JPS61201118A - Optical liquid level gage - Google Patents

Optical liquid level gage

Info

Publication number
JPS61201118A
JPS61201118A JP4232585A JP4232585A JPS61201118A JP S61201118 A JPS61201118 A JP S61201118A JP 4232585 A JP4232585 A JP 4232585A JP 4232585 A JP4232585 A JP 4232585A JP S61201118 A JPS61201118 A JP S61201118A
Authority
JP
Japan
Prior art keywords
light
faces
liquid level
fuel
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4232585A
Other languages
Japanese (ja)
Inventor
Ichiro Chiba
一郎 千葉
Toru Nishida
徹 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeco Corp
Original Assignee
Jeco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeco Corp filed Critical Jeco Corp
Priority to JP4232585A priority Critical patent/JPS61201118A/en
Publication of JPS61201118A publication Critical patent/JPS61201118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To measure the liquid level of liquid media to be measured based upon the light quantity of the reflecting light by providing the inclined-face at the optical sensor which reflects totally the incident light when contacting with gaseous media and transmits the incident light when contacting with the media to be measured. CONSTITUTION:When a light source 7 lights up, the rays of light pass through a convex lens 8, go to be a parallel beam, make incident on the light incoming part 2 of an optical sensor 1 and reach inclined-faces 5a-5n of level difference parts 4a-4n. Here, for example, when inclined-faces 5a-5d as well contact with the air and inclined-faces 5e-5n contact with a liquid fuel 12, the beam which reaches the inclined-faces 5a-5d is totally reflected. On the other hand, the beam which reaches the inclined-faces 5e-5n, transmits through the faces and is emitted to a fuel 12 side. The beam totally reflected by the inclined-faces 5a-5d, reaches inclined-faces 6a-6d, is totally reflected again, is emitted from a light coming-out part 3 and is irradiated to a photodetecting body 9. The light quantity of the reflecting light is the quantity corresponding to the liquid level of the fuel 12, the liquid level of the fuel 12 to the sensor 1 is detected based upon the resistance value measured by a resistance meter 10 and the level is converted to the depth from the bottom surface of a tank 13 to display 11 said value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車輌及び燃焼機器等における液体燃料の液位測
定に用いて好適な光式液位計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical level gauge suitable for use in measuring the level of liquid fuel in vehicles, combustion equipment, and the like.

〔従来の技術〕[Conventional technology]

従来からこの種の液位針として、一般にフロート式の液
位針が用いられている。このフロート式の液位針は、回
動自在に設けたアームの先端にフロートを有しておシ、
このフロートの浮力を利用して、車輌等における液体燃
料の液位を測定するようにしている。すなわち、フロー
トの浮力によるアームの回動に応じて回路抵抗部を摺動
変化させるようにし、この回路抵抗の変化より液体燃料
の液位を測定するようにしている。
Conventionally, a float type liquid level needle has generally been used as this type of liquid level needle. This float type liquid level needle has a float at the tip of a rotatable arm.
The buoyancy of this float is used to measure the level of liquid fuel in a vehicle or the like. That is, the circuit resistance section is slidably changed in accordance with the rotation of the arm due to the buoyancy of the float, and the liquid level of the liquid fuel is measured from the change in the circuit resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のこのような液位針によると、フロ
ートを有するアームの機械運動によって回路抵抗部を摺
動させるような構成であるので、該摺動部が摩耗してし
まい極めて寿命の短いものであった。また、多種類の機
構部品よシ構成されているため、その信頼性は悪く、組
立製造も難易で過大が工数を必要とするものであった。
However, with such conventional liquid level needles, the circuit resistance section is slid by mechanical movement of an arm having a float, so the sliding section wears out and has an extremely short lifespan. there were. Furthermore, since it is composed of many types of mechanical parts, its reliability is poor, and assembly and manufacturing are difficult and require an excessive number of man-hours.

さらに、フロートを支持するアーム等によυその形状が
制限されるので、例えば車輌等に搭載される燃料タンク
に用いた場合、揺動量の最も少ないタンク中央の液面の
液位を計測することが困難であった。
Furthermore, since the shape of the float is limited by the arm that supports the float, for example, when used in a fuel tank mounted on a vehicle, it is recommended to measure the liquid level at the center of the tank, where the amount of rocking is least. was difficult.

すなわち、タンク内の燃料はその車輌の運転状態によっ
て揺動する。一般に、この揺動量はタンク端部において
大きく、タンク中央部になるにつれて小さくなる。しか
るに、タンク中央の液位を計測することが望まれるわけ
だが、フロート式の液位針においては前述の如くそのア
ーム等によシ形状が制限されるので、タンク中央ではな
く端部近傍の液面を計測してしまうことになる。したが
って、車輌の運転状態によってはその計測値にかなりの
誤差が含まれてしまい、高精度で液位を計測することが
できないという不具合点が生ずるものであった。また、
アーム等の形状を巧みに設計し、タンク中央の液位を計
測できるようにしたとしても、液体燃料の液位が低くな
った様な場合、フロートの厚みが邪魔をしてしまい、低
液位の計測が出来ないという不具合が生じてしまうもの
であった。
That is, the fuel in the tank fluctuates depending on the driving condition of the vehicle. Generally, this amount of rocking is large at the ends of the tank and becomes smaller toward the center of the tank. However, it is desirable to measure the liquid level at the center of the tank, but as mentioned above, the shape of the float-type liquid level needle is limited by its arm, etc. You will end up measuring the surface. Therefore, depending on the driving condition of the vehicle, the measured value may include a considerable error, resulting in a problem that the liquid level cannot be measured with high accuracy. Also,
Even if the shape of the arm etc. is skillfully designed so that the liquid level in the center of the tank can be measured, if the liquid level of the liquid fuel becomes low, the thickness of the float will interfere and the liquid level will be too low. This caused a problem in that it was not possible to measure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような不具合点を解消するためになされた
もので、平行光線を入射光とする透過光材よシなる光セ
ンサに、気体媒体に接する時は前記入射光を全反射し被
測定液体媒体に接する時は前記入射光を透過する傾斜面
を設けたものである。
The present invention has been made to solve these problems, and is designed to provide an optical sensor made of a transmissive light material that uses parallel light as incident light. An inclined surface is provided that transmits the incident light when it comes into contact with a liquid medium.

〔作用〕[Effect]

したがって本発明による光式液位計によると、光センサ
の傾斜面で全反射する反射光の光量に基づいて被測定液
体媒体の光センサに対する液位の計測が可能となる。
Therefore, according to the optical level meter according to the present invention, it is possible to measure the liquid level of the liquid medium to be measured relative to the optical sensor based on the amount of reflected light that is totally reflected on the inclined surface of the optical sensor.

〔礎施例〕[Foundation example]

以下、本発明に係る光式液位計を詳細に説明する。第1
図はこの光式液位計に用いる光センサの一実施例を示す
正面図、第2図は第1図の■−■線断面図である。この
光センサ1は無色透明のアクリル樹脂あるいはガラス等
の透過光材よシなる薄板より形成されており、その上端
部には鏡面仕上げの施された上面2&および3aを有す
る入党部2および出光部3が突出形成されている。また
、この光センサ1の前面には所定幅H(8vm>+所定
段差厚t (0,4m)でもって複数の段差部4a〜4
nが階段状に形成されておシ、各段差部41〜4nの両
端部には所定傾斜角α(本実施例においては45゜±3
°)の傾斜面5&〜5n、6a〜6nが夫々形成されて
いる。この傾斜面5a〜5n、6a〜6nの傾斜II 
Hlは入光部2.出出光3の入党および出光幅Hz(a
tI)に等しく設定されており、傾斜面51〜5n 、
6a〜6nの下面は鏡面仕上けが施されている。
Hereinafter, the optical liquid level meter according to the present invention will be explained in detail. 1st
The figure is a front view showing an embodiment of the optical sensor used in this optical liquid level gauge, and FIG. 2 is a sectional view taken along the line ■--■ in FIG. 1. This optical sensor 1 is formed from a thin plate made of a transparent light-transmitting material such as a colorless and transparent acrylic resin or glass, and has an entrance part 2 and a light output part having mirror-finished upper surfaces 2 and 3a at the upper end thereof. 3 is formed protrudingly. Further, on the front surface of this optical sensor 1, there are a plurality of step portions 4a to 4 with a predetermined width H (8vm>+predetermined step thickness t (0,4m)).
n is formed in a step-like manner, and a predetermined inclination angle α (45°±3 in this embodiment) is formed at both ends of each stepped portion 41 to 4n.
5n and 6a to 6n are formed, respectively. Inclination II of these inclined surfaces 5a to 5n, 6a to 6n
Hl is the light entrance part 2. Idemitsu 3 joins the party and Idemitsu width Hz (a
tI), and the inclined surfaces 51 to 5n,
The lower surfaces of 6a to 6n are mirror finished.

ところで、この光センサ1の入光部2には液位計測時、
後述する如く平行光線が入射されるようになっておシ、
この入射された平行光線は段差部4&〜4nの傾斜面5
a〜5nに達し、該傾斜面51〜5nと相接する媒体が
空気領域においては、該空気領域に相接する傾斜面5a
〜5nで全反射するよう釦なっており、傾斜面5a〜5
nと相接する媒体が被測定液体媒体にあっては傾斜面5
a〜5nで反射することなく透過するようになっている
。すなわち、空気の屈折率をnt +誉測定液体の屈折
率をnz(nz>n+)、光センサ1の材質の屈折率を
n3としたとき、入射された平行光線が全反射を起こし
始める角度(臨界角)θは、 相接する媒体が空気の場合においては、θl= sln
 −”□ 相接する媒体が被測定液体の場合においては、θ2=s
in−1− となる。したがって、傾斜面5IL〜5nの傾斜角αを
01 よシ亀大きく、θ2よシも小さく(θ1〈αくθ
2)すれば、入射された平行光線は空気領域で全反射し
、被測定液体領域において透過するようになる。すなわ
ち、本実施例における傾斜角α=45°±3°は、被測
定液体がガソリンの場合の前記θ1〈αくθ2を満足す
る傾斜角となっている。
By the way, when measuring the liquid level, the light entrance part 2 of this optical sensor 1 has a
As will be described later, parallel rays are now incident,
This incident parallel ray is transmitted to the inclined surface 5 of the stepped portion 4&~4n.
a to 5n and in contact with the sloped surfaces 51 to 5n in the air region, the sloped surface 5a adjacent to the air region
The button is designed to cause total reflection at 5n, and the inclined surface 5a to 5
If the medium in contact with n is a liquid medium to be measured, the inclined surface 5
It is designed to transmit without being reflected at wavelengths a to 5n. That is, when the refractive index of the air is nt + the refractive index of the measuring liquid is nz (nz>n+), and the refractive index of the material of the optical sensor 1 is n3, the angle at which the incident parallel ray starts to cause total reflection ( Critical angle) θ is: When the adjoining medium is air, θl= sln
−”□ When the contacting medium is the liquid to be measured, θ2=s
in-1-. Therefore, the inclination angle α of the inclined surfaces 5IL to 5n is larger than 01, and smaller than θ2 (θ1<α
2) Then, the incident parallel light beam will be totally reflected in the air region and will be transmitted in the liquid region to be measured. That is, the inclination angle α=45°±3° in this embodiment is an inclination angle that satisfies the above-mentioned θ1<α−θ2 when the liquid to be measured is gasoline.

しかして、このように構成された光センサ1は液体燃料
の液位を計測する際、第3図の如く配置されて使用され
る。すなわち、図において7は凸レンズ8の焦点に配設
された光源であり、凸レンズ8は光センサ1の入光部2
の上面2aに所定間隙をもって対向配設されている。ま
た、光センサ1の出光部3の上面3aには受光量に応じ
てその抵抗値が変化する光導電素子よシなる受光体9が
載置されておシ、この受光体9は該受光体の抵抗値を測
定する抵抗計10に接続されている。そして、この抵抗
計10はデジタル式表示計11に接続されておシ、抵抗
計10の測定した抵抗値に基づいて光センサ1に対する
液体燃料12の液位が検出され、液体燃料12の深さに
換算されて、表示計11の表示部に表示されるようにな
っている。
When the optical sensor 1 thus constructed is used to measure the level of liquid fuel, it is arranged as shown in FIG. 3 and used. That is, in the figure, 7 is a light source disposed at the focal point of a convex lens 8, and the convex lens 8 is a light input part 2 of the optical sensor 1.
They are disposed opposite to each other with a predetermined gap on the upper surface 2a of the. Further, a photoreceptor 9 such as a photoconductive element whose resistance value changes depending on the amount of light received is placed on the upper surface 3a of the light emitting part 3 of the optical sensor 1. It is connected to a resistance meter 10 that measures the resistance value of. The resistance meter 10 is connected to a digital display meter 11, and the liquid level of the liquid fuel 12 relative to the optical sensor 1 is detected based on the resistance value measured by the resistance meter 10. This is converted into and displayed on the display section of the display meter 11.

尚、13は液体燃料12の容器をなす燃料タンクであり
、光センサ1はその下部側をタンク13の液体燃料12
に浸す如く配設固定されている。
Note that 13 is a fuel tank serving as a container for the liquid fuel 12, and the optical sensor 1 has its lower side connected to the liquid fuel 12 of the tank 13.
It is arranged and fixed as if it were immersed in water.

次に、このように構成された光式液位計の動作を説明す
る。すなわち、第3図において、光源7を点灯させると
、光源7より発した光は凸レンズ8を通過し、平行光線
となり、光センサ1の入光部2に入射される。この入射
された平光光線は段差部4&〜4nの傾斜面5a〜5n
に達する。ここで、例えば傾斜面5a〜5dまでが空気
に相接し、残る傾斜面56〜5nが液体燃料12に相接
しているものとすると、傾斜面5急〜5dに達した平行
光線は該傾斜面51〜5dにおいて全反射する。しかし
、傾斜面5e〜5nに達した平行光線は全反射せず、該
傾斜面5e〜5nを透過し、液体燃料12側に出光する
。傾斜面5a〜5dにおいて全反射した平行光線は傾斜
面61〜6dに達し、ここで再び全反射し、反射光とし
て出光部3よシ出光しようとする。
Next, the operation of the optical liquid level gauge configured as described above will be explained. That is, in FIG. 3, when the light source 7 is turned on, the light emitted from the light source 7 passes through the convex lens 8, becomes a parallel light beam, and enters the light entrance section 2 of the optical sensor 1. This incident flat ray is transmitted to the inclined surfaces 5a to 5n of the stepped portions 4& to 4n.
reach. Here, for example, assuming that the slopes 5a to 5d are in contact with the air and the remaining slopes 56 to 5n are in contact with the liquid fuel 12, the parallel rays that have reached the steep slopes 5 to 5d are Total reflection occurs on the inclined surfaces 51 to 5d. However, the parallel light beams that have reached the inclined surfaces 5e to 5n are not totally reflected, but are transmitted through the inclined surfaces 5e to 5n and exit to the liquid fuel 12 side. The parallel light beams that are totally reflected on the inclined surfaces 5a to 5d reach the inclined surfaces 61 to 6d, where they are totally reflected again and try to be emitted from the light emitting section 3 as reflected light.

ところが、出口部3には受光体9が載置されておシ、こ
の受光体9に前記反射光が照射される。そして、この照
射された反射光の光量に応じて受光体9の抵抗値が変化
する。この時、反射光の光量は光センサ1に対する液体
燃料12の液位に応じた量となっている。つまシ、受光
体9の抵抗値は液体燃料12の液位に応じた抵抗値とな
り、この抵抗値が抵抗計10にて測定される。しかして
、この抵抗値に基づいて、光センサ1に対する液体燃料
12の液位が検出され、液体燃料12のタンク13の底
面からの深さに換算されて表示計11の表示部に表示さ
れる。
However, a photoreceptor 9 is placed on the exit portion 3, and the reflected light is irradiated onto the photoreceptor 9. Then, the resistance value of the photoreceptor 9 changes depending on the amount of reflected light. At this time, the amount of reflected light corresponds to the level of the liquid fuel 12 relative to the optical sensor 1. The resistance value of the pick and the photoreceptor 9 corresponds to the level of the liquid fuel 12, and this resistance value is measured by a resistance meter 10. Then, based on this resistance value, the liquid level of the liquid fuel 12 with respect to the optical sensor 1 is detected, converted to the depth of the liquid fuel 12 from the bottom of the tank 13, and displayed on the display section of the display meter 11. .

第3図において、液体燃料12の容量が増えれば、受光
体9に照射される反射光の光量が減少し、容量が減れば
反射光の光量が増加するので、この光量の減少、増加に
応じて液体燃料の深さを計測することができる。また、
83図において、光センサ1をタンク13の底面に当接
させる如く配置すれば、低液位の計測が可能となる。
In FIG. 3, as the capacity of the liquid fuel 12 increases, the amount of reflected light irradiating the photoreceptor 9 decreases, and as the capacity decreases, the amount of reflected light increases. can measure the depth of liquid fuel. Also,
In FIG. 83, if the optical sensor 1 is placed so as to come into contact with the bottom surface of the tank 13, low liquid level measurement becomes possible.

尚、本実施例においては液体燃料の液位を計測するもの
としたが、液体燃料の液位計測に限るものでなく、例え
ば水等の水位計測に用いてもよいということは言うまで
もない。また、必ずしも液位を表示させるようにする必
要はなく、受光体9によって検出される液位に応じた信
号に基づいて他の装置を制御するようにしてもよい。
In this embodiment, the liquid level of liquid fuel is measured, but it goes without saying that the present invention is not limited to measuring the level of liquid fuel, and may be used to measure the level of water, for example. Furthermore, it is not always necessary to display the liquid level, and other devices may be controlled based on a signal corresponding to the liquid level detected by the photoreceptor 9.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による光式液位計によると、
平行光線を入射光とする透過光材よシなる光センサに、
気体媒体に接する時は前記入射光を全反射し被測定液体
媒体に接する時は前記入射光を透過する傾斜面を設けた
ので、該傾斜面で全反射する反射光の光量に基づいて被
測定液体媒体の光センサに対する液位の計測が可能とな
り、従来のようなフロート式の液位針に比して構造が簡
略となシ、組立製造が容易になると共に信頼性および精
度が向上する等数多くの優れた効果を奏する。
As explained above, according to the optical liquid level meter according to the present invention,
For optical sensors such as transparent materials that use parallel light as incident light,
Since we provided an inclined surface that totally reflects the incident light when it comes into contact with a gaseous medium and transmits the incident light when it comes into contact with a liquid medium to be measured, the amount of reflected light that is totally reflected by the inclined surface is used to determine the amount of light to be measured. The liquid level of the liquid medium can be measured using an optical sensor, and the structure is simpler than the conventional float-type liquid level needle, making assembly and manufacturing easier, and improving reliability and accuracy. It has many excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光式液位計に用いる光センサの一
実施例を示す正面図、第2図は第1図のIf−II線断
面図、第3図はこの光式液位計を燃料タンクに装着した
状態を示す概略構成図である。 1・・・・光センサ、2・・・・入光部、3・・・・出
光部、4&〜4n・・・・段差部、5&〜5n、6a〜
6n・・・・傾斜面、9・・・・受光体。
Fig. 1 is a front view showing an embodiment of the optical sensor used in the optical liquid level meter according to the present invention, Fig. 2 is a sectional view taken along the If-II line in Fig. FIG. 2 is a schematic configuration diagram showing a state in which the meter is attached to a fuel tank. 1... Optical sensor, 2... Light entrance part, 3... Light output part, 4&~4n... Step part, 5&~5n, 6a~
6n... Slanted surface, 9... Photoreceptor.

Claims (1)

【特許請求の範囲】[Claims] 平行光線を入射光とし気体媒体に接する時は前記入射光
を全反射し被測定液体媒体に接する時は前記入射光を透
過する傾斜面を有する透過光材よりなる光センサを具備
した事を特徴とする光式液位計。
It is characterized by being equipped with an optical sensor made of a transparent light material having a parallel light beam as incident light and having an inclined surface that totally reflects the incident light when it comes into contact with a gaseous medium and transmits the incident light when it comes into contact with a liquid medium to be measured. Optical liquid level gauge.
JP4232585A 1985-03-04 1985-03-04 Optical liquid level gage Pending JPS61201118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4232585A JPS61201118A (en) 1985-03-04 1985-03-04 Optical liquid level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4232585A JPS61201118A (en) 1985-03-04 1985-03-04 Optical liquid level gage

Publications (1)

Publication Number Publication Date
JPS61201118A true JPS61201118A (en) 1986-09-05

Family

ID=12632854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232585A Pending JPS61201118A (en) 1985-03-04 1985-03-04 Optical liquid level gage

Country Status (1)

Country Link
JP (1) JPS61201118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672127A1 (en) * 1991-01-28 1992-07-31 Arufog Assoc Detector for the change in refractive index of a medium in contact with a transparent wall such as a windscreen or inspection window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672127A1 (en) * 1991-01-28 1992-07-31 Arufog Assoc Detector for the change in refractive index of a medium in contact with a transparent wall such as a windscreen or inspection window

Similar Documents

Publication Publication Date Title
US20030230141A1 (en) Optical fuel level sensor
US4994682A (en) Fiber optic continuous liquid level sensor
US4745293A (en) Method and apparatus for optically measuring fluid levels
US4870292A (en) Fibre optic sensor for liquid level and other parameters
US4246489A (en) Liquid level detector for detecting a liquid level when reaching a prescribed height
US4816670A (en) Optical measuring head
EP0194732A2 (en) Sensor for the measurement of the refractive index of a fluid and/or phase boundary between two fluids by means of visible or invisible light
JPS5943333A (en) Reflectometer
CA1332205C (en) Fibre optic sensors for the continuous measurement of liquid level and other parameters
US4037967A (en) Apparatus for measuring the density of a liquid, utilizing the law of refraction
KR940003737B1 (en) Fibre optic liquid level gauge
EP0964226A1 (en) Reader device for high resolution optical encoder
US4624570A (en) Fiber optic displacement sensor
US6795598B1 (en) Liquid-level sensor having multiple solid optical conductors with surface discontinuities
CN101571479B (en) Measuring device and measuring method for optical liquid concentration based on linear array CCD
US6885455B2 (en) Self-calibration of an optical-based sensor using a total internal reflection (TIR) signature
JPS6459003A (en) Optical information storage medium inspecting device
JPS61201118A (en) Optical liquid level gage
US20180364078A1 (en) Front pick-up illuminated pointer
US3672777A (en) Apparatus for sensing a change in light intensity
JPH0262183B2 (en)
CN101806731B (en) Differential solution concentration measuring method and device based on CCD (Charge Coupled Device) and trapezoidal vitreous body
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JPS59114415A (en) Liquid level indicator
JPH0234582Y2 (en)