JPS61201108A - Non-contacting measuring device for third rail irregularity - Google Patents

Non-contacting measuring device for third rail irregularity

Info

Publication number
JPS61201108A
JPS61201108A JP4134485A JP4134485A JPS61201108A JP S61201108 A JPS61201108 A JP S61201108A JP 4134485 A JP4134485 A JP 4134485A JP 4134485 A JP4134485 A JP 4134485A JP S61201108 A JPS61201108 A JP S61201108A
Authority
JP
Japan
Prior art keywords
rail
rails
measure
contact
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4134485A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamada
山田 徹夫
Shiyuuji Sugimura
杉村 秋司
Masayuki Ito
昌之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP4134485A priority Critical patent/JPS61201108A/en
Publication of JPS61201108A publication Critical patent/JPS61201108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the titled device and to improve its measuring speed by arranging respectively non-contacting displacement measuring sensors to respective rails, and detecting the relative position for the special reference surface of the peak of the rails which are respectively objects, by three pairs of the sensors. CONSTITUTION:Peaks Pa, Pb and Pc of the first, second and third rails are respectively the peaks of rails 1a, 1b and 1c, the height from a reference surface Ho is respectively (a), (b) and (c), and then, the third rail irregularity DELTAH is expressed as the formula. A Gab is an actually measured size between the peak Pa and Pb of the first and second rails, a Gbc is an actually measured size between the peaks Pb and Pc of the second and third rails and are the already known constants. At such a time, the height (a), (b) and (c) are detected by non-contacting displacement measuring sensors 5a, 5b and 5c, and the calculation shown in the formula is executed, the symbol DELTAH is counted and then, the third rail irregularity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は第3軌条狂いを、第3軌条の不連続個所でも安
全に測定でき、しかも測定速度も測定精度も、従来より
向上した第3軌条狂いの非接触測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention can safely measure the third rail deviation even at discontinuous points of the third rail, and moreover, the third rail deviation can be safely measured even at discontinuous points of the third rail, and the measurement speed and accuracy are improved compared to the conventional third rail. Concerning a non-contact measurement device for track deviation.

〔従来の技術〕[Conventional technology]

第2図(a)は、第3軌条で給電するようにした例えば
地下鉄の線路の平面図を示し、1aは第1軌条、■bは
第2軌条、ICは第3軌条で、電車は第1軌条1aと第
2軌条1bを走行軌条として、これらの軌条に支持、案
内され、第3執条1cから給電されて走行する。
Figure 2 (a) shows a plan view of, for example, a subway track where power is supplied from the third rail, where 1a is the first rail, ■b is the second rail, IC is the third rail, and the train is on the third rail. The first rail 1a and the second rail 1b are used as running rails, and the vehicle is supported and guided by these rails, and is powered by the third rail 1c to run.

第3軌条ICには、その側面図第2図(b)に示すよう
に、セクションの変わり目ごとに不連続部分があって、
機械接触方式で第3軌条狂いを測定しようとす墨と、不
連続部分にさしかかる度に一旦停止して変位測定センサ
を引き上げて不連続個所を通過するか、ガイドシューを
設けるなどの処置をしなければならない。
As shown in the side view of FIG. 2(b), the third rail IC has discontinuous parts at each section change.
When trying to measure the third track deviation using the mechanical contact method, each time the machine comes to a discontinuity, it is necessary to stop and pull up the displacement measurement sensor to pass the discontinuity, or take measures such as installing a guide shoe. There must be.

また従来の機械接触方式の測定装置では、走行軌条の狂
いが第3軌条狂いの測定精度に影響を与える。
Furthermore, in the conventional mechanical contact type measuring device, the misalignment of the traveling rail affects the measurement accuracy of the third rail misalignment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来の機械接触方式の第3軌条狂い測定装置
では、セクションの変わり目の第3軌条の不連続部分に
さしかかる度に、一旦停止したり、センサを引き上げた
りしなければならないので、操作が煩雑で測定に長い時
間がかかり、しかも安全性の面でも問題があるので、こ
れらの問題点を解決した第3軌条狂いの非接触測定装置
を提供することを目的とする。
The present invention eliminates the need to operate the conventional mechanical contact type third rail deviation measuring device, which requires stopping or pulling up the sensor every time it reaches a discontinuous part of the third rail at the change of section. The purpose of the present invention is to provide a non-contact measuring device for third track deviation that solves these problems, as it is complicated and takes a long time to measure.

〔問題点を解決するための手段〕[Means for solving problems]

従来の第3軌条狂い測定装置の問題点は、全て従来の方
式が機械接触方式であることに原因があるから、本発明
においては、信頼できる非接触方式の測定装置を用いる
ことにした。
The problems with the conventional third track deviation measuring device are all due to the fact that the conventional method is a mechanical contact method, so in the present invention, a reliable non-contact measuring device is used.

現在、既に第3図に示すような非接触変位測定センサが
開発されており、その性能は十分信頼できる。第3図中
、1aは軌条、7はレーザ発振器、8は投光レンズ、9
はシリンドリカルレンズ、10は走査形振像カメラ、1
1は偏向コイル、12は信号処理部で、このセンサによ
って軌条の左右、上下の変位が同時に測定できる。
At present, a non-contact displacement measurement sensor as shown in FIG. 3 has already been developed, and its performance is sufficiently reliable. In Figure 3, 1a is a rail, 7 is a laser oscillator, 8 is a light projection lens, 9
is a cylindrical lens, 10 is a scanning image camera, 1
1 is a deflection coil, 12 is a signal processing section, and this sensor can simultaneously measure horizontal and vertical displacements of the rail.

このような非接触変位測定センサを、各軌条に対して、
それぞれ配置すれば、3組のセンサが検出した夫々対象
とする軌条の頂点の特定の基準面に対する相対位置は、
実際の相対位置と一致する筈である。 そして、第3軌
条の不連続個所でも、センサを引き上げる必要はなくな
って操作性が大きく向上し、また安全性の面でも飛曜的
に向上する。したがって、測定に要する時間が大幅に減
少する。
A non-contact displacement measurement sensor like this is installed on each rail.
If they are arranged respectively, the relative position of the apex of the target rail detected by the three sets of sensors with respect to a specific reference plane will be:
It should match the actual relative position. Furthermore, even at discontinuous points in the third rail, there is no need to pull up the sensor, which greatly improves operability and also dramatically improves safety. Therefore, the time required for measurement is significantly reduced.

〔実施例〕〔Example〕

第1図は本発明の一実施例の要部斜視図で、図中、2は
車軸に平行に車台枠に取付けた十分な剛性のある梁、3
は台車、3−1.3−2は車台枠、4−1.4−2は車
軸、4−3.4−4.4−5.4−6は走行車輪、5a
、5b、5cは梁2に固定された夫々軌条1a、tb、
ICを測定対象とする非接触上下左右変位測定センサ、
6は車軸がある角度だけ回転すると(即ち所定距離進行
すると)変位測定センサ5a、5b、5Cへ同時に測定
動作させるためのパルス信号を送出するパルス発生器で
あるこのような実施例を用いて、軌条のある個所におい
て第4図に示すようなデータが得られたとする。第4図
において、P a % P b 、P cは、それぞれ
、軌条1a、tb、ICの頂点とし、基準面Hoからの
高さを、それぞれ、a、bscとすると第3軌条狂いΔ
Hは次式で表されることは既に知られているとおりであ
る。
FIG. 1 is a perspective view of essential parts of an embodiment of the present invention, in which 2 is a sufficiently rigid beam attached to the undercarriage frame parallel to the axle; 3 is a beam of sufficient rigidity;
is a bogie, 3-1.3-2 is a chassis frame, 4-1.4-2 is an axle, 4-3.4-4.4-5.4-6 is a running wheel, 5a
, 5b and 5c are rails 1a and tb fixed to the beam 2, respectively.
Non-contact vertical and horizontal displacement measurement sensor that measures ICs,
6 is a pulse generator that sends a pulse signal to the displacement measurement sensors 5a, 5b, and 5C for simultaneous measurement operation when the axle rotates by a certain angle (that is, when the axle moves a predetermined distance).Using this embodiment, Assume that data as shown in Figure 4 is obtained at a certain location on the rail. In Fig. 4, P a % P b and P c are the vertices of the rails 1a, tb, and IC, respectively, and the heights from the reference plane Ho are a and bsc, respectively, and the third rail deviation Δ
As is already known, H is expressed by the following formula.

但しGabは点P a % P b間の実測寸法、Gb
cは点Pb、Pc間の実測寸法であり、既知の定数であ
る。この時のa 、b % Gを非接触変位測定センサ
5a、5b、5Cにより検出し、上式の演算を行ってΔ
Hを算出すれば第3軌条狂いを求めることができる。
However, Gab is the actual measured dimension between points P a % P b, Gb
c is a measured dimension between points Pb and Pc, and is a known constant. At this time, a, b%G is detected by non-contact displacement measurement sensors 5a, 5b, and 5C, and the above formula is calculated to calculate Δ
By calculating H, the third track deviation can be determined.

今、第5図に示すように、第2軌条に1個所陥没した部
分があるとする。従来の機械接触方式の第3軌条狂い測
定装置では機構をwi単にする必要もあって、第1、第
2軌条の頂点の基準面に対する位置などは測定しないで
、第1.第2軌条の頂点を連ねる直線を第3軌条側へ延
長した際、第3軌条のところ(第3軌条位置に立てた垂
直線上)で、第3軌条の頂点と一致(狂い無し)するか
、頂点のどれだけ上を通るか、どれだけ下を通るか、を
測定するようになっていた。従って、上記第2軌条陥没
個所では第3軌条の頂点が上方に突出した狂いとして測
定される。これに対し、本発明により非接触で測定すれ
ば第2軌条の陥没はそれなりに測定され、第3軌条には
異常がないものとして正しく測定される。本実施例に用
いた非接触変位測定センサでは、信号処理部で変位を電
気的に算出しているが、この測定結果を用いて上記式に
従って第3軌条狂いΔHを算出することは、一般に電気
的に信号を処理するシステムでは極めて容易である。な
お、本実施例ではレーザ光線を薄い平面状にして軌条を
照射させ、軌条表面に輝線として現れた交線を撮影して
変位測定を行っているが、非接触変位測定方式としてギ
ャップ式センサを用いても良い。
Assume that there is one depressed part of the second rail, as shown in Figure 5. In the conventional mechanical contact type third track deviation measuring device, the mechanism needs to be simple, and the positions of the vertices of the first and second rails with respect to the reference plane are not measured, but the first and second track deviations are measured. When extending the straight line connecting the vertices of the second rail to the third rail side, does it match the apex of the third rail (no deviation) at the third rail (on the vertical line set at the third rail position)? It was designed to measure how far above and below the peak it passed. Therefore, at the second rail depression point, the apex of the third rail is measured as being out of place and protrudes upward. On the other hand, if the non-contact measurement is performed according to the present invention, the depression of the second rail will be measured to a certain extent, and the third rail will be correctly measured assuming that there is no abnormality. In the non-contact displacement measurement sensor used in this example, the displacement is calculated electrically in the signal processing section, but it is generally This is extremely easy for systems that process signals manually. In this example, the rail is irradiated with a thin, flat laser beam, and the intersection line that appears as a bright line on the rail surface is photographed to measure displacement. However, a gap-type sensor is used as a non-contact displacement measurement method. May be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、第3軌条の不連続
部分でも安全に、特別な操作を施さないで測定できるの
で、測定速度が向上−し、しかも一般に測定精度も向上
する。また、非接触測定センサの選択によっては、機構
的簡素化が実現され、価格低下の可能性もある。
As explained above, according to the present invention, even discontinuous portions of the third rail can be measured safely and without special operations, thereby improving measurement speed and generally improving measurement accuracy. Additionally, depending on the selection of a non-contact measurement sensor, mechanical simplification can be realized, and the price may be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明−実施例の要部斜視図、第2図(a)は
第3軌条で給電する電車線路の平面図、第2図(b)は
不連続部分のある第3軌条の側面図、第3図は実施例に
採用した非接触変位測定センサの原理説明図、第4図は
第3軌条狂いの説明図、第5図は第2軌条に陥没個所が
ある不良線路を示す図である。 1a−第1軌条、 1b−第2軌条、  lc−第3軌
条、 2−梁、 3・・一台車、 3−1.3−2−車
台枠、 5a、5 b 、 5 c−それぞれ軌条1a
、lb、ICの変位を測定するため梁に取付けられた非
接触変位測定センサ、 6−パルス発生器、 7−レー
ザ発振器、 8−投光レンズ、 9・−シリンドリカル
レンズ、  1〇−走査形逼像カメラ、  12−信号
処理部、 Pa−第1軌条の頂点、 pb・−第2!l
Al1条の頂点、 Pc−第3tlt条の頂点、 Ho
 −・基準面、 ΔH−第3軌条狂い。
Fig. 1 is a perspective view of the main part of the present invention-embodiment, Fig. 2 (a) is a plan view of the overhead contact line that supplies electricity with the third rail, and Fig. 2 (b) is a plan view of the third rail with a discontinuous portion. A side view, Fig. 3 is an explanatory diagram of the principle of the non-contact displacement measurement sensor adopted in the example, Fig. 4 is an explanatory diagram of the third rail deviation, and Fig. 5 shows a defective line with a depressed part in the second rail. It is a diagram. 1a-first rail, 1b-second rail, lc-third rail, 2-beam, 3... one bogie, 3-1.3-2-car underframe, 5a, 5b, 5c-each rail 1a
, lb, non-contact displacement measurement sensor attached to the beam to measure the displacement of the IC, 6-pulse generator, 7-laser oscillator, 8-projection lens, 9-cylindrical lens, 10-scanning type. Image camera, 12-signal processing unit, Pa-vertex of first rail, pb.-second! l
Apex of article Al1, Pc-apex of article 3tlt, Ho
-・Reference plane, ΔH-3rd track deviation.

Claims (1)

【特許請求の範囲】 1)台車または車体の下部の、軌条に直角な方向に十分
な剛性を有する部材に、2本の走行軌条の頂点および第
3軌条の頂点の3点の、特定の基準面に対する相対位置
を、それぞれ同一時刻に短時間内に非接触で測定する手
段を設け、車両の進行中、所定の短距離進む毎に上記3
点の位置を測定させ、2本の走行軌条の頂点を軌条に直
角な方向に連ねて第3軌条側へ延長した直線が第3軌条
の頂点に立てた垂直線と交わる点を求め、この点と第3
軌条の頂点との距離である第3軌条狂いを非接触で測定
するようにしたことを特徴とする第3軌条狂いの非接触
測定装置。 2)上記測定手段は、それぞれ対象とする軌条をレーザ
ビームで照射し、軌条からの反射光を走査形撮像カメラ
により受光して軌条の左右、上下変位を同時に測定する
3組の非接触変位測定センサよりなる特許請求の範囲第
1項記載の第3軌条狂いの非接触測定装置。
[Scope of Claims] 1) A member having sufficient rigidity in the direction perpendicular to the rails at the lower part of the bogie or car body has specific standards at three points: the apexes of the two running rails and the apex of the third rail. A means is provided to measure the relative position to the surface at the same time and within a short period of time in a non-contact manner, and each time the vehicle travels a predetermined short distance,
Measure the position of the point, find the point where the straight line extending to the third rail side by connecting the vertices of the two running rails in a direction perpendicular to the rails intersects the vertical line set at the apex of the third rail, and measure this point. and third
A non-contact measuring device for third rail deviation, characterized in that the third rail deviation, which is the distance from the top of the rail, is measured in a non-contact manner. 2) The above measurement means includes three sets of non-contact displacement measurements that simultaneously measure horizontal and vertical displacement of the rail by irradiating the target rail with a laser beam and receiving the reflected light from the rail with a scanning imaging camera. A non-contact measuring device for third track deviation according to claim 1, which comprises a sensor.
JP4134485A 1985-03-04 1985-03-04 Non-contacting measuring device for third rail irregularity Pending JPS61201108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134485A JPS61201108A (en) 1985-03-04 1985-03-04 Non-contacting measuring device for third rail irregularity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134485A JPS61201108A (en) 1985-03-04 1985-03-04 Non-contacting measuring device for third rail irregularity

Publications (1)

Publication Number Publication Date
JPS61201108A true JPS61201108A (en) 1986-09-05

Family

ID=12605900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134485A Pending JPS61201108A (en) 1985-03-04 1985-03-04 Non-contacting measuring device for third rail irregularity

Country Status (1)

Country Link
JP (1) JPS61201108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000033A (en) * 2015-08-13 2015-10-28 哈尔滨工业大学 Inspection and evaluation system for track geometric irregularity
WO2018164213A1 (en) * 2017-03-08 2018-09-13 株式会社 明電舎 Method and apparatus for measuring third rail

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000033A (en) * 2015-08-13 2015-10-28 哈尔滨工业大学 Inspection and evaluation system for track geometric irregularity
WO2018164213A1 (en) * 2017-03-08 2018-09-13 株式会社 明電舎 Method and apparatus for measuring third rail

Similar Documents

Publication Publication Date Title
CN101666716B (en) Railway locomotive running attitude measuring method
US6556945B1 (en) Measurement of grooves and long waves on rails with a longitudinal streak of light
US5368260A (en) Wayside monitoring of the angle-of-attack of railway vehicle wheelsets
US3924461A (en) Monitoring system for detecting defective rails or road beds
JP7247206B2 (en) Methods for inspecting railway vehicles and track sections
JP4857369B2 (en) Turnout inspection device
JPH04274706A (en) Thickness measuring apparatus
JP5963400B2 (en) Method and apparatus for detecting train stop position
US3896665A (en) Railway inspection method and vehicle
KR20170122947A (en) Trolly apparatus for measuring track irregularity having track guidance member of hydraulic type, and method for the same
KR101918558B1 (en) Portable track and catenary inspection equipment using image processing apparatus, and inspection method for the same
JP2019190858A (en) Laser-type long wavelength track inspection device and laser-type long wavelength track inspection method
JP3666707B2 (en) Rail displacement detection mechanism of simple inspection vehicle
JPS61201108A (en) Non-contacting measuring device for third rail irregularity
JP3017459B2 (en) A device for measuring the deviation of the wheels of railway vehicles
JP2803963B2 (en) Measurement method for trolley wire height and deflection
JPH0682221A (en) Third rail measuring apparatus
KR102534613B1 (en) Measurement device and method of rail acoustic roughness using the laser scanning
JPH09101114A (en) Measurement system for image of aerial electric line for electric railcar
CN220809404U (en) Detection vehicle, steel rail detector, contact net detector and railway detection device
JP3498015B2 (en) 2-axis rail displacement detector
JPS63177008A (en) Apparatus for measuring unevenness of tread surface of rail
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
JPH11248692A (en) Ultrasonic probe rail following device
AU686258B2 (en) Wayside monitoring of the angle-of-attack of railway vehicle wheelsets