-18 Sliding surface opposed structure Granted JPS61144469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26518784A JPS61144469A (en) 1984-12-18 1984-12-18 Sliding surface opposed structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26518784A JPS61144469A (en) 1984-12-18 1984-12-18 Sliding surface opposed structure

Publications (2)

Publication Number Publication Date
JPS61144469A true JPS61144469A (en) 1986-07-02
JPH0517994B2 JPH0517994B2 (en) 1993-03-10

Family

ID=17413769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26518784A Granted JPS61144469A (en) 1984-12-18 1984-12-18 Sliding surface opposed structure

Country Status (1)

Country Link
JP (1) JPS61144469A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112079A (en) * 1987-10-23 1989-04-28 Teikoku Piston Ring Co Ltd Chrome-plated cylinder
JPH01148168U (en) * 1988-04-01 1989-10-13
JPH02286913A (en) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd Bearing device and development device
JPH031244U (en) * 1989-02-23 1991-01-09
JPH03265761A (en) * 1990-03-15 1991-11-26 Teikoku Piston Ring Co Ltd Cylinder liner
JPH048860U (en) * 1990-05-14 1992-01-27
US5230576A (en) * 1988-11-30 1993-07-27 Sony Corporation Printer
CN100416069C (en) * 2006-04-07 2008-09-03 王明泉 Cylinder liner supporting Europe IV discharge standard and material thereof
WO2011154606A1 (en) * 2010-06-08 2011-12-15 Wärtsilä Finland Oy Cylinder liner of a reciprocating engine
JP2013096478A (en) * 2011-10-31 2013-05-20 Daihatsu Motor Co Ltd Crankshaft and method for evaluating the same
JP5524432B1 (en) * 2014-02-24 2014-06-18 株式会社リケン piston ring
JP2014527135A (en) * 2011-07-05 2014-10-09 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Cylinder sliding surface manufacturing method and cylinder liner
DE102015207833A1 (en) * 2015-04-28 2016-11-03 Volkswagen Aktiengesellschaft Cylinder crankcase for an internal combustion engine
CN110184556A (en) * 2018-10-19 2019-08-30 兰州城市学院 A kind of novel C eO2Modified ferrous alloy anti scuffing coating and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558309A (en) * 1978-06-30 1980-01-21 Kobe Steel Ltd Method and apparatus for shaping of rod coil
JPS56156751A (en) * 1980-05-02 1981-12-03 Riken Corp Melt-sprayed surface layer
JPS5893867A (en) * 1981-11-30 1983-06-03 Teikoku Piston Ring Co Ltd Sliding member
JPS58113368A (en) * 1981-12-26 1983-07-06 Teikoku Piston Ring Co Ltd Sliding member
JPS5923864A (en) * 1982-07-28 1984-02-07 Toyota Motor Corp Sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558309A (en) * 1978-06-30 1980-01-21 Kobe Steel Ltd Method and apparatus for shaping of rod coil
JPS56156751A (en) * 1980-05-02 1981-12-03 Riken Corp Melt-sprayed surface layer
JPS5893867A (en) * 1981-11-30 1983-06-03 Teikoku Piston Ring Co Ltd Sliding member
JPS58113368A (en) * 1981-12-26 1983-07-06 Teikoku Piston Ring Co Ltd Sliding member
JPS5923864A (en) * 1982-07-28 1984-02-07 Toyota Motor Corp Sliding member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112079A (en) * 1987-10-23 1989-04-28 Teikoku Piston Ring Co Ltd Chrome-plated cylinder
JPH01148168U (en) * 1988-04-01 1989-10-13
US5230576A (en) * 1988-11-30 1993-07-27 Sony Corporation Printer
JPH031244U (en) * 1989-02-23 1991-01-09
JPH02286913A (en) * 1989-04-28 1990-11-27 Matsushita Electric Ind Co Ltd Bearing device and development device
JPH03265761A (en) * 1990-03-15 1991-11-26 Teikoku Piston Ring Co Ltd Cylinder liner
JPH048860U (en) * 1990-05-14 1992-01-27
CN100416069C (en) * 2006-04-07 2008-09-03 王明泉 Cylinder liner supporting Europe IV discharge standard and material thereof
WO2011154606A1 (en) * 2010-06-08 2011-12-15 Wärtsilä Finland Oy Cylinder liner of a reciprocating engine
JP2014527135A (en) * 2011-07-05 2014-10-09 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Cylinder sliding surface manufacturing method and cylinder liner
US9488126B2 (en) 2011-07-05 2016-11-08 Mahle International Gmbh Method for producing a cylinder liner surface and cylinder liner
JP2013096478A (en) * 2011-10-31 2013-05-20 Daihatsu Motor Co Ltd Crankshaft and method for evaluating the same
JP5524432B1 (en) * 2014-02-24 2014-06-18 株式会社リケン piston ring
DE102015207833A1 (en) * 2015-04-28 2016-11-03 Volkswagen Aktiengesellschaft Cylinder crankcase for an internal combustion engine
CN110184556A (en) * 2018-10-19 2019-08-30 兰州城市学院 A kind of novel C eO2Modified ferrous alloy anti scuffing coating and preparation method

Also Published As

Publication number Publication date
JPH0517994B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
US7543557B2 (en) Scuff resistant aluminum piston and aluminum cylinder bore combination and method of making
JPS61144469A (en) Sliding surface opposed structure
JP2932248B2 (en) Cylinder liner made of hypereutectic aluminum-silicon alloy for casting into a crankcase of a reciprocating piston engine and method of manufacturing the same
US7291384B2 (en) Piston ring and thermal spray coating used therein, and method for manufacturing thereof
US20030192501A1 (en) Cylinder liner with its inner peripheral surface formed with surface treatment layer, and method for machining to the surface treatment layer
JPH0765683B2 (en) Combination of cylinder and piston ring
WO1995021994A1 (en) A method of manufacturing a cylinder liner, and such a liner
JP3327663B2 (en) High temperature wear resistant sintered alloy
JPH01195267A (en) Manufacture of sprayed deposit, thermally sprayed article, and powder for thermal spraying
US4785775A (en) Wear layer for piston and cylinder of an internal combustion engine
JPS61157875A (en) Combination of cylinder and seal ring
JP2005155711A (en) Spray piston ring and its manufacturing method
JPS5827860A (en) Combination of cylinder liner and piston ring
JP2610856B2 (en) Wear-resistant surface layer and method of forming the same
JPS61157670A (en) Sliding member
JPS6154107B2 (en)
DE19851424A1 (en) Piston ring used for I.C. engines consists of a multiphase material in the region of the ring outer surface containing finely divided hard material particles in a matrix
JPS58113368A (en) Sliding member
JPH08253852A (en) Formation of wear resistant film onto aluminum alloy substrate
JP2826751B2 (en) Aluminum alloy composite members for internal combustion engines
JPS5893867A (en) Sliding member
CN203363128U (en) Structure of cylinder body of high-speed reciprocating piston cylinder
JPH09209072A (en) Wear resistant cast iron and its production
JPS635147A (en) Combination of piston ring with cylinder
JPS581066A (en) Melt-sprayed surface layer