JPS61200515A - All uv resin coated optical fiber - Google Patents

All uv resin coated optical fiber

Info

Publication number
JPS61200515A
JPS61200515A JP60041486A JP4148685A JPS61200515A JP S61200515 A JPS61200515 A JP S61200515A JP 60041486 A JP60041486 A JP 60041486A JP 4148685 A JP4148685 A JP 4148685A JP S61200515 A JPS61200515 A JP S61200515A
Authority
JP
Japan
Prior art keywords
coating
optical fiber
layer
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60041486A
Other languages
Japanese (ja)
Other versions
JP2539599B2 (en
Inventor
Nobuyuki Misono
御園 信行
Yasuyuki Sugawara
菅原 康行
Shinji Araki
荒木 真治
Michio Akiyama
秋山 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60041486A priority Critical patent/JP2539599B2/en
Publication of JPS61200515A publication Critical patent/JPS61200515A/en
Application granted granted Critical
Publication of JP2539599B2 publication Critical patent/JP2539599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the exertion of a side pressure to an optical fiber at a low temp. by coating >=2 layers of UV resins on an optical fiber, setting the Young's modulus and coefft. of linear coefft. of the 1st layer coating in a prescribed range and specifying the thickness of each layer so as to satisfy prescribed conditions. CONSTITUTION:>=2 layers of coatings 21, 22...2n of the UV resin are formed on the optical fiber 10 and the Young's modulus E1 and coefft. alpha1 of linear expansion of the 1st layer 21 are so set as to attain E1<En and alpha1>alphan as compared to the effective Young's modulus En and the coefft. alphan of linear expansion of the entire part of the coatings 22-2n of the 2nd and subsequent layers. The thickness of the layers 21-2n is so specified that the sum total of the stresses in the radiation direction to be exerted to the fiber 10 is made zero. The outside diameter 2b of the coating 21 of the 1st layer is so determined as to satisfy the following equation for the above-mentioned purpose: 2b=2a/{1-2(1-upsilon1)R}<1/2>, where upsilon1 is the Poisson ratio of the coating 21 of the 1st layer, 2a is the diameter of the fiber 10 and R is the ratio of the integrated value of alphan and alpha1 over a desired temp. range.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、被覆の全部の層にUVMiI脂(紫外線硬
化型樹脂)を使用する。オールUVZ脂被覆光ブアイバ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] This invention uses UVMiI resin (ultraviolet curable resin) in all layers of the coating. This relates to an all-UVZ fat-coated optical fiber.

[従来の技術と発明の背景] オールUV樹脂被覆光ファイバは、その被覆構造によっ
ては、低温で著しい損失増加を生ずるものがある。たと
えば−409Cにおける損失が20°Cにおけるよりも
数十dBも増加するものがある。
[Prior Art and Background of the Invention] Some all-UV resin-coated optical fibers experience a significant increase in loss at low temperatures, depending on their coating structure. For example, the loss at -409C is several tens of dB higher than at 20C.

この現象は、被覆の材料特性(ヤング率、ポアソン比、
線膨張係数など)や構造、被覆条件どに依存する。
This phenomenon is due to the material properties of the coating (Young's modulus, Poisson's ratio,
(linear expansion coefficient, etc.), structure, coating conditions, etc.

損失増加は、何らかの原因で光ファイバにマイクロベン
ドが与えられて生ずるものである。
The increase in loss is caused by microbends being applied to the optical fiber for some reason.

従来から使用されている、シリコーン樹脂とナイロンの
3層被覆構造の心線の低温特性は、光ファイバの軸方向
の収縮が損失増加をもたらことが知られている。
It is known that shrinkage in the axial direction of the optical fiber causes an increase in loss due to the low-temperature characteristics of the conventionally used core wire having a three-layer coating structure of silicone resin and nylon.

しかしオールUV樹脂被覆光ファイバの低温特性は、従
来のものと損失増加のメカニズムが異なる。
However, the low-temperature characteristics of an all-UV resin-coated optical fiber are different from those of conventional fibers in terms of the mechanism of increase in loss.

種々の被覆構造からなるオールUV樹脂被覆光ファイバ
の低温特性を調査した結果、UV被覆の径方向の収縮に
よる光ファイバへの側圧が、低温時の損失増加の大きな
原因であることが分った。
As a result of investigating the low-temperature characteristics of all-UV resin-coated optical fibers with various coating structures, it was found that lateral pressure on the optical fiber due to radial contraction of the UV coating is a major cause of increased loss at low temperatures. .

そこで、低温下で光ファイバに側圧が加わらないように
構成したオールUV樹脂被覆光ファイバを提供すること
が、この発明の目的である。
Therefore, it is an object of the present invention to provide an all-UV resin-coated optical fiber configured so that no lateral pressure is applied to the optical fiber at low temperatures.

[問題点を解決するための手段] 本発明は、第1図および第5図のように。[Means for solving problems] The present invention is as shown in FIGS. 1 and 5.

(1)光ファイバ上に、2層以上のUV樹脂を被覆し、
かつ第1層の被覆21のヤング率E1が、第2層の被覆
22のヤング率E2または第2層以上の被覆全体21 
、22−−−−2nの実効的のヤング率Enよりも小さ
くしてある(すなわちE、<ElまたはEl<Enの)
オールUV樹脂被覆光ファイバに関するものであること
、(2)第1層の被覆21の線膨張係数α1が、第2層
の被覆22の線膨張係数α2または第2層以上の被覆全
体の実効的の線膨張係数αnよりも大きく(すなわち、
αl〉α2またはα、〉αnに)しであること、 (3)温度変化によって光ファイバに加わる半径方向の
応力の総和がゼロになるように、各層の厚みが規定しで
あること、 を特徴とする。
(1) Coating two or more layers of UV resin on the optical fiber,
And the Young's modulus E1 of the first layer coating 21 is the Young's modulus E2 of the second layer coating 22 or the entire coating 21 of the second layer or more.
, 22--2n is smaller than the effective Young's modulus En (i.e., E<El or El<En).
(2) The linear expansion coefficient α1 of the first layer coating 21 is the same as the linear expansion coefficient α2 of the second layer coating 22 or the effective coefficient of the entire coating of the second layer and above. is larger than the linear expansion coefficient αn (i.e.,
αl〉α2 or α,〉αn), and (3) the thickness of each layer is regulated so that the sum of radial stress applied to the optical fiber due to temperature change becomes zero. shall be.

[その説明] 被覆が2層の場合について説明する。[Explanation] A case where the coating has two layers will be explained.

第1図において、10は光ファイバ、21は一法被覆、
22は二次被覆である。また E1ニー・法被覆のヤング率 El 二二次被覆のヤング率 νX ニー次被覆のポアソン比 ν2 二二次被覆のポアソン比 α1 ニー次被覆の線膨張係数 α2 :二次被覆の線膨張係数 a:光ファイバの半径 すニー次被覆の半径 C:二次被覆の半径 である。
In FIG. 1, 10 is an optical fiber, 21 is a coating,
22 is a secondary coating. Also, E1 Young's modulus of Knee-method coating El Young's modulus of second-order covering νX Poisson's ratio of second-order covering ν2 Poisson's ratio of second-order covering α1 Linear expansion coefficient of second-order covering α2 : Linear expansion coefficient a of second-order covering : Radius of optical fiber. Radius of secondary coating C: Radius of secondary coating.

(1)E、<Elにすることについて二従来のシリコー
ン樹脂とナイロンの被覆の場合は、経験則的にE 1 
< < E 2にして、側圧特性の改善を図っていた。
(1) Regarding E, < El 2. In the case of conventional silicone resin and nylon coating, as a rule of thumb, E 1
<< E 2 was used to improve the lateral pressure characteristics.

この考えは、オールUV樹脂被覆光ファイバの場合にも
継承され、かつ発表された文献中にも記載されている。
This idea is inherited in the case of all-UV resin-coated optical fibers, and is also described in published literature.

(2)α、〉α2にすることについてニー法被覆、二次
被覆が低温収縮したとき、もしα皿=α2であったとす
ると、収縮力が側圧となって光ファイバに伝わる。
(2) Concerning α,>α2 When the knee method coating and secondary coating contract at low temperature, if α plate=α2, the contraction force becomes lateral pressure and is transmitted to the optical fiber.

しかし、α1〉α2にしであるから、−法被覆は二次被
覆よりも多く収縮する。またE、<Elになっている。
However, since α1>α2, the -method coating shrinks more than the secondary coating. Also, E is <El.

だから次のようになる(第2図)。Therefore, it becomes as follows (Figure 2).

もし−法被(i21と二次被覆22とが境界で接着して
いないとすると、それらの間に隙間ができ、かつ−法被
覆の内径も縮少する。
If the legal covering (i21) and the secondary covering 22 are not adhered at the boundary, a gap will be created between them, and the inner diameter of the legal covering will also be reduced.

しかし−法被覆と二次被覆とは接着して一体になってい
るので、−法被覆21は、二次被覆22との境界面を基
準にして収縮する。そのために−法被覆21と光ファイ
バ10との界面においては、二次被覆側22に向う張力
が働く。
However, since the primary coating and the secondary coating are bonded and integrated, the primary coating 21 contracts with respect to the interface with the secondary coating 22. Therefore, at the interface between the optical fiber coating 21 and the optical fiber 10, a tension force toward the secondary coating side 22 acts.

−次被覆と二次被覆との厚み、すなわちbとCの値が適
当であると、上記の一次被覆21の張力と二次被覆22
の収縮力とが平衡し、光ファイバに加わる応力がゼロに
なる。
- If the thicknesses of the primary coating and the secondary coating, that is, the values of b and C, are appropriate, the tension of the primary coating 21 and the secondary coating 22
The contraction force of the optical fiber is balanced, and the stress applied to the optical fiber becomes zero.

(3)各層の厚みについてニ 一次被覆と二次被覆の材料が決まると、実験的に、ある
いは下記の計算により、光ファイバに加わる応力がゼロ
になる各層の厚みを求めることができる。
(3) Once the materials of the primary coating and secondary coating are determined for the thickness of each layer, the thickness of each layer at which the stress applied to the optical fiber becomes zero can be determined experimentally or by the calculations described below.

これが、特許請求の範囲の第1項に述べているところの
ものである。
This is what is stated in claim 1.

なお、一般にE、<<E2になるような材料が選択され
るが、そうすると、後記のように、−次被覆の厚みを決
めるだけで、光ファイバに加わる応力をゼロにすること
ができる。
Generally, materials are selected such that E, <<E2, but in this case, as will be described later, the stress applied to the optical fiber can be reduced to zero simply by determining the thickness of the -order coating.

[計算による各層の厚みの求め方] −法被覆、二次被覆が収縮したとき、光ファイバの表面
に加わる応力をPaとすると、焼きばめ(材料力学)の
理論から。
[How to determine the thickness of each layer by calculation] - From the theory of shrink fit (material mechanics), assuming that Pa is the stress applied to the surface of the optical fiber when the primary coating and secondary coating contract.

と表わせる。ここで、toは室温、tlは考察している
温度(たとえば−20°C)である。
It can be expressed as Here, to is room temperature and tl is the temperature under consideration (eg -20°C).

また、A、Bは、 である。Also, A and B are It is.

低温で、 P a = O(3) であればよいのであるから、(1)式と(3)式とから
(4〕式を得る。
Since it is sufficient that P a = O(3) at a low temperature, equation (4) is obtained from equations (1) and (3).

(2)式を使って、A/Bを実行すると(5)式を得る
When A/B is executed using equation (2), equation (5) is obtained.

第3図に、(4) (5)式から求めた、二次被覆の外
径2cと一次被覆の最適外径2bとの関係を示した。
FIG. 3 shows the relationship between the outer diameter 2c of the secondary coating and the optimum outer diameter 2b of the primary coating, determined from equations (4) and (5).

なお、この場合はE、<<E、、になっているので、 
 2bの値は、はとんど2Cの値に依存していない。
In addition, in this case, E, << E, , so
The value of 2b is largely independent of the value of 2C.

また第4図に、(4)(5)式から求めた。縁線膨張係
数比と一次被覆の最適外径2bとの関係を示した。
In addition, FIG. 4 shows the values obtained from equations (4) and (5). The relationship between the edge linear expansion coefficient ratio and the optimum outer diameter 2b of the primary coating is shown.

一法被覆、二次被覆の材料を決めると1以上の関係を利
用して各層の厚みを決めることができる。
Once the materials for the primary coating and secondary coating are determined, the thickness of each layer can be determined using one or more relationships.

[特にEIくくE2の場合について] E 、< < E 2の条件下では、(5)式は、とな
り、(8)式から、−次被覆の外径2bは。
[Especially regarding the case of EI x E2] Under the condition of E, << E2, equation (5) becomes, and from equation (8), the outer diameter 2b of the -th order coating is.

となる。becomes.

これが、特許請求の範囲の第2項に述べているところの
ものである。
This is what is stated in the second claim.

[被覆が2層以上の場合] 第5図のように、被覆がn層の場合は、上記のE2. 
 ν2、α2の代りに、第1層2nから二次被覆22ま
での実効的な数値、En、  νn、αn、を考えれば
、後は上記と同じように処理することができる。
[When the coating has two or more layers] As shown in FIG. 5, when the coating has n layers, the above E2.
If the effective values En, νn, αn from the first layer 2n to the secondary coating 22 are considered instead of ν2 and α2, the rest can be processed in the same manner as above.

[実施例] 次の第1表のような被覆構造を持つ3種類の光ファイバ
を試作し、その損失増の温度特性を測定した。その結果
を第6図示す(20°C基準)。
[Example] Three types of optical fibers having coating structures as shown in Table 1 below were fabricated, and the temperature characteristics of the loss increase were measured. The results are shown in Figure 6 (20°C standard).

#1のファイバは低温で大きな損失増が見られたが、#
2と#3のファイバは低温でも損失増がなかった。
#1 fiber showed a large increase in loss at low temperatures, but
Fibers #2 and #3 showed no increase in loss even at low temperatures.

第1表 なおこれらUV樹脂の特性は次の第2表のとおりである
Table 1 The properties of these UV resins are shown in Table 2 below.

第2表 なお、上記のA1.A7.B樹脂の外、市販さ^ている
ものとして、−法被覆材には、米国DeSoto In
c、社の「デソライトJ 950x030、同950x
065.同950x041.同950x069 、同9
50x071を、また二次被覆材には、同社の[デソラ
イN 950x044、同950xlO1、同950x
042.同950xlOOを、それぞれ使用することが
できる。
Table 2 In addition, the above A1. A7. In addition to resin B, commercially available coating materials include DeSoto In
c, “Desolite J 950x030, 950x”
065. Same 950x041. Same 950x069, same 9
50x071, and the company's [Desolai N 950x044, 950xlO1, 950x
042. The same 950xlOO can be used, respectively.

1発明の効果] 光ファイバ上に、 2層以上のUV樹脂を被覆し、かつ
第1層の被覆のヤング率が、第2層の被覆のヤング率ま
たは第2N以上の被覆全体の実効的のヤング率よりも小
さくしてあるオールUV樹脂被覆光ファイバにいて、第
1層の被覆の線膨張係数が、第2層の被覆の線膨張係数
または第2層以上の被覆全体の実効的の線膨張係数より
も大きくしてあり、かつ温度変化によって光ファイバに
加わる半径方向の応力の総和がゼロになるように、各層
の厚みが規定しであるので、光ファイバに加わる側圧を
ゼロにすることができるようになる。
1 Effect of the invention] An optical fiber is coated with two or more layers of UV resin, and the Young's modulus of the first layer is equal to or greater than the Young's modulus of the second layer or the effective of the entire coating of 2N or more. In an all-UV resin-coated optical fiber that is made smaller than the Young's modulus, the linear expansion coefficient of the first layer coating is the linear expansion coefficient of the second layer coating or the effective linear expansion coefficient of the entire coating of the second and higher layers. The thickness of each layer is set to be larger than the expansion coefficient, and the thickness of each layer is specified so that the sum of radial stress applied to the optical fiber due to temperature changes becomes zero, so the lateral pressure applied to the optical fiber can be reduced to zero. You will be able to do this.

すなわち、低温における損失増加の非常に大きな原因の
一つを無くすることができる。
That is, one of the very major causes of increased loss at low temperatures can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、 第2図は収縮する場合の説明図、 第3図は光ファイバに圧力が加わらない最適−次被覆外
径と二次被覆外径との関係線図、第4図は光ファイバに
圧力が加わらない最適−次被覆外径と線膨張係数の比と
の関係線図。 第5図は被覆が3層以上の場合の説明図、第6図は実施
例における温度特性を示す線図である。 lO:光ファイバ 21ニ一次被覆 22二二次被覆
Fig. 1 is a detailed explanatory diagram of the present invention; Fig. 2 is an explanatory diagram of the case of contraction; Fig. 3 is a relationship line between the optimal primary coating outer diameter and the secondary coating outer diameter without applying pressure to the optical fiber. 4 is a diagram showing the relationship between the ratio of the optimum outer diameter of the coating and the coefficient of linear expansion when no pressure is applied to the optical fiber. FIG. 5 is an explanatory diagram when the coating has three or more layers, and FIG. 6 is a diagram showing the temperature characteristics in the example. lO: Optical fiber 21 primary coating 22 secondary coating

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ上に、2層以上のUV樹脂を被覆し、
かつ第1層の被覆のヤング率が、第2層の被覆のヤング
率または第2層以上の被覆全体の実効的のヤング率より
も小さくしてあるオールUV樹脂被覆光ファイバにおい
て、 第1層の被覆の線膨張係数が、第2層の被覆の線膨張係
数または第2層以上の被覆全体の実効的の線膨張係数よ
りも大きくしてあり、 かつ温度変化によつて光ファイバに加わる半径方向の応
力の総和がゼロになるように、各層の厚みが規定してあ
ることを特徴とする、オールUV樹脂被覆光ファイバ。
(1) Coating two or more layers of UV resin on the optical fiber,
In an all-UV resin coated optical fiber, the Young's modulus of the first layer coating is smaller than the Young's modulus of the second layer coating or the effective Young's modulus of the entire coating of the second layer or more, the first layer The linear expansion coefficient of the coating is larger than the linear expansion coefficient of the second layer coating or the effective linear expansion coefficient of the entire second or higher coating, and the radius applied to the optical fiber due to temperature change is An all-UV resin-coated optical fiber characterized in that the thickness of each layer is regulated so that the sum of directional stresses is zero.
(2)第1層の被覆のヤング率が、第2層の被覆のヤン
グ率または第2層以上の被覆全体の実効的のヤング率よ
りも著しく小さくしてあり、 かつ第1層の被覆の外径2bが、次式で表せるようにな
つていることを特徴とする、特許請求の範囲第1項に記
載のオールUV樹脂被覆光ファイバ。 2b=2a/{√[1−2(1−ν_1)]R}ただし
、2aは光ファイバの直径、ν_1は第1層の被覆のポ
アソン比であり、第1層の被覆の線膨張係数をα_1、
第2層の被覆の線膨張係数をα_2、また第2層以上の
被覆全体の実効的の線膨張係数をαn、t_0を室温、
t_1を考察している温度とするとき、Rは、 ▲数式、化学式、表等があります▼ または ▲数式、化学式、表等があります▼ で表される数値である。
(2) The Young's modulus of the first layer coating is significantly smaller than the Young's modulus of the second layer coating or the effective Young's modulus of the entire second or higher layer coating, and The all-UV resin-coated optical fiber according to claim 1, wherein the outer diameter 2b is expressed by the following formula. 2b=2a/{√[1-2(1-ν_1)]R} where 2a is the diameter of the optical fiber, ν_1 is the Poisson's ratio of the first layer coating, and the linear expansion coefficient of the first layer coating is α_1,
The linear expansion coefficient of the second layer coating is α_2, and the effective linear expansion coefficient of the entire second layer and higher coatings is αn, t_0 is room temperature,
When t_1 is the temperature under consideration, R is a numerical value expressed as ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP60041486A 1985-03-02 1985-03-02 All UV resin coated optical fiber Expired - Lifetime JP2539599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041486A JP2539599B2 (en) 1985-03-02 1985-03-02 All UV resin coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041486A JP2539599B2 (en) 1985-03-02 1985-03-02 All UV resin coated optical fiber

Publications (2)

Publication Number Publication Date
JPS61200515A true JPS61200515A (en) 1986-09-05
JP2539599B2 JP2539599B2 (en) 1996-10-02

Family

ID=12609678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041486A Expired - Lifetime JP2539599B2 (en) 1985-03-02 1985-03-02 All UV resin coated optical fiber

Country Status (1)

Country Link
JP (1) JP2539599B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339709A (en) * 1989-07-07 1991-02-20 Furukawa Electric Co Ltd:The Coated optical fiber
JPH03155510A (en) * 1989-08-10 1991-07-03 Furukawa Electric Co Ltd:The Coated optical fiber
WO2002066390A1 (en) * 2001-02-20 2002-08-29 Sumitomo Electric Industries, Ltd. Coated optical fiber, optical fiber tape core using it and optical fiber unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188606A (en) * 1982-04-30 1983-11-04 松下電工株式会社 Manufacture of decorative veneer
JPS58188606U (en) * 1982-06-11 1983-12-15 日本電信電話株式会社 optical fiber core
JPS59217653A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Preparation of coated optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188606A (en) * 1982-04-30 1983-11-04 松下電工株式会社 Manufacture of decorative veneer
JPS58188606U (en) * 1982-06-11 1983-12-15 日本電信電話株式会社 optical fiber core
JPS59217653A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Preparation of coated optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339709A (en) * 1989-07-07 1991-02-20 Furukawa Electric Co Ltd:The Coated optical fiber
JPH03155510A (en) * 1989-08-10 1991-07-03 Furukawa Electric Co Ltd:The Coated optical fiber
WO2002066390A1 (en) * 2001-02-20 2002-08-29 Sumitomo Electric Industries, Ltd. Coated optical fiber, optical fiber tape core using it and optical fiber unit
US6907175B2 (en) 2001-02-20 2005-06-14 Sumitomo Electric Industries, Ltd. Coated optical fiber, optical fiber tape core using it and optical fiber unit
KR100889698B1 (en) 2001-02-20 2009-03-24 스미토모덴키고교가부시키가이샤 Coated optical fiber, optical fiber tape core using it and optical fiber unit

Also Published As

Publication number Publication date
JP2539599B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US5621838A (en) Resins for coated optical fiber units
US4114981A (en) Optical fiber for communication
US4953945A (en) Transmission protective coated optical fiber tape
FI925897A0 (en) Method for forming a two-layer plastic pipe for mass transfer and a two-layer plastic pipe formed by the method
GB1581580A (en) Glass fibre reinforced pipe
KR910006168A (en) Tape Shape Fiber Optic Core
US6004675A (en) Optical glass fiber
JPS61200515A (en) All uv resin coated optical fiber
CA1262833A (en) Optical fiber
US20040170367A1 (en) Systems and methods involving optical fibers having separate color layers
JPH0776118B2 (en) Manufacturing method of coated optical fiber
JPS6254206A (en) Covered optical fiber
JPH07225330A (en) Optical unit for optical composite overhead earth wire
JPH0425685Y2 (en)
JPH01196009A (en) Optical fiber
JPS6247008A (en) Optical fiber unit
JPS6016892Y2 (en) optical fiber core
US6647195B2 (en) Coated optical glass fiber
JPH0629888B2 (en) Coated optical fiber
JPH08511082A (en) Method and equipment for temperature independent mounting on bearings
JPH0933773A (en) Coated optical fiber tape
JPH06191872A (en) Production of colored element wire for optical fiber tape core wire
JPH0410564Y2 (en)
JPS6045210A (en) Optical fiber core wire
JPS61170711A (en) Optical fiber core