JPS61201059A - Composite fiber nonwoven structure - Google Patents
Composite fiber nonwoven structureInfo
- Publication number
- JPS61201059A JPS61201059A JP60041820A JP4182085A JPS61201059A JP S61201059 A JPS61201059 A JP S61201059A JP 60041820 A JP60041820 A JP 60041820A JP 4182085 A JP4182085 A JP 4182085A JP S61201059 A JPS61201059 A JP S61201059A
- Authority
- JP
- Japan
- Prior art keywords
- composite
- nonwoven structure
- fibers
- polymer
- short fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Nonwoven Fabrics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は接着性を有する複合短繊維を主体とする不織構
造体に関する。更に詳細に述べるとポリエステル系ポリ
マーとカルボキシル基を側鎖に有するポリオレフィン系
ポリマーとから実質的に構成された複合短繊維を主体と
する不織構造体に関する。該不織構造体は乾式不織布、
湿式不織布等の分野に利用が考えられ、具体的分野とし
ては生理用ナプキンや紙おむつ関連等の衛生材;土木資
材;フロッピーライナ等の包装材、フィルター。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a nonwoven structure mainly composed of composite short fibers having adhesive properties. More specifically, the present invention relates to a nonwoven structure mainly composed of conjugate short fibers substantially composed of a polyester polymer and a polyolefin polymer having carboxyl groups in side chains. The nonwoven structure is a dry nonwoven fabric,
It can be used in fields such as wet-processed nonwoven fabrics, and specific fields include sanitary materials such as sanitary napkins and disposable diapers; civil engineering materials; packaging materials such as floppy liners, and filters.
各種フェルト、ふとん硬綿、基布、建材、自動車等の内
装材等があげられる。Examples include various felts, hard cotton futons, base fabrics, building materials, interior materials for automobiles, etc.
従来技術
従来からバインダ一方式による不織構造体の製造方法は
、例えばバインダー薬剤液浸漬方法、バインダー薬剤ス
プレ一方法、バインダー粉末方法等や特開昭58−18
0652号公報に開示されている熱溶融性m維のブレン
ド方法等種々ある。BACKGROUND TECHNOLOGY Conventionally, methods for producing nonwoven structures using a single binder method include, for example, a binder chemical liquid immersion method, a binder chemical spray method, a binder powder method, etc., and Japanese Patent Application Laid-open No. 58-18.
There are various methods of blending heat-fusible m-fibers, such as that disclosed in Japanese Patent No. 0652.
これらの方法のうち、バインダー薬剤方法や粉末方法は
近年原燃料の高揚、労働作業環境悪化等に問題があり、
熱溶融性繊維のブレンド方法における全溶融タイプは接
着用繊維が形態をなくし、玉状になり、それ故に結合力
が弱く且つ成分によっては粉状になり落下しやすいとい
う欠点を有している。Of these methods, the binder chemical method and the powder method have had problems in recent years, such as high raw materials and fuel costs and deterioration of the working environment.
The all-melt type blending method for heat-fusible fibers has the disadvantage that the adhesive fibers lose their shape and become bead-like, resulting in weak bonding strength and, depending on the ingredients, they become powdery and easily fall off.
一方、近年注目を浴びているオリフィス型溶融紡糸法に
よって得られるポリエステル系ポリマーを主成分とする
画一的コンジュゲートタイプは特開昭57−10817
7号公報、特開昭58−41912号公報。On the other hand, a uniform conjugate type whose main component is a polyester polymer obtained by the orifice-type melt spinning method, which has been attracting attention in recent years, is published in Japanese Patent Application Laid-Open No. 57-10817.
No. 7, JP-A-58-41912.
特公昭57−37637号公報、特開昭57−9531
1号公報などに開示されているが、この方法は高価であ
り、その土葬品性ポリエステルを接着成分とする場合は
粉落ちを生じやすい。またこの方法は通常のオリフィス
型溶融紡糸法による短繊維綿に対し5〜50重伍%混合
して不織構造体を得るが均一に混合することが極めて難
しいという欠点がある。Japanese Patent Publication No. 57-37637, Japanese Patent Publication No. 57-9531
Although this method is disclosed in Publication No. 1, etc., it is expensive, and when the burial grade polyester is used as an adhesive component, powder tends to fall off. Further, in this method, a nonwoven structure is obtained by mixing 5 to 50% by weight of short fiber cotton produced by the ordinary orifice type melt spinning method, but it has the drawback that it is extremely difficult to mix uniformly.
発明の目的
本発明の目的は、前述した如き従来技術の欠点を解消し
得る新規なポリエステル系の不織構造体を提供すること
にある。OBJECTS OF THE INVENTION It is an object of the present invention to provide a novel polyester nonwoven structure that can overcome the drawbacks of the prior art as described above.
すなわち、本発明者は、バインダー薬剤を使用しないポ
リエステル系のポリマーを主成分とするコンジュゲート
タイプの自己接着性繊維について鋭意研究した結果、ポ
リエステル系のポリマーと特定のポリオレフィン系のポ
リマーの組合せでは全く予想し得ない優れた接着効果が
あることを見出し本発明に到達した。That is, as a result of extensive research into conjugate-type self-adhesive fibers that do not use binder chemicals and are mainly composed of polyester polymers, the inventors found that the combination of polyester polymers and specific polyolefin polymers does not work at all. The present invention was achieved by discovering that there is an unexpectedly excellent adhesion effect.
発明の構成
すなわち、本発明は、接着性を有する複合短繊維を主体
とする不織構造体であって、
(A)該複合短繊維は該不織構造体の全回に対して少く
とも50重呈%を占め、
(1) 該複合短繊維は、エチレンテレフタレート単
位が少くとも80モル%であるポリエステル(重合体A
)とカルボキシル基(−C00H)を側鎖に有する融点
が60℃〜140℃のポリオレフィン(重合体B)とか
ら実質的になるものであって、
(a 該複合短繊維の任意の断面の少くとも50%は、
重合体A及び重合体Bのそれぞれの少くとも一部が互い
に該複合短繊維の周囲に露出した状態でサイドバイサイ
ドに合体した少くとも2つのブロックを有しており、且
つ該ブロックの形状又は大きさの異なる断面が少くとも
存在するものであり、
(B)該不織構造体は、該複合短繊維を構成する重合体
Bを介して接合しており、且つ見掛は密度が0.002
〜0.35g/−の範囲にあることを特徴とする複合繊
維不織構造体である。Configuration of the Invention Namely, the present invention provides a non-woven structure mainly composed of composite short fibers having adhesive properties, wherein (A) the composite short fibers are used at least 50% for all times of the nonwoven structure; (1) The composite short fibers are made of polyester (polymer A) having at least 80 mol% of ethylene terephthalate units;
) and a polyolefin (polymer B) having a carboxyl group (-C00H) in the side chain and having a melting point of 60°C to 140°C, (a) Both 50% are
It has at least two blocks that are joined side-by-side with at least a portion of each of Polymer A and Polymer B exposed around the composite short fibers, and the shape or size of the blocks (B) the nonwoven structure is joined via polymer B constituting the composite short fibers, and has an apparent density of 0.002
It is a composite fiber nonwoven structure characterized by being in the range of ~0.35 g/-.
かかる本発明の複合不織構造体はバインダ一方式による
不織構造体に比べて次に列挙するような特徴を有してい
る。The composite nonwoven structure of the present invention has the following characteristics compared to a nonwoven structure using a single binder.
第一に、バインダー等の薬品類を用いていないので、薬
剤の溶出の心配がなく安全であり、衛生的である。First, since it does not use chemicals such as binders, it is safe and hygienic since there is no fear of drug elution.
第二に、バインダーのコストが省略でき、バインダーの
水分を蒸発させるエネルギーよりも、はるかに省エネル
ギー的に安価に、本発明の複合繊維不織構造体が得られ
る。Second, the cost of the binder can be omitted, and the conjugate fiber nonwoven structure of the present invention can be obtained at a much lower cost and in an energy-saving manner than the energy required to evaporate water in the binder.
第三に、バインダー等の薬品類を使用する場合の様な排
水処理設備が不必要であり、バインダーの銘柄切替の様
な掃除がなく、製造作業環境が大変よい状態で、本発明
の複合繊維不織構造体が得られるという特徴を有してい
る。Thirdly, the composite fiber of the present invention does not require wastewater treatment equipment, which is required when using chemicals such as binders, and there is no need for cleaning such as changing binder brands, and the manufacturing work environment is very good. It has the characteristic that a nonwoven structure can be obtained.
また、本発明で述べる該複合短繊維は、コンジュゲート
構造であるので、そうでない100%低融点成分からな
る従来の接着用繊維に対比して、次の如き特徴を有して
いる。Furthermore, since the composite short fibers described in the present invention have a conjugate structure, they have the following characteristics in contrast to conventional adhesive fibers made of 100% low melting point components.
すなわち、100%低融点成分からなる従来の接着用!
l雑は、融点以上の熱処理により容易に該接着用繊維が
形態をなくし、玉状となり、ベースとなる混合されるm
維集合体の接合点に移動しやすい為に、該接着用繊維と
ベースとなる繊維との接合点よりも少ない数の結合点し
か得られない。この様に、従来の該接着用!l雑を用い
た場合には結合点が少い為に、不織構造体の強度が弱く
、又、接合点に玉状になって接着固定している為に、不
織構造体の風合が悪くまた粉落ちを生じやすい。In other words, conventional adhesives made of 100% low melting point components!
The adhesive fibers easily lose their shape by heat treatment above their melting point, become beaded, and are mixed to form the base.
Since it is easy to move to the bonding point of the fiber aggregate, only a smaller number of bonding points can be obtained than the bonding points of the adhesive fiber and the base fiber. In this way, for conventional adhesion! When using a nonwoven fabric, the strength of the nonwoven structure is weak because there are few bonding points, and the texture of the nonwoven structure is poor because it forms beads at the bonding points and is fixed with adhesive. It is difficult to clean and easily causes powder to fall off.
しかしながら、本発明の接着性を有する該複合短繊維は
、基本的にはコンジュゲート構造である為に、形成され
る不織構造体の接合点が多く、該複合短繊維の低融点重
合体相を介して、他の該複合短繊維及び混合する他種の
ステープルmsと点接着方式で接合されているために、
風合が硬くならないという特徴がある。However, since the composite short fibers having adhesive properties of the present invention basically have a conjugate structure, the formed nonwoven structure has many bonding points, and the low melting point polymer phase of the composite short fibers has many bonding points. Because it is joined to other composite short fibers and other types of staples to be mixed through the point bonding method,
It has the characteristic that it does not have a hard texture.
更に、本発明の複合繊維は、例えば特公昭57−376
37号公報、特開昭57−108177号公報、特開昭
57−95311号公報、特開昭58−41912号公
報に開示されているポリエステル系のポリマーを主成分
とする画一的なコンジュゲート構造物と比べて次のよう
な特徴を有している。Furthermore, the composite fiber of the present invention is disclosed in Japanese Patent Publication No. 57-376, for example.
37, JP-A-57-108177, JP-A-57-95311, and JP-A-58-41912, which disclose uniform conjugates containing polyester polymers as main components. It has the following characteristics compared to structures.
すなわち、前記した如き従来のポリエステル系のポリマ
ーを主成分とする複合繊維は接着成分として非品性ポリ
エステルや低融点ポリエステル(例えば二塩酸成分とし
て脂肪族ジカルボン酸を用いるかまたはグリコール成分
としてブタンジオールを用いたもの)を使用しているが
、これらに比べて安価なコストで製造することができ、
しかも不均一なコンジュゲート構造であるために、線接
着になる傾向がある画一的コンジュゲート構造に比較し
て点接着になり易く、所望によりランダム構造の捲縮を
与えることができるため嵩高性がよく風合いの良好な構
造体を得ることができる。That is, conventional composite fibers mainly composed of polyester-based polymers as described above use non-grade polyesters or low-melting point polyesters as adhesive components (for example, aliphatic dicarboxylic acids are used as dihydrochloric acid components, or butanediol is used as glycol components). However, it can be manufactured at a lower cost than these.
Moreover, since it is a non-uniform conjugate structure, it is more prone to point adhesion than a uniform conjugate structure which tends to form linear adhesion, and it is possible to provide a random crimp structure if desired, resulting in high bulk. A structure with good texture and texture can be obtained.
また非品性ポリエステルを用いる場合に起る粉落ちなど
の欠点もない。Furthermore, there are no drawbacks such as powder shedding that occurs when non-grade polyester is used.
本発明の複合繊維は、不織構造体の全量に対して、50
〜100%に相当する量を用いて複合繊維不織構造体を
得るが、原料コストが安価であるので全体として高価格
にはならず、また複合短繊維の割合が比較的多いために
不織構造体の中における複合短繊維の混含むらが小さく
なる。殊に複合短繊維を100%の割合で使用する場合
は、混合工程を省略することができる。さらに本発明で
は複合短繊維の混合割合が多いので点接着性が向上し不
織構造体のドレープ性が良好な状態に保持されたまま接
着強力を改善することができる。The composite fiber of the present invention has a content of 50% relative to the total amount of the nonwoven structure.
A composite fiber nonwoven structure is obtained by using an amount equivalent to ~100%, but since the raw material cost is low, the overall price is not high, and since the proportion of composite short fibers is relatively high, the nonwoven structure is The amount of composite short fibers mixed in the structure is reduced. In particular, when 100% composite short fibers are used, the mixing step can be omitted. Furthermore, in the present invention, since the mixing ratio of composite short fibers is high, the point adhesion is improved, and the adhesion strength can be improved while the drapability of the nonwoven structure is maintained in a good state.
以上説明したように、本発明の複合繊維不織構造体は接
着性能、風合い、生産コストなど優れた利点を有してい
る。As explained above, the composite fiber nonwoven structure of the present invention has excellent advantages such as adhesive performance, texture, and production cost.
次に本発明について更に詳細に説明する。Next, the present invention will be explained in more detail.
本発明における複合短繊維はエチレンテレフタレート単
位が少くとも80モル%以上であるポリエステル(重合
体A)と、融点が60℃〜140℃の側鎖にカルボキシ
ル基(−COOH)を有する変性ポリオレフィン(重合
体B)とから実質的になり低融点重合体相(重合体B)
の融点又は軟化点以上で融着性能を発現することを特徴
としている。The composite short fibers in the present invention are composed of a polyester (polymer A) containing at least 80 mol% of ethylene terephthalate units and a modified polyolefin (polymer The low melting point polymer phase (polymer B) consists essentially of the coalesced B)
It is characterized by exhibiting fusion performance above the melting point or softening point of .
さらに本発明の該複合短繊維の任意の断面の少くとも5
0%、好ましくは80%以上、更に好ましくは90%以
上、最も好ましくは95%以上は少くとも2種の異なる
繊維形成可能の重合体相が、それぞれの少くとも一部が
互いに該ファイバーの周囲に露出した状態で、サイドバ
イサイドに合体した少くとも2つのブロックを有してお
り、且つ該ブロックの形状又は大きさが異なる断面が少
くとも存在することを特徴としている。Furthermore, at least 5 in any cross section of the composite staple fiber of the present invention
0%, preferably 80% or more, more preferably 90% or more, most preferably 95% or more of at least two different fiber-formable polymer phases, each at least partially surrounding the fibers of each other. It is characterized in that it has at least two blocks that are joined side by side in a state where the blocks are exposed, and that there is at least a cross section in which the blocks have different shapes or sizes.
前記重合体Aを形成するポリエステルはエチレンテレフ
タレート単位が少くとも80モル%であればよく、好ま
しくは融点が170℃以上のものである。エチレンテレ
フタレート単位以外の単位としては、例えばエチレンイ
ソフタレート単位、プロピレンテレフタレート単位、ト
リメチレンテレフタレート単位、ブチレンテレフタレー
ト単位、プロピレンイソフタレート単位、エチレンアジ
ペート単位などが挙げられる。The polyester constituting the polymer A may contain at least 80 mol% of ethylene terephthalate units, and preferably has a melting point of 170°C or higher. Examples of units other than ethylene terephthalate units include ethylene isophthalate units, propylene terephthalate units, trimethylene terephthalate units, butylene terephthalate units, propylene isophthalate units, and ethylene adipate units.
一方重合体日の変性ポリオレフィンとしては、例えばア
クリル酸、メタクリル酸、マレイン酸。On the other hand, examples of modified polyolefins used as polymers include acrylic acid, methacrylic acid, and maleic acid.
イタコン酸、シトラコン酸、ハイミック酸、ビシクロ(
2,2,2)オフター5−エン−2,3−ジカルボン酸
、4−メチルシクロヘキサ−4−エン−1,2ジカルボ
ン酸、 1,2,3,4,5,8,9.10−オクタヒ
ドロナフタレン−2,3−ジカルボン酸、ビシクロ(2
,2,1)オクタ−7−エン−2,3,5,6−テトラ
カルボン酸、 7−オキサビシクロ(2,2,1)へブ
タ−5−エン−2,3ジカルボン酸などの不飽和カルボ
ン酸およびその無水物とエチレンとの直接共重合体等が
あげられ、またアイオノマー樹脂の様に金属イオンを含
んだものでも良い。itaconic acid, citraconic acid, hymic acid, bicyclo(
2,2,2) Ophter-5-ene-2,3-dicarboxylic acid, 4-methylcyclohex-4-ene-1,2-dicarboxylic acid, 1,2,3,4,5,8,9.10- Octahydronaphthalene-2,3-dicarboxylic acid, bicyclo(2
, 2,1) oct-7-ene-2,3,5,6-tetracarboxylic acid, 7-oxabicyclo(2,2,1)but-5-ene-2,3 dicarboxylic acid, etc. Examples include direct copolymers of carboxylic acids and their anhydrides with ethylene, and materials containing metal ions such as ionomer resins may also be used.
本発明の該複合類m維は、その平均繊度が0.5〜50
0de範囲、好ましくは0.5〜400 de、更に好
ましくは1.0〜300 deの範囲にあるのが好まし
い。The composite fibers of the present invention have an average fineness of 0.5 to 50.
It is preferably in the range of 0 de, preferably in the range of 0.5 to 400 de, more preferably in the range of 1.0 to 300 de.
また本発明で用いられる複合短繊維の平均繊維長は、2
04m1〜500Mの範囲、好ましくは25m〜400
履の範囲、更に好ましくは30#W〜300mの範囲に
あるのが望ましい。Further, the average fiber length of the composite short fibers used in the present invention is 2
Range of 04m1 to 500M, preferably 25m to 400m
It is desirable that the length be within the range of 30#W to 300m, more preferably 30#W to 300m.
本発明の該複合短繊維は、ランダム構造の捲縮を有して
いるのがより好ましい。捲縮の割合は該複合短!l維の
繊度が10 de未満の場合には5ケ/1nch以上の
、より好ましくは7ケ/+nch以上の捲縮数、該複合
短繊維の繊度が10de以上、100 de未満の場合
には2ヶ/1nch以上、より好ましくは3ヶ/1nc
h以上の捲縮数、該複合短繊維の繊度が10068以上
500 de未満の場合には、0.5ケ/1noh以上
、より好ましくは1ヶ/1nch以上の捲縮数を有する
ことができる。It is more preferable that the composite short fibers of the present invention have crimps in a random structure. The rate of crimp is the compound short! If the fineness of the fiber is less than 10 de, the number of crimps is 5 strands/1 nch or more, more preferably 7 crimps/+ nch or more, and if the fineness of the composite staple fiber is 10 den or more and less than 100 den, the number of crimps is 2. More than 3 pieces/1 nch, more preferably 3 pieces/1 nc
When the number of crimps is at least h and the fineness of the composite short fiber is 10,068 or more and less than 500 de, the number of crimps can be at least 0.5 crimp/1 noh, more preferably at least 1 crimp/1 nch.
本発明の該複合短繊維を構成する低融点重合体相(重合
体B)と、高融点重合体相(重合体A)の混合比は、重
量で60 : 40〜20:80、好ましくは55:4
5〜25ニア5、最も好ましくは50:50〜30ニア
0が好適であり、本発明の該複合II維不織構造体の接
着強力を上げる方法として、本発明の該複合類mMの該
複合繊維不織構造体中のブレンド率を増す方策と、該複
合短繊維の中における低融点重合体相の混合比を増す方
策とを組み合わせることができ、かつ風合を良好に保持
することができる点が特徴である。The mixing ratio of the low melting point polymer phase (polymer B) and the high melting point polymer phase (polymer A) constituting the composite short fibers of the present invention is 60:40 to 20:80, preferably 55 by weight. :4
5 to 25 nia 5, most preferably 50:50 to 30 nia 0, and as a method of increasing the adhesive strength of the composite II fibrous nonwoven structure of the present invention, It is possible to combine measures to increase the blending ratio in the fibrous nonwoven structure and measures to increase the mixing ratio of the low melting point polymer phase in the composite short fibers, and it is possible to maintain good texture. It is characterized by points.
また本発明において、該複合繊維不織構造体を構成する
該複合短繊維以外に他のステーブル繊維をブレンドして
も良く、残りの少量のブレンドに利用されるステーブル
m維としては、一般に衣料用及び産業用に利用されてい
る合成繊維、化学繊維及び天然繊維を意味し、120℃
で5分間熱処理して繊維性能が50%以下に低減するも
の以外はすべて用いることが出来る。In addition, in the present invention, other stable fibers may be blended in addition to the conjugate short fibers constituting the conjugate fiber nonwoven structure, and the remaining stable m fibers used for the small amount of blending are generally Refers to synthetic fibers, chemical fibers, and natural fibers used for clothing and industrial purposes; 120℃
All fibers can be used except those whose fiber performance is reduced to 50% or less after heat treatment for 5 minutes.
合成繊維のステーブル繊維として例えば、ポリエステル
、ナイロン、ビニロン、ビニリデン、ポリ塩化ビニル、
アクリル、ボリア0ピレン、ポリエチレン等の繊維が挙
げられ、化学繊維のステーブル繊維としては、例えばレ
ーヨン、キュプラ。Examples of stable synthetic fibers include polyester, nylon, vinylon, vinylidene, polyvinyl chloride,
Examples include fibers such as acrylic, boria pyrene, and polyethylene, and examples of stable chemical fibers include rayon and cupro.
アセテート等のm帷が挙げられ、天然繊維としては、例
えば綿、麻1毛、絹等の繊維が挙げられ、それらを組み
合わせ混合されたものであっても何らかまわない。Examples of natural fibers include fibers such as cotton, linen wool, silk, etc., and any combination of these fibers may be used.
本発明の該複合繊維不n構造体を構成するブレンド用の
ステーブル繊維の平均繊度は、0.5〜500 deの
範囲にあり、好ましくは1〜300 deの範囲にあり
、該ステーブル繊維の平均繊度と、構成主成分の該複合
短繊維の平均繊度が近い値になるようにする仕方が一般
的である。また該複合短繊維の構成成分に顔料、難燃剤
、安定剤、ケイ光増白剤等を混合しても良い。The average fineness of the stable fibers for blending constituting the composite fiber non-n structure of the present invention is in the range of 0.5 to 500 de, preferably in the range of 1 to 300 de; It is common practice to make the average fineness of the composite short fibers, which are the main constituent components, close to each other. Further, pigments, flame retardants, stabilizers, fluorescent whitening agents, etc. may be mixed with the constituent components of the composite short fibers.
次に本発明の該複合繊維不織構造体についてさらに詳述
する。Next, the composite fiber nonwoven structure of the present invention will be explained in further detail.
本発明の該複合繊維不織構造体は、見かけ密度が0.0
02〜0.35g/ciの範囲にあり、従来の一般の不
織布と対比して、見かけ密度が低い割には接着性強力が
高い点が特徴である。The composite fiber nonwoven structure of the present invention has an apparent density of 0.0.
It is in the range of 0.02 to 0.35 g/ci, and compared to conventional nonwoven fabrics, it is characterized by high adhesive strength despite its low apparent density.
本発明における該複合繊維不織構造体の種々の有利な特
徴を発揮せしめる為の複合短繊維の混入割合は、前記の
如く該複合mH不織構造体の全Rに対して少くとも50
重量%である。該複合短繊維の混入割合のさらに好まし
い範囲としては、該不織構造体の見掛は密度が0.00
2g/cII以上、0.01g/cm3未満の範囲にお
いて該複合5r1繊維が該不織構造体の全量に対して8
0重量%を越えるものであり、該不織構造体の見掛は密
度が0.01 g/cd以上、0.1g/CI!未満の
範囲において該複合短繊維が該不織構造体の全量に対し
て60重量%を越え、該不織構造体の見掛は密度が0.
1g/cd以上、0.359/cd未満の範囲において
該不織構造体の全量に対して50重量%を越えるもので
ある。In order to exhibit various advantageous characteristics of the composite fiber nonwoven structure of the present invention, the mixing ratio of composite staple fibers is at least 50% of the total R of the composite mH nonwoven structure as described above.
Weight%. A more preferable range of the mixing ratio of the composite short fibers is such that the apparent density of the nonwoven structure is 0.00.
In the range of 2 g/cII or more and less than 0.01 g/cm3, the composite 5r1 fiber is
The nonwoven structure has an apparent density of 0.01 g/cd or more, 0.1 g/CI! When the composite staple fibers are less than 60% by weight based on the total amount of the nonwoven structure, the nonwoven structure has an apparent density of 0.5% by weight.
In the range of 1 g/cd or more and less than 0.359/cd, it exceeds 50% by weight based on the total amount of the nonwoven structure.
本発明の該複合短繊維の製造法の一例を述べると、本発
明者等の一部が先に提案した特開昭58−70712号
公報の明細書に記載された方法によって容易に製造でき
る。つまり、2台の押出機によって一方からポリエステ
ル系ポリマー(重合体A)を押出し、もう一方の押出機
より変性ポリオレフィン(重合体B)を押出し、配管に
て合体化されたアダプタ一部に静止混合器(例えばK
entcs型スタテイスタテイックミキサーし、溶融し
たポリエステル系ポリマーと溶融した変性ポリオレフィ
ンとを適当な層状混合状態にし1型ダイスへ送り均一に
吐出させる。An example of the method for producing the composite staple fiber of the present invention is that it can be easily produced by the method described in the specification of Japanese Patent Application Laid-open No. 70712/1983, which was proposed by some of the inventors of the present invention. In other words, a polyester polymer (polymer A) is extruded from one extruder using two extruders, a modified polyolefin (polymer B) is extruded from the other extruder, and the mixture is statically mixed in a part of the adapter that is combined with the piping. vessel (e.g. K
Using an entcs type static mixer, the melted polyester polymer and the melted modified polyolefin are mixed into a suitable layered state, and then sent to a type 1 die and uniformly discharged.
該繊維成形領域は、凹凸多孔口金(例えば、1枚のメツ
シュ金網[メツシュサイズ#8〜#70]からなる口金
)からなり、該口金は溶融混合重合体の仕切部材として
用いられる。該凹凸多孔口金より押出された溶融混合重
合体の無数の細流は該口金の近傍上部にある冷却装置か
ら噴射される冷却風によって冷却されながら、下から上
方へとドラフトをかけながら1m/分〜20yyt/分
程度の速度で引きとられて繊維化されて均一な高密度に
配列された繊維束となる。The fiber molding area consists of a concavo-convex porous die (for example, a die made of one mesh wire mesh [mesh size #8 to #70]), and the die is used as a partition member for the molten mixed polymer. The countless rivulets of the molten mixed polymer extruded from the uneven porous nozzle are cooled by cooling air jetted from a cooling device near the top of the nozzle, while being drafted from bottom to top at 1 m/min. The fibers are pulled off at a speed of about 20 yyt/min to form fibers into uniform, densely arranged fiber bundles.
得られた繊維束を2〜5倍程に直延伸し油剤を付与し束
ねてカッターに一定速度で所望の繊維長にカットし更に
熱風により捲縮を発現させる。又、カット前に機械捲縮
を付与しても良い。この様にして該複合類IIMが得ら
れる。ポリエステル系ポリマーと変性ポリオレフィンの
混合状態や繊度は混合器として用いられるスタティック
ミキサーの個数と凹凸口金として用いるメツシュ状金網
の目のサイズより簡単に制御することができる。The obtained fiber bundles are straight-stretched to about 2 to 5 times, applied with an oil agent, bundled, cut into a desired fiber length using a cutter at a constant speed, and further crimped with hot air. Also, mechanical crimp may be applied before cutting. In this way, the complex IIM is obtained. The mixing state and fineness of the polyester polymer and modified polyolefin can be easily controlled by the number of static mixers used as mixers and the size of the mesh wire mesh used as the uneven mouthpiece.
以上説明した本発明の複合短繊維の製造方法はこれに限
定を受けるわけではない。The method for producing composite short fibers of the present invention described above is not limited to this.
かくして得られた複合短繊維は、そのまま 100%で
使用してもよく、また他の短繊維と混合してカード機で
ウェア化すれば、本発明の該複合繊維不織布の未熟処理
品となる。このウェブを所定の加熱ニップローラーで熱
圧着化しても良いし、また所定の型状に熱加工しても良
い。加熱方法としては熱風式、赤外線ヒータ一方式、熱
ローラー等通常の手法で良い。The conjugate short fibers thus obtained may be used as they are at 100%, or if mixed with other short fibers and made into wear using a carding machine, the conjugate fiber nonwoven fabric of the present invention becomes an unprocessed product. This web may be thermocompressed using a predetermined heated nip roller, or may be thermally processed into a predetermined shape. As a heating method, a conventional method such as a hot air type, an infrared heater type, a heated roller, etc. may be used.
実施例1
2基の30φ押出機の一方(A)からポリエチレンテレ
フタレート(帝人■製:[η] = 0.71 )のチ
ップを245g/分ずつ、もう一方(B)からユカロン
EAA、 A−201M (三菱油化@製:エチレンー
アクリル酸共重合体、アクリル酸両7wt%。Example 1 Chips of polyethylene terephthalate (manufactured by Teijin ■: [η] = 0.71) were fed at 245 g/min each from one (A) of two 30φ extruders, and Yucalon EAA, A-201M was fed from the other (B). (Mitsubishi Yuka @: Both ethylene-acrylic acid copolymer and acrylic acid 7wt%.
m、p、= 102℃)のチップを1059/分ずつ各
定量的に溶融押出し、アダプタ一部直前にて合流させた
。アダプタ一部にK enics型スタテイスタテイッ
クミキサーメント)を配列して混合し凹凸口金。m, p, = 102° C.) were quantitatively melt-extruded at a rate of 1059/min and merged just before a portion of the adapter. A Kenics type static mixer is arranged in a part of the adapter to mix the mixture, and the concave and convex mouthpiece is used.
とじて20メツシユ平織の金網を用いて、この金網に8
0Aの電流を流し、ジュール熱を発生させ、冷却風を吹
きつけながら上方に6m/分の速度で引きとった。引き
つづき60〜85℃に制御された5本のバーによって約
3.5倍に延伸され得られた繊維を95Mにカットした
。該短繊維をフリーで100℃。Use a 20-mesh plain weave wire mesh to bind the mesh.
A current of 0 A was applied to generate Joule heat, and the tube was pulled upward at a speed of 6 m/min while blowing cooling air. Subsequently, the fibers were drawn approximately 3.5 times using five bars controlled at 60 to 85°C, and the resulting fibers were cut into 95M. The short fibers were heated to 100°C.
10分間熱風処理し立体捲縮を発現させた。平均繊度は
約50deであり、カット長は約80111I11であ
った。Three-dimensional crimp was developed by hot air treatment for 10 minutes. The average fineness was about 50 de, and the cut length was about 80111I11.
これをカード機によってウェア状に開繊し26Cd/9
の嵩のまま 150℃で10分間熱風処理を行なった。This is opened into a wear shape using a card machine and 26Cd/9
Hot air treatment was performed at 150° C. for 10 minutes while maintaining the bulk.
接着性能にすぐれたポリエステル系ふとん硬綿状物が得
られた。硬さを評価する方法として、1109/cdの
荷重を置きその時の厚みの保持率により行なった。この
時の厚み保持率は75%であった。A hard cotton-like polyester futon material with excellent adhesive performance was obtained. As a method for evaluating hardness, a load of 1109/cd was applied and the thickness retention rate at that time was evaluated. The thickness retention rate at this time was 75%.
実施例2
実施例1と同じ装置を用いてB側押出機よりユカロンE
AAA−221M(三菱油化@J製:エチレンーアクリ
ル酸共重合体: m、p、 95℃、アクリル酸8.5
wt%)のチップを定量的に溶融押出しその他は実施例
1と同様の操作によりポリエステル系ふとん硬綿状物が
得られた。厚み保持率は70%であった。Example 2 Yucalon E was produced from the B-side extruder using the same equipment as in Example 1.
AAA-221M (manufactured by Mitsubishi Yuka@J: ethylene-acrylic acid copolymer: m, p, 95°C, acrylic acid 8.5
wt%) chips were quantitatively melt-extruded and the other operations were the same as in Example 1 to obtain a polyester futon and hard cotton material. The thickness retention rate was 70%.
実施例3
実施例1と同じ装置を用いて口金を45メツシユ平織と
しカット長を60In!Rとする以外は実施例1と同様
の操作を行ない平均繊度6deの複合!ll1tからな
るウェブ状物を得た。該ウェブにニードルパンチを行な
いフェルト状物を(qた。このフェルト状物を線圧2K
g/αの130℃の金属ゴムローラーで熱圧着させて目
付50g/ゴの複合繊維不織布を得た。見掛は密度は0
.10g/cdであり、接着強度は15Kg15cIR
巾であった。Example 3 Using the same equipment as in Example 1, the base was made of 45 mesh plain weave and the cut length was 60 In! The same operation as in Example 1 was carried out except for R, and a composite with an average fineness of 6de was obtained! A web-like material consisting of ll1t was obtained. The web was needle punched to form a felt-like material (q).The felt-like material was subjected to a linear pressure of 2K.
A composite fiber nonwoven fabric with a basis weight of 50 g/g was obtained by thermocompression bonding with a metal rubber roller of g/α at 130°C. The apparent density is 0
.. 10g/cd, adhesive strength is 15Kg15cIR
It was wide.
比較例1
実施例1と同じ装置を用いてB側押出機よりポリエチレ
ン(三菱化成■製ツバチックLL MK−40)のチ
ップを定量的に溶融押出しその他は実施例1の同様の操
作によりふとん硬綿状物を得た。Comparative Example 1 Using the same equipment as in Example 1, chips of polyethylene (Tubatic LL MK-40 manufactured by Mitsubishi Kasei ■) were quantitatively melted and extruded from the B-side extruder, and futon hard cotton was otherwise produced in the same manner as in Example 1. I got something like that.
その時の厚み保持率は45%であり、接着性能が非常に
劣っていることがわかる。又カードでのフィブリル化は
非常に大であった。The thickness retention rate at that time was 45%, indicating that the adhesive performance was very poor. Also, fibrillation in the card was very large.
比較例2
B側押出機よりポリエチレン(三菱化成@製ツバチック
LL MK−40)チップを溶融押出しする以外は全
て実施例3と同様の操作を行ない複合繊維不織布を得た
。接着強度は3に915crn巾であった。Comparative Example 2 A composite fiber nonwoven fabric was obtained by carrying out the same operations as in Example 3, except that polyethylene (Tsubachik LL MK-40 manufactured by Mitsubishi Kasei@) chips were melt-extruded from the B-side extruder. The adhesive strength was 3 to 915 crn.
実施例4
実施例3で得られた複合短繊維とオリフィス紡糸法から
得られたポリエチレンテレフタレートからなる3、Od
e、 51amカット長の5F綿を20%ブレンドして
カード機によりウェブを得た。その後実施例3と同様の
操作で不織布を得た。接着強度は10Kg/ 5 ex
巾であった。Example 4 3, Od, consisting of the composite staple fiber obtained in Example 3 and polyethylene terephthalate obtained by orifice spinning method
e. A web was obtained by blending 20% of 5F cotton with a cut length of 51 am using a carding machine. Thereafter, a nonwoven fabric was obtained in the same manner as in Example 3. Adhesive strength is 10Kg/5ex
It was wide.
Claims (1)
であつて、 (A)該複合短繊維は該不織構造体の全量に対して少く
とも50重量%を占め、 (1)該複合短繊維は、エチレンテレフタレート単位が
少くとも80モル%であるポリエステル(重合体A)と
カルボキシル基(−C OOH)を側鎖に有する融点が60℃〜140℃のポリ
オレフィン(重合体B)とから実 質的になるものであって、 (2)該複合短繊維の任意の断面の少くとも50%は、
重合体A及び重合体Bのそれぞれの 少くとも一部が互いに該複合短繊維の周囲 に露出した状態でサイドバイサイドに合体 した少くとも2つのブロックを有しており、且つ該ブロ
ックの形状又は大きさの異なる 断面が少くとも存在するものであり、 (B)該不織構造体は、該複合短繊維を構成する重合体
Bを介して接合しており、且つ見掛け密度が0.002
〜0.35g/cm^3の範囲にあることを特徴とする
複合繊維不織構造体。 2、該複合短繊維の平均繊度が0.5〜500deの範
囲にある第1項記載の複合繊維不織構造体。 3、該複合短繊維の平均繊維長が20mm〜500mm
の範囲にある第1項記載の複合繊維不織構造体。 4、該複合短繊維が、ランダム構造の捲縮を有する第1
項記載の複合繊維不織構造体。[Scope of Claims] 1. A nonwoven structure mainly composed of composite staple fibers having adhesive properties, wherein (A) the composite staple fibers are at least 50% by weight based on the total amount of the nonwoven structure; (1) The composite short fibers are composed of a polyester (polymer A) containing at least 80 mol% of ethylene terephthalate units and a carboxyl group (-COOH) in the side chain and a melting point of 60°C to 140°C. (2) at least 50% of any cross section of the composite short fibers consists of polyolefin (polymer B);
It has at least two blocks that are joined side-by-side with at least a portion of each of Polymer A and Polymer B exposed around the composite short fibers, and the shape or size of the blocks (B) the nonwoven structure is bonded via polymer B constituting the composite short fibers, and has an apparent density of 0.002.
A composite fiber nonwoven structure characterized in that it is in the range of ~0.35 g/cm^3. 2. The conjugate fiber nonwoven structure according to item 1, wherein the average fineness of the conjugate staple fibers is in the range of 0.5 to 500 de. 3. The average fiber length of the composite short fibers is 20 mm to 500 mm.
The composite fiber nonwoven structure according to item 1, which falls within the range of . 4. The first composite short fiber has a crimp with a random structure.
Composite fiber nonwoven structure as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60041820A JPS61201059A (en) | 1985-03-05 | 1985-03-05 | Composite fiber nonwoven structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60041820A JPS61201059A (en) | 1985-03-05 | 1985-03-05 | Composite fiber nonwoven structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61201059A true JPS61201059A (en) | 1986-09-05 |
Family
ID=12618930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60041820A Pending JPS61201059A (en) | 1985-03-05 | 1985-03-05 | Composite fiber nonwoven structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61201059A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072512A (en) * | 1997-04-28 | 2000-06-06 | Nec Corporation | Electrophotographic printing apparatus with controller for varying light intensity |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58174669A (en) * | 1982-04-08 | 1983-10-13 | 帝人株式会社 | Composite fiber nonwoven structure |
-
1985
- 1985-03-05 JP JP60041820A patent/JPS61201059A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58174669A (en) * | 1982-04-08 | 1983-10-13 | 帝人株式会社 | Composite fiber nonwoven structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072512A (en) * | 1997-04-28 | 2000-06-06 | Nec Corporation | Electrophotographic printing apparatus with controller for varying light intensity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1350869B1 (en) | Improved binder fiber and nonwoven web | |
JP4118346B2 (en) | Wettable polymer fiber | |
TWI283184B (en) | Nonwoven web with improved adhesion and reduced dust formation | |
US4410579A (en) | Nonwoven fabric of ribbon-shaped polyester fibers | |
US20030114066A1 (en) | Uniform distribution of absorbents in a thermoplastic web | |
JPH01201564A (en) | Oriented melt blow fiber and its production and web | |
JPH0860510A (en) | Fiber structure containing linear low density polyethylene binder fiber | |
US20030003830A1 (en) | Air-laid web with high modulus fibers | |
CN102162173B (en) | Wiping cloth used for industry | |
CN101374448B (en) | Sheet-like water-disintegratable cleaner | |
KR20130132442A (en) | Wet lap composition and related processes | |
US20080119806A1 (en) | Extensible Fibers-Method for Their Production and Use | |
JP2002061060A (en) | Nonwoven fabric and finished article of nonwoven fabric | |
JPH03269199A (en) | Bulky pulp sheet and production thereof | |
JPS61201059A (en) | Composite fiber nonwoven structure | |
JP4849820B2 (en) | Water-absorbing nonwoven fabric | |
JP4748560B2 (en) | Thermally adhesive composite fiber and fiber product using the same | |
JPH0931815A (en) | Fiber aggregate and its production | |
JPS61201015A (en) | Thermally bondable conjugated yarn | |
JPH02191759A (en) | High-tenacity sheet | |
CN113186617A (en) | Anion antibacterial ES composite fiber and preparation method thereof | |
JPH05195400A (en) | Laminated nonwoven fabric and its production | |
JPH06200458A (en) | Biodegradable short fiber non-woven fabric | |
JP3011760B2 (en) | Short fiber non-woven sheet | |
JPH03213556A (en) | Stretchable nonwoven cloth |