JPS61201165A - Quantitatively determining method for free carbon in sintered graphite material - Google Patents

Quantitatively determining method for free carbon in sintered graphite material

Info

Publication number
JPS61201165A
JPS61201165A JP4318785A JP4318785A JPS61201165A JP S61201165 A JPS61201165 A JP S61201165A JP 4318785 A JP4318785 A JP 4318785A JP 4318785 A JP4318785 A JP 4318785A JP S61201165 A JPS61201165 A JP S61201165A
Authority
JP
Japan
Prior art keywords
compact
free carbon
fuel
electrolysis
graphite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318785A
Other languages
Japanese (ja)
Inventor
Masanao Sakakibara
榊原 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP4318785A priority Critical patent/JPS61201165A/en
Publication of JPS61201165A publication Critical patent/JPS61201165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the easy quantitative determination of the free carbon in a fuel compact by electrolyzing a sintered graphite material immersed into an oxidative acid soln. and determining quantitatively the weight loss of the solid matter generated when the solid residue after the decomposition is heated. CONSTITUTION:A coiled platinum anode 4 is inserted and disposed into a through-hole 5 of the fuel compact 2 and a cylindrical platinum cathode 3 is disposed to the outside circumference of the fuel compact 2. The sintered graphite material, for example, the fuel compact 2 is immersed into the oxidative acid soln. 1 and a voltage is impressed to both electrodes to electrolyze the compact. The solid residue of the compact 2 is filtered after the electrolysis and the resulted solid residue is heated to evaporated the free carbon of the higher order. The weight of the compact 2 prior to the electrolysis and the weight of the solid matter obrd. after the heating are measured and the free carbon in the compact 2 is calculated from the difference therebetween, by which the free carbon is easily quantitatively determined.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、焼結黒鉛材料たとえば燃料コンパクト中の
遊[e素の定量方法に関し、さらに詳しくは、信頼性の
高い定量値を短時間で得ることのできる焼結黒鉛材料中
の遊Ill炭素の定量方法であり、燃料コンパクトにつ
いて言うと、被覆燃料粒子を破壊することなく安全に′
ti離炭素を定量することができるM離炭素の定量方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for quantifying free [e] elements in sintered graphite materials such as fuel compacts, and more specifically, to a method for obtaining highly reliable quantitative values in a short time. This is a method for quantifying free carbon in sintered graphite materials that can be obtained, and in terms of fuel compacts, it can be used safely without destroying coated fuel particles.
The present invention relates to a method for quantifying M release carbon that can quantify Ti release carbon.

[従来の技術およびその問題点] 燃料コンパクト中の遊a炭素を定量することは、この燃
料コンパクト成形のために添加したピッチあるいはフェ
ノール樹脂が燃料コンパクトの焼成によりどの程度の割
合で炭化して残存するかを知ることであり、この値を知
ることにより燃料コンパクトの密度を知ることができる
ので燃料コンパクトの品質管理上重要である。
[Prior art and its problems] Quantifying the amount of free a-carbon in a fuel compact is to determine the percentage of pitch or phenol resin added for forming the fuel compact that is carbonized and remains when the fuel compact is fired. By knowing this value, the density of the fuel compact can be known, which is important for quality control of the fuel compact.

従来、一般に、焼結純黒鉛素材中の遊離炭素の定量方法
は、物理的粉砕方法により50メツシユ以下に、望まし
くは100メツシユ以下に粉砕した試料を濃硝酸中で長
時間煮沸して低次の遊離炭素を酸化して炭酸ガスとして
揮散し、次いで、煮沸後の混合物を濾別して得た残留物
を乾燥してから約600℃に加熱して高次の遊離炭素を
すべて揮散し、前記試料の重量と前記加熱後の固形分の
屯埴との差から遊離炭素を定量するものである。
Conventionally, in general, the method for quantifying free carbon in sintered pure graphite materials involves grinding a sample to 50 meshes or less, preferably 100 meshes or less by a physical grinding method, and boiling it in concentrated nitric acid for a long time to obtain a lower-order carbon. The free carbon is oxidized and volatilized as carbon dioxide gas, and the mixture after boiling is then filtered and the resulting residue is dried and heated to about 600°C to volatilize all the higher free carbons. The free carbon is determined from the difference between the weight and the solid content of the tunchu after heating.

しかしながら、前記遊離炭素の定量方法は、乳鉢、クラ
ッシャー、ブレンダーミル等の器具を使用するので、前
記定量方法を燃料コンパクト中のmflll炭素の定量
に応用すると、定量操作によりこの燃料コンパクト中の
被覆燃料粒子が破壊され、放射性核燃料物質で周囲が汚
染される危険を生ずる。また、1週間以上も煮沸しても
なお十分に低次の遊離炭素を酸化し切れない程、濃硝酸
による煮沸時間が非常に長く、定量分析に時間がかかる
。さらに、高濃度の酸を使用するので、濾過材が限定さ
れる等の欠点がある。
However, since the method for quantifying free carbon uses instruments such as a mortar, a crusher, and a blender mill, when the method for quantifying free carbon is applied to the determination of mflll carbon in a fuel compact, the amount of coated fuel in the fuel compact is determined by the quantitative operation. Particles are destroyed, creating a risk of contaminating the surrounding area with radioactive nuclear fuel material. In addition, the boiling time with concentrated nitric acid is so long that low-order free carbon cannot be sufficiently oxidized even after boiling for more than a week, and quantitative analysis takes time. Furthermore, since a highly concentrated acid is used, there are drawbacks such as limited filtering media.

この発明は前記事情に基づいてなされたものである。す
なわち、この発明は、分析操作により被覆燃料粒子が破
壊されず、しかも分析に長時間を要しない簡単な遊離炭
素の定量方法を提供することを目的とするものである。
This invention has been made based on the above circumstances. That is, an object of the present invention is to provide a simple method for quantifying free carbon in which the coated fuel particles are not destroyed by the analytical operation and the analysis does not require a long time.

〔前記問題点を解決するための手段〕[Means for solving the above problems]

前記問題点を解決するためにこの発明者が鋭意研究した
結果、従来の定量方法における物理的破砕方法とは異な
り、電気化学的な破砕方法を採用すると、前記目的を達
成することができることを見出してこの発明に到達した
As a result of intensive research to solve the above problems, the inventor found that the above objective could be achieved by adopting an electrochemical crushing method, unlike the physical crushing method used in conventional quantitative methods. We have arrived at the invention of a lever.

すなわち、この発明の概要は、酸化性酸溶液に浸漬した
焼結黒鉛材料を陰極と陽極とではさんで電気分解し、電
気分解後の固形残分を加熱することにより生じる固形分
の重量損失を定量することを特徴とする燃料コンパクト
中の遊離炭素の定量方法である。
That is, the outline of this invention is to electrolyze a sintered graphite material immersed in an oxidizing acid solution between a cathode and an anode, and to reduce the weight loss of solid content caused by heating the solid residue after electrolysis. This is a method for quantifying free carbon in a fuel compact.

この発明の方法で分析対象となる焼結黒鉛材料としては
それ自体公知のものが挙げられ、たとえば燃料コンパク
トがある。燃料コンパクトは、被覆燃料粒子と黒鉛粉末
と混合すると共にバインダーで結合して成形体とし、高
温ガス炉燃料として使用するものである。前記バインダ
ーとしては、たとえばフェノール樹脂、ピッチ等が使用
される。そして、この発明では、オーバープレスコート
法および射出成形法等のいずれにより製造された燃料コ
ンパクトであるかに限定はない。
Sintered graphite materials to be analyzed by the method of the present invention include those known per se, such as fuel compacts. A fuel compact is a compact made by mixing coated fuel particles and graphite powder and bonding them with a binder to form a compact, which is used as a fuel for a high-temperature gas reactor. As the binder, for example, phenol resin, pitch, etc. are used. In the present invention, there is no limitation as to whether the fuel compact is manufactured by an overpress coating method, an injection molding method, or the like.

また、燃料コンパクトの形状には、フラー/ )、ディ
ツシュ、チャツファ付き等種々有るが、いずれの形状で
あっても、陰極と陽極との間に燃料コンパクトを配置し
て電気分解することができれば特に制限がない、ただし
、電気化学的破砕を効率的に行なうためには、第1図に
示すように、一端面から多端面に貫通する貫通孔5を有
することにより水平断面が環状となっている筒状の形状
を有する燃料コンパクト2が好ましい。
In addition, there are various shapes of fuel compacts such as fuller/ ), dish, and chachufa, but regardless of the shape, if the fuel compact can be placed between the cathode and anode and electrolysis can be carried out, then There is no limit, however, in order to efficiently perform electrochemical crushing, as shown in FIG. A fuel compact 2 having a cylindrical shape is preferred.

前記酸化性酸溶液lは、電気分解により燃料コンパクト
中の遊離炭素を酸化することができる酸化性物質を生成
することができる酸であれば特に制限がなく、特に硝酸
水溶液を好適に使用することができる。硝酸水溶液を使
用する場合、硝酸濃度は、通常4〜14規定、好ましく
は6〜11規定である。硝酸濃度が4規定よりも薄いと
、電気分解の進行に従い電流密度が低下すること1発生
する窒素酸化物が少ないため電解時間が長くなることな
どの不都合を生じることがあり、また硝酸濃度が11規
定よりも濃いと、液温か高くなることによって粒子の破
損が起ること、発生ガス量が多く、装置器具等の腐食が
起ることなどの不都合を生じることがある。
The oxidizing acid solution l is not particularly limited as long as it is an acid that can generate an oxidizing substance capable of oxidizing free carbon in the fuel compact by electrolysis, and a nitric acid aqueous solution is particularly preferably used. Can be done. When using a nitric acid aqueous solution, the nitric acid concentration is usually 4 to 14N, preferably 6 to 11N. If the nitric acid concentration is lower than 4N, there may be disadvantages such as the current density decreases as the electrolysis progresses, and the electrolysis time becomes longer because fewer nitrogen oxides are generated. If the concentration is higher than the specified value, problems may occur, such as particle breakage due to the high liquid temperature, large amount of gas generated, and corrosion of equipment, etc.

電気分解に使用する電極としては、たとえば白金陰極と
白金陽極とを使用することができる。陰極と陽極とは、
たとえば、前記筒状の燃料コンパクトを使用する場合、
第1図に示すように、コイル状に形成した白金陽極4を
燃料コンパクトの貫通孔5内に挿入配置すると共に、こ
の燃料コンパクト2の外周に筒状の白金陰極3を配置す
るのが好適である。この発明では、燃料コンパクトを陰
極と陽極との間に介在させた状態で電気分解をすること
ができれば良いのであるから、陰極と陽極との形状1位
置等に特に限定がなく、第1図に示す形状および配置の
陰極および陽極の外に、たとえば第2図に示すように、
電気分解漕6を陰極とし、この電気分解漕6に満たした
酸化性酸溶液1中に板状、あるいは棒状の陽極4を浸漬
する構成であっても良い、もっとも、電気分解による燃
料コンパクトの破砕については、第1図に示す形状、配
置の電極の組合せの方が、第2図に示すものよりも効果
的であろう。
As the electrodes used for electrolysis, for example, a platinum cathode and a platinum anode can be used. What are cathodes and anodes?
For example, when using the cylindrical fuel compact,
As shown in FIG. 1, it is preferable to insert a platinum anode 4 formed into a coil shape into a through hole 5 of the fuel compact, and to arrange a cylindrical platinum cathode 3 around the outer periphery of the fuel compact 2. be. In this invention, since it is sufficient to perform electrolysis with the fuel compact interposed between the cathode and the anode, there is no particular limitation on the shape and position of the cathode and anode, and as shown in FIG. In addition to the cathode and anode of the shape and arrangement shown, for example as shown in FIG.
The structure may be such that the electrolysis tank 6 is used as a cathode, and the plate-shaped or rod-shaped anode 4 is immersed in the oxidizing acid solution 1 filled in the electrolysis tank 6.However, it is possible to crush the fuel compact by electrolysis. Regarding this, the combination of electrodes having the shape and arrangement shown in FIG. 1 will be more effective than the one shown in FIG. 2.

電気分解時の電流密度としては、通常、陰極100m2
あたり3〜20A、好ましくは5〜15Aであり、加電
圧としては、通常2〜18V、好ましくは5〜15vで
ある。
The current density during electrolysis is usually 100m2 at the cathode.
The applied voltage is usually 2 to 18 V, preferably 5 to 15 V.

この発明の方法においては、前記のように、酸化性酸溶
液lたとえば硝酸水溶液に焼結黒鉛材料たとえば燃料コ
ンパクト2を浸漬し、第1図に示すように、この燃料コ
ンパクト2をはさんで陰極たとえば白金陰極3および陽
極たとえば白金陽極4を配置し、両電極に直流を印加す
ることにより硝酸を電気分解すると、白金陰極側に窒素
酸化物たとえば一酸化窒素、二酸化窒素、三酸化窒素等
が発生し、これらの窒素酸化物により燃料コンパクト2
中の遊離炭素が酸化して炭酸ガスとなって大気中に揮散
すると共に未酸化の遊離炭素が硝酸溶液中に溶出する。
In the method of the present invention, as described above, a sintered graphite material such as the fuel compact 2 is immersed in an oxidizing acid solution l such as a nitric acid aqueous solution, and the fuel compact 2 is sandwiched between the fuel compacts 2 and the cathode as shown in FIG. For example, when a platinum cathode 3 and an anode such as a platinum anode 4 are arranged and nitric acid is electrolyzed by applying direct current to both electrodes, nitrogen oxides such as nitrogen monoxide, nitrogen dioxide, nitrogen trioxide, etc. are generated on the platinum cathode side. However, due to these nitrogen oxides, fuel compact 2
The free carbon inside is oxidized and becomes carbon dioxide gas, which is volatilized into the atmosphere, and unoxidized free carbon is eluted into the nitric acid solution.

このとき、燃料コンパクト2の破砕と遊離炭素の酸化と
が同時に、かつ短時間のうちに進行することとなるので
ある。
At this time, the crushing of the fuel compact 2 and the oxidation of free carbon proceed simultaneously and within a short period of time.

電気分解後、燃料コンパクトの固形残分を濾別し、得ら
れた固形残分を加熱して高次の遊離炭素を揮散する。
After electrolysis, the solid residue of the fuel compact is filtered off, and the resulting solid residue is heated to volatilize higher free carbon.

固形残分の濾別は、酸化性酸溶液の濃度が大きくないの
で、通常の濾過手段たとえば濾紙を採用することができ
、濾過手段に限定はない。
For separating the solid residue by filtration, since the concentration of the oxidizing acid solution is not large, ordinary filtration means such as filter paper can be used, and the filtration means is not limited.

また、得られる固形残分の加熱は1通常450〜650
℃、好ましくは550〜600℃である。
In addition, the heating of the obtained solid residue is usually 450 to 650
℃, preferably 550 to 600℃.

この発明では、電気分解により焼結黒鉛材料たとえば燃
料コンパクト中の低次の遊離炭素を酸化して炭酸ガスと
して揮散し、電気分解後の加熱により燃料コンパクト中
の高次の遊離炭素を分解揮散するので、電気分解前の燃
料コンパクトの重量と加熱後に得られる固形分の重量と
を秤量しておくと、その差により燃料コンパクト中の遊
離炭素を算出し、これを定量することができる。
In this invention, lower-order free carbon in a sintered graphite material, such as a fuel compact, is oxidized by electrolysis and volatilized as carbon dioxide gas, and higher-order free carbon in the fuel compact is decomposed and volatilized by heating after electrolysis. Therefore, by weighing the weight of the fuel compact before electrolysis and the weight of the solid content obtained after heating, the free carbon in the fuel compact can be calculated and quantified from the difference.

[発明の効果] この発明に係る方法によると、焼結黒鉛材料が燃料コン
パクトであるとき、電気分解により燃料コンパクトを破
砕するので燃料コンパクト中の被覆燃料粒子が何らの破
壊も受けなくなり、核燃料物質で周囲を汚染する危険が
全くなく、きわめて安全に遊離炭素を定量することがで
きる。また、この発明の方法は、電気化学的破砕方法お
よび単純な加熱操作を採用するので、短時間で遊離炭素
を簡単な操作で正確に定量することができる。また、電
気分解に際しては、高濃度の酸化性酸溶液を使用しない
ので、固形残分の濾過操作において、濾過材に限定がな
く、汎用の濾紙を簡易に使用することができる。
[Effects of the Invention] According to the method of the present invention, when the sintered graphite material is a fuel compact, the fuel compact is crushed by electrolysis, so that the coated fuel particles in the fuel compact are not destroyed in any way, and the nuclear fuel material is Free carbon can be determined extremely safely with no risk of contaminating the surrounding area. Further, since the method of the present invention employs an electrochemical crushing method and a simple heating operation, free carbon can be accurately quantified in a short time and with a simple operation. Furthermore, since a highly concentrated oxidizing acid solution is not used during electrolysis, there is no restriction on the filter material in the filtration operation of the solid residue, and general-purpose filter paper can be easily used.

[実施例] 次にこの発明の実施例を示してこの発明を更に具体的に
説明する。
[Examples] Next, the present invention will be described in more detail by showing examples of the present invention.

(実施例1−13) 第1表に示す配合量の黒鉛粉末と第1表に示す配合量の
被覆燃料粒子(炭化ケイ素で被覆)とフェノール樹脂と
を混合し、射出成型することにより第1表に示す重量の
燃料コンパクトを得た。
(Example 1-13) Graphite powder in the amount shown in Table 1, coated fuel particles (coated with silicon carbide) in the amount shown in Table 1, and phenol resin were mixed and injection molded. Fuel compacts with the weights shown in the table were obtained.

第1図に示すように、コイル状の白金陽極と円筒状の白
金陰極とを装着した前記燃料コンパクトを、9規定の硝
酸水溶液中に浸漬した0次いで、白金陰極100m2あ
たりIOAの電流密度、および15Vの電圧で硝酸水溶
液の電気分解を8時間行なった。電気分解後の硝酸水溶
液の硝酸濃度は約6規定であった0次いで、電気分解後
の硝酸水溶液を濃化して固形残分を取出し、これを60
0℃に加熱した。加熱時間は2時間である。
As shown in FIG. 1, the fuel compact equipped with a coiled platinum anode and a cylindrical platinum cathode was immersed in a 9N nitric acid aqueous solution. Electrolysis of the nitric acid aqueous solution was carried out at a voltage of 15V for 8 hours. The nitric acid concentration of the nitric acid aqueous solution after electrolysis was about 6N.Next, the nitric acid aqueous solution after electrolysis was concentrated to take out the solid residue, and this was
Heated to 0°C. Heating time is 2 hours.

加熱後の固形分の重量を秤量し、その秤量結果およびこ
の秤量結果から得られる遊#炭素の重量を第1表に示す
The weight of the solid content after heating was weighed, and Table 1 shows the weighing results and the weight of free carbon obtained from the weighing results.

(以下、余白) 第1表 第1表におけるAとBとの重量が燃料コンパクトの製造
および遊離炭素の分析中に変化しなければ、AとBとの
合計重量がDの値となるはずである。第1表のデータが
示すように、このAとBとの合計重量とDの重量との比
は、98.8〜100゜2%であるから、Dの値はこの
方法による分析定量値として十分に信頼できるものであ
る。
(Hereinafter, blank space) Table 1 If the weights of A and B in Table 1 do not change during the production of the fuel compact and the analysis of free carbon, the total weight of A and B should be the value of D. be. As the data in Table 1 shows, the ratio of the total weight of A and B to the weight of D is 98.8 to 100°2%, so the value of D can be calculated as an analytical quantitative value using this method. It is fully reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法における電気分解の一態様を示
す縦断面図および第2図はこの発明における電気分解の
他の態様を示す縦断面図である。 1・・・酸化性酸溶液、2・・・燃料コンパクト、3・
・φ陰極、4・・・陽極。 特許出願人  原子燃料工業株式会社 第1図 第2図
FIG. 1 is a longitudinal sectional view showing one aspect of electrolysis in the method of the present invention, and FIG. 2 is a longitudinal sectional view showing another aspect of electrolysis in the invention. 1...Oxidizing acid solution, 2...Fuel compact, 3.
・φ cathode, 4... anode. Patent applicant Nuclear Fuel Industry Co., Ltd. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)酸化性酸溶液に浸漬した焼結黒鉛材料を陰極と陽
極とではさんで電気分解し、電気分解後の固形残分を加
熱することにより生じる固形分の重量損失を定量するこ
とを特徴とする焼結黒鉛材料中の遊離炭素の定量方法。
(1) A sintered graphite material immersed in an oxidizing acid solution is electrolyzed between a cathode and an anode, and the solid residue after electrolysis is heated to quantify the weight loss of the solid content. A method for quantifying free carbon in sintered graphite materials.
(2)前記焼結黒鉛材料が燃料コンパクトである特許請
求の範囲第1項に記載の焼結黒鉛材料中の遊離炭素の定
量方法。
(2) The method for quantifying free carbon in a sintered graphite material according to claim 1, wherein the sintered graphite material is fuel compact.
JP4318785A 1985-03-04 1985-03-04 Quantitatively determining method for free carbon in sintered graphite material Pending JPS61201165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318785A JPS61201165A (en) 1985-03-04 1985-03-04 Quantitatively determining method for free carbon in sintered graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318785A JPS61201165A (en) 1985-03-04 1985-03-04 Quantitatively determining method for free carbon in sintered graphite material

Publications (1)

Publication Number Publication Date
JPS61201165A true JPS61201165A (en) 1986-09-05

Family

ID=12656909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318785A Pending JPS61201165A (en) 1985-03-04 1985-03-04 Quantitatively determining method for free carbon in sintered graphite material

Country Status (1)

Country Link
JP (1) JPS61201165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694769A1 (en) * 1992-08-15 1994-02-18 British Nuclear Fuels Plc Process for the treatment of graphite waste
CN108680530A (en) * 2018-04-20 2018-10-19 攀钢集团攀枝花钢钒有限公司 Free Carbon analysis method in titanium carbide slag
CN108956259A (en) * 2018-06-20 2018-12-07 攀钢集团西昌钢钒有限公司 The detection method of free carbon in a kind of continuous casting covering slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694769A1 (en) * 1992-08-15 1994-02-18 British Nuclear Fuels Plc Process for the treatment of graphite waste
US6319391B1 (en) 1992-08-15 2001-11-20 British Nuclear Fuels Removal of metal from graphite
CN108680530A (en) * 2018-04-20 2018-10-19 攀钢集团攀枝花钢钒有限公司 Free Carbon analysis method in titanium carbide slag
CN108956259A (en) * 2018-06-20 2018-12-07 攀钢集团西昌钢钒有限公司 The detection method of free carbon in a kind of continuous casting covering slag

Similar Documents

Publication Publication Date Title
US6540902B1 (en) Direct electrochemical reduction of metal-oxides
Hoover et al. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiClKCl eutectic salt
DE2752875A1 (en) ELECTRODE FOR ELECTROCHEMICAL PROCESSES AND METHOD FOR THE PRODUCTION THEREOF
JPS61201165A (en) Quantitatively determining method for free carbon in sintered graphite material
EP2638546B1 (en) Method for the conditioning of waste coming from decommissioning of nuclear plants
He et al. Synthesis and characterization of Pt-Ti 4 O 7 microelectrode arrays
Mohandas et al. Feasibility study of electrochemical conversion of solid ZrO2 to Zr metal in LiCl-(0-1 wt%) Li2O melts with graphite and platinum anodes
DE3023703C2 (en)
Maslennikov et al. Technetium electrochemical reduction in nitric solutions at mercury and carbon electrodes
US7575623B2 (en) Method for leaching aluminium-metal alloys
JP2000321263A (en) Quantitative determination method for trivalent titanium ions and divalent iron ions
Poineau et al. Electrochemical studies of technetium–ruthenium alloys in HNO 3: Implications for the behavior of technetium waste forms
Makhanbetov et al. Electrochemical behavior of manganese dioxide when a part of the composite electrode and electrochemical leaching of manganese ore in a sulfuric acid medium
JP2891524B2 (en) Graphite crucible for oxygen determination
Habashy Quantitative Determination of Metallic Iron in Presence of Iron Oxides in Treated Ores and Slags
DE2027482A1 (en) Method for increasing the activity of porous fuel cell electrodes
Madic et al. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions
Gobert et al. Electrochemical study of PbSe using the carbon paste electrode technique
Bray et al. Development of the CEPOD process for dissolving plutonium oxide and leaching plutonium from scrap or wastes
Johnson et al. The Anodic Dissolution of Cadmium
Hobbs Summary technical report on the electrochemical treatment of alkaline nuclear wastes
Horner et al. Electrolytic trapping of iodine from process gas streams
DE2135949A1 (en) Method and device for determining the oxygen demand of aqueous samples
Kaiser et al. Electrochemical Corrosion of Iron Magnesium Aluminate Spinel and Lanthanum Chromite in Molten Potassium Sulfate
Xiao et al. Laboratory study of property-modified prebaked carbon anode and application in large aluminum electrolysis cells