JPS61200096A - Hydraulic driving device for diving boat - Google Patents

Hydraulic driving device for diving boat

Info

Publication number
JPS61200096A
JPS61200096A JP4155985A JP4155985A JPS61200096A JP S61200096 A JPS61200096 A JP S61200096A JP 4155985 A JP4155985 A JP 4155985A JP 4155985 A JP4155985 A JP 4155985A JP S61200096 A JPS61200096 A JP S61200096A
Authority
JP
Japan
Prior art keywords
pressure
hydraulic
depth
low
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155985A
Other languages
Japanese (ja)
Inventor
Tomonori Mishima
三島 智範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4155985A priority Critical patent/JPS61200096A/en
Publication of JPS61200096A publication Critical patent/JPS61200096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)

Abstract

PURPOSE:To easily introduce a hydraulic driving device into a diving boat, by applying a depth pressure of the diving boat to a low-pressure line in a hydraulic circuit of the hydraulic driving device. CONSTITUTION:A hydraulic pump 10 and a hydraulic motor 7 are connected through an electromagnetic valve 14 by a high-pressure line 15 and a low- pressure line 16 in a hydraulic circuit 13. In a depth pressure compensating mechanism 18, a piston 20 is mounted in a cylinder 19 so as to be slidable by means of a spring 21. An inside chamber 22 defined by the piston 20 in the cylinder 19 is connected to the low-pressure line 16. An outside chamber 23 defined by the piston 20 is opened through a shell 1a of a hull to the outside. Thus, the sea water is introduced into the chamber 23, and accordingly, a depth pressure of the diving boat is applied through the piston 20 to the low-pressure line 16. As the depth pressure, that is, the pressure in the low-pressure line 16 is increased, generation of aeration may be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、主として水中で運動する潜水船、あるいは
水中ロボットなどに装備して最適な油圧駆動装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention mainly relates to improvement of a hydraulic drive device that is most suitable for being installed in a submersible that moves underwater, or an underwater robot.

(従来技術) 従来の潜水艇などは、例えば一つの推進器に垂直および
水平舵を組合せて単に水中を航行するようにしているの
が普通である。
(Prior Art) Conventional submarines and the like typically simply navigate underwater by combining vertical and horizontal rudders with a single propulsion device, for example.

ところが近年、潜水船、あるいは水中ロボットとよばれ
るものおいては、次第に水中におけるより高度の運動性
能が期待されるようになって来ている。
However, in recent years, what are called submersibles or underwater robots have gradually come to be expected to have more advanced maneuverability underwater.

このため、推進型構造からして推進器自身に一つ、ない
し二つの旋回機能を付加して、低速域の運動性能を改良
した複数個の推進器を装備した潜水船や水中ロボット(
以゛下、潜水船という)も提供されている。
For this reason, due to the propulsion type structure, submersibles and underwater robots (underwater robots) equipped with multiple propulsors have improved maneuverability in the low speed range by adding one or two turning functions to the propulsors themselves.
A submersible (hereinafter referred to as a submersible) is also available.

(発明が解決しようとする問題点) ところで上記するように、推進器自身に一つ、ないし二
つの旋回機能を付加した推進器にあっては、船体との干
渉を少なくするために、推進器を可及的船体側から離す
ようにした構成が好適するが、このように推進器を船体
から離す構成にすると、船体内の動力源から推進器まで
の動力伝達について、通常の機械的な方法による場合は
種々の技術的な制約が生じる。
(Problems to be Solved by the Invention) As mentioned above, in a propulsion device that has one or two turning functions added to the propulsion device itself, in order to reduce interference with the hull, it is necessary to A configuration in which the propeller is separated from the hull as much as possible is preferable, but if the propeller is separated from the hull in this way, the power transmission from the power source inside the hull to the propeller will not be possible using the normal mechanical method. In this case, various technical restrictions arise.

そこでこの種の推進器の駆動は、油圧駆動または電気駆
動方式とするのが一般的である。
Therefore, this type of propulsion device is generally driven by a hydraulic drive or an electric drive system.

上記の油圧駆動方式は、動力伝達に関する柔軟性を有す
るとともに、大深度域において不可欠な水圧補償機構の
ための圧力媒体としても利用出来る利得があるため、今
後の潜水船には極めて有用視されるものと考えられる。
The above-mentioned hydraulic drive system has the advantage of being flexible in terms of power transmission and can also be used as a pressure medium for the water pressure compensation mechanism that is essential in deep areas, so it will be considered extremely useful for future submersibles. considered to be a thing.

ところが従来の油圧駆動方式を採用する装置にあっては
、通常、油圧回路の低圧管路において大きな油溜タンク
を必須とするもので、これが大深度まで潜航する潜水船
にあっては、タンク自体もその深度に耐える耐圧容器で
あることが必要になる。
However, equipment that uses conventional hydraulic drive systems usually requires a large oil storage tank in the low-pressure pipeline of the hydraulic circuit, and in the case of submersibles that dive to great depths, the tank itself is indispensable. It is also necessary to have a pressure-resistant container that can withstand that depth.

更に、この油溜タンクの存在は、重量面およびその設置
スペース面から潜水船全体の経済性を著しく阻害する難
点もある。
Furthermore, the existence of this oil sump tank has the disadvantage that it significantly impedes the economic efficiency of the entire submersible in terms of weight and installation space.

この発明は上記の点に鑑がみなされたものであって、こ
の発明では、油圧駆動装置に構成する油圧回路における
低圧管路を共通にし、該低圧管路に対して深度圧を作用
させることにより、油圧回路の作動油の温度膨張の吸収
、ポンプ吸い込み水頭の保持、またエアーレーションの
防止などを実現し、油溜タンクが省略できて該タンクが
潜水船におよぼす影響を解消し、潜水船への油圧駆動装
置の導入を容易にした油圧駆動装置を提供することを目
的とする。
This invention has been made in consideration of the above points, and in this invention, the low pressure pipes in the hydraulic circuits included in the hydraulic drive device are made common, and depth pressure is applied to the low pressure pipes. As a result, it is possible to absorb the temperature expansion of the hydraulic oil in the hydraulic circuit, maintain the pump suction head, and prevent aeration.The oil sump tank can be omitted, eliminating the influence of the tank on the submersible, and reducing the impact on the submersible. It is an object of the present invention to provide a hydraulic drive device that makes it easy to introduce the hydraulic drive device into the system.

(問題点を解決するための手段) 上記の目的を達成するためのこの発明の要旨とするとこ
ろは、推進器などの油圧駆動装置を構成する油圧回路の
低圧管路を共通にし、該低圧管路に深度圧を作用させる
深度圧補償機構を配装連結したことを特徴とする潜水船
の油圧駆動装置にある。
(Means for Solving the Problems) The gist of the present invention to achieve the above object is to make the low pressure pipes of the hydraulic circuits constituting a hydraulic drive device such as a propulsion unit common, and to A hydraulic drive device for a submersible boat is characterized in that a depth pressure compensating mechanism for applying depth pressure to a road is arranged and connected thereto.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明を通用した潜水船の概略構成図である
FIG. 1 is a schematic diagram of a submersible vessel to which the present invention is applied.

図において、1は潜水船などの船体で、この種の船体1
では、通常船体1の内外ともに海水が存在し、船体内に
配置された各機器はほとんど直接その深度に基づく水圧
を受けるようになっている。
In the figure, 1 is the hull of a submarine, etc., and this type of hull 1
In general, seawater exists both inside and outside the hull 1, and each device arranged inside the hull is almost directly subjected to water pressure based on the depth.

2は推進器で、図示例のものは簡単のためにスクリュ一
式推進器1個を船尾に装備した構成を示している。
Reference numeral 2 denotes a propeller, and the illustrated example shows a configuration in which one propeller with screw set is installed at the stern for simplicity.

3は推進器駆動ユニット全体を示し、その主要構成は、
プロペラ軸4、軸封装置5、減速機6、油圧モータ7、
推進器駆動ユニットケーシング8などからなる。
3 shows the entire thruster drive unit, its main components are:
Propeller shaft 4, shaft sealing device 5, reducer 6, hydraulic motor 7,
It consists of a propeller drive unit casing 8, etc.

軸封装置5は大深度を航行する場合には、通常メカルカ
ルシール式で外部は海水に、内部は油に接しており、海
水圧の変化に応じて内部の油圧を変化させ、両者をだい
たい釣り合わせることによって、軸封機能を完全なもの
にするようにしている。
When navigating at great depths, the shaft seal device 5 is usually a mechanical seal type, and the outside is in contact with seawater and the inside is in contact with oil, and the internal oil pressure is changed in response to changes in seawater pressure, so that both of them can be roughly maintained. By balancing, the shaft sealing function is perfected.

油圧モータ7には一般に、最も高圧化が可能で重量軽減
が可能となるアクシュアルプランジャー形などが使用さ
れ、この油圧モータ7の回転は、推進器2の推進効率の
向上を図る上から減速機6によって減速してプロペラ軸
4に伝達される。
The hydraulic motor 7 is generally of the axial plunger type, which can achieve the highest pressure and reduce weight, and the rotation of the hydraulic motor 7 is slowed down in order to improve the propulsion efficiency of the propulsion device 2. It is decelerated by the aircraft 6 and transmitted to the propeller shaft 4.

推進器駆動ユニットケーシング8は推進器2の駆動装置
一式を内包するもので、これには深度に相当する海水圧
が働くものであり、内外圧力を釣り合せるようになって
いる。
The propeller drive unit casing 8 contains a set of drive devices for the propeller 2, and seawater pressure corresponding to the depth acts on this, so that the internal and external pressures are balanced.

尚、この推進器駆動ユニットケーシング8は必ずしも別
体構成にする必要はなく、油圧モータ7および減速器6
のケーシングを一体化して兼用することによって重量、
スペースの節約ができる。
Note that this propulsion drive unit casing 8 does not necessarily have to be constructed separately, and the hydraulic motor 7 and the speed reducer 6
The weight is reduced by integrating the casing of the
You can save space.

9はパワーユニット全体を示し、その主要構成は、油圧
ポンプlO1駆動電動機11、パワーユニットケーシン
グ12などからなり、図示例では油圧ポンプ10に一定
吐出型のものを使用している。
Reference numeral 9 indicates the entire power unit, and its main components include a hydraulic pump lO1 drive electric motor 11, a power unit casing 12, etc. In the illustrated example, the hydraulic pump 10 is of a constant discharge type.

13は油圧ポンプ10からの圧油を油圧モータ7に供給
する油圧回路を示し、電磁切換弁14を介装して高圧管
路15と低圧管路16によって油圧ポンプ10と油圧モ
ータ7を接続し、高圧管路15と低圧管路16間に調圧
弁17を接続してなる。
Reference numeral 13 indicates a hydraulic circuit that supplies pressure oil from the hydraulic pump 10 to the hydraulic motor 7, and connects the hydraulic pump 10 and the hydraulic motor 7 through a high-pressure pipe 15 and a low-pressure pipe 16 with an electromagnetic switching valve 14 interposed therebetween. , a pressure regulating valve 17 is connected between the high pressure pipe 15 and the low pressure pipe 16.

電磁切換弁14としては、4ボ一ト3位置電磁切換弁が
使用され、推進器2の前進、後退、および停+hを司る
As the electromagnetic switching valve 14, a 4-bottom, 3-position electromagnetic switching valve is used, and controls forward movement, backward movement, and stop +h of the propulsion device 2.

また調圧弁17には、電磁比例調圧弁が使用され、高圧
管路15と低圧管路16間の差圧を所要値に保つように
機能する。
Further, an electromagnetic proportional pressure regulating valve is used as the pressure regulating valve 17, and functions to maintain the differential pressure between the high pressure pipe 15 and the low pressure pipe 16 at a required value.

然して、推進器2の油圧駆動においては、油圧は推進器
2のトルク、または推力に比例するものであり、従って
、この方式の制御では、推進器2の推力を制御している
ことになる。
However, in the hydraulic drive of the propulsion device 2, the hydraulic pressure is proportional to the torque or thrust of the propulsion device 2, and therefore, in this type of control, the thrust of the propulsion device 2 is controlled.

尚、上記の電磁切換弁14と調圧弁17は電気信号で作
動し、遠隔操作される。
Note that the electromagnetic switching valve 14 and the pressure regulating valve 17 described above are activated by electric signals and are remotely controlled.

次に、18は油圧回路13の低圧管路16に対して配装
連結した深度圧補償機構で、シリンダ19内にピストン
20をばね21を介装して摺嵌し、シリンダ19内に形
成するピストン内側室22を低圧管路16に連結し、ピ
ストン外側室23を船体外板1aを介して船外に開放し
、該ピストン外側室23への海水の導入により深度圧が
ピストン20を介して低圧管路16に作用するように構
成したものである。
Next, 18 is a depth pressure compensation mechanism arranged and connected to the low pressure pipe 16 of the hydraulic circuit 13, and a piston 20 is slidably fitted into the cylinder 19 with a spring 21 interposed therebetween. The piston inner chamber 22 is connected to the low pressure pipe line 16, and the piston outer chamber 23 is opened to the outside through the hull outer plate 1a, and by introducing seawater into the piston outer chamber 23, depth pressure is caused to flow through the piston 20. It is configured to act on the low pressure pipe line 16.

尚、ピストン外側室23内においてピストン20と船体
外板18間に配装したベローズ24は、海水の導入室を
区画して海中の生成物の浸水によってピストン20が固
着してしまうのを防止するためのものであり、必要に応
じて装備する。
A bellows 24 disposed between the piston 20 and the hull outer plate 18 in the piston outer chamber 23 partitions the seawater introduction chamber and prevents the piston 20 from becoming stuck due to intrusion of underwater products. and be equipped as necessary.

然して・潜水船の深度とともに低圧管路16の圧力が上
昇し、また油圧回路13において油の温度膨張などがあ
ると、逆にピストン20はばね21に抗してピストン外
側室23側に押動されて低圧管路16が過大圧になるの
を防止する。
However, if the pressure in the low-pressure pipe 16 increases with the depth of the submersible, and if there is temperature expansion of oil in the hydraulic circuit 13, the piston 20 will be pushed toward the piston outer chamber 23 against the spring 21. This prevents the low pressure line 16 from becoming overpressured.

尚、ばね圧の設定は潜水船が水面近くにあるとき、低圧
管路16の圧力をこれによっである程度保ち、油圧ポン
プ10の吸い込み水頭の保持や、油のエアーレーション
防止の役割りを果たすようにする。
The spring pressure is set to maintain the pressure in the low-pressure pipe 16 to a certain extent when the submersible is near the water surface, and serves to maintain the suction head of the hydraulic pump 10 and prevent oil aeration. Do it like this.

(作  用) 上記構成において作用を説明する。(for production) The operation in the above configuration will be explained.

推進機2が駆動されるとき、電動機11によって油圧ポ
ンプ10が回転すると、該油圧ポンプ10の一定吐出油
全量が高圧管路15へ吐出され、切換弁14を介して油
圧モータ7の吸い込み側に供給されて循環を繰り返す。
When the propulsion device 2 is driven, when the hydraulic pump 10 is rotated by the electric motor 11, the entire fixed amount of oil discharged from the hydraulic pump 10 is discharged to the high pressure pipe 15, and is transferred to the suction side of the hydraulic motor 7 via the switching valve 14. It is supplied and the cycle repeats.

ここで、電磁切換弁14、および調圧弁17についてみ
ると、両者は第3図に示す如く制御される。
Now, regarding the electromagnetic switching valve 14 and the pressure regulating valve 17, both are controlled as shown in FIG.

図において、横軸は制御ハンドル(図示せず)の位置を
示し、縦軸は電磁切換弁14の弁開度a、および調圧弁
17の設定差圧b、即ち、推進器2の推力を示す。
In the figure, the horizontal axis indicates the position of the control handle (not shown), and the vertical axis indicates the valve opening a of the electromagnetic switching valve 14 and the set differential pressure b of the pressure regulating valve 17, that is, the thrust of the propulsion device 2. .

今、制御ハンドルを少し前進側に設定すると、当初油圧
ポンプlOから吐出された圧油は調圧弁17でバイパス
されて油圧ポンプ10へ戻るが、調圧弁17で差圧が設
定されるので、圧油の一部は電磁弁14を介して油圧モ
ータ7に供給されて油圧モータ7が回転を開始し、この
回転が減速器6とプロペラ軸4を介して推進器2に伝達
されて推力を発生する。
Now, when the control handle is set slightly forward, the pressure oil initially discharged from the hydraulic pump lO is bypassed by the pressure regulating valve 17 and returns to the hydraulic pump 10, but since the differential pressure is set by the pressure regulating valve 17, the pressure A portion of the oil is supplied to the hydraulic motor 7 via the solenoid valve 14, and the hydraulic motor 7 starts rotating, and this rotation is transmitted to the propulsion device 2 via the reducer 6 and propeller shaft 4 to generate thrust. do.

更に、調圧弁17の設定差圧が上昇されると、この調圧
弁17からの圧油のバイパス量が減少し、推進器2の回
転が上昇し、その推力が上昇する。
Further, when the set differential pressure of the pressure regulating valve 17 is increased, the bypass amount of pressure oil from the pressure regulating valve 17 is decreased, the rotation of the propulsion device 2 is increased, and its thrust is increased.

一方、潜水船の深度が増すと、深度圧補償機構18によ
って低圧管路16の圧力が上昇するが、調圧弁17は高
圧管路15と低圧管路16間の差圧を一定に保っている
ので、その分だけ高圧管路15の圧力も上昇し、結局、
回路全体の圧力が深度分だけ上昇するだけで、駆動機能
そのものは影響を受けることなく作動することになる。
On the other hand, when the depth of the submersible increases, the pressure in the low pressure pipe 16 increases due to the depth pressure compensation mechanism 18, but the pressure regulating valve 17 keeps the differential pressure between the high pressure pipe 15 and the low pressure pipe 16 constant. Therefore, the pressure in the high-pressure pipe 15 increases by that amount, and eventually,
The pressure in the entire circuit only increases by the depth, and the drive function itself operates without being affected.

尚、各機器の外部には深度に応じた水圧が働くが、各機
器の内部にも同様の油圧が働いて、内外圧が釣り合って
いるために、それだけ深度の影響を受けにくいことにな
る。
Note that although water pressure is applied to the outside of each device according to the depth, similar hydraulic pressure is applied to the inside of each device, and the internal and external pressures are balanced, making it less susceptible to the effects of depth.

(他の実施例) 第4図は油圧回路に対する深度圧補償機構の配装連結例
の変形を示す要部回路図である。
(Other Embodiments) FIG. 4 is a circuit diagram of a main part showing a modification of an example of arrangement and connection of a depth pressure compensation mechanism to a hydraulic circuit.

本実施例は、油圧ポンプに接続した2つの管路が推進器
の前進時と後進時に高低管路として入れ換わる両偏心の
可変吐出量ポンプを使用する場合のもので、この種の油
圧ポンプを使用では油圧ポンプに接続される2つの高圧
管路15a      ・間に、2個の逆止弁25を直
列に接続し、両逆止弁25の接続点から低圧管路16a
を延設し、この低圧管路16aに深度圧補償機構18を
連結する。
This example is for a case where a double eccentric variable discharge rate pump is used, in which the two pipes connected to the hydraulic pump are switched as high and low pipes when the propulsion unit moves forward and backward. In use, two check valves 25 are connected in series between two high-pressure pipes 15a connected to a hydraulic pump, and a low-pressure pipe 16a is connected from the connection point of both check valves 25.
A depth pressure compensation mechanism 18 is connected to the low pressure pipe 16a.

(効 果) 以上の説明から明らかなように、この発明では、推進器
などの油圧駆動装置の油圧回路の低圧管路を共通にして
、これに深度圧を作用させる深度補償圧機構を配装連結
したから、潜水船の深度に比例して油圧回路全体の圧力
が変化し、高圧管路と低圧管路の差圧を一定に保って駆
動機能に影響を与えず、しかも油圧回路における作動油
の温度膨張の吸収をはじめとして、油圧ポンプ吸い込み
水頭の保持、またエアーレーションの防止などが従来の
油圧回路では必須とされた油溜タンクを省略して実現で
きたものであり、潜水船を建造する上で油圧駆動装置の
導入を容易にし、かつ装置のコンパクト化に寄与する著
しい優れた実用的効果を奏する。
(Effects) As is clear from the above explanation, in this invention, the low-pressure pipes of the hydraulic circuits of hydraulic drive devices such as propulsors are shared, and a depth compensation pressure mechanism is installed to apply depth pressure to the pipes. Because they are connected, the pressure in the entire hydraulic circuit changes in proportion to the depth of the submersible, keeping the differential pressure between the high-pressure pipe and low-pressure pipe constant and not affecting the drive function. In addition to absorbing thermal expansion of the hydraulic pump, maintaining the suction head of the hydraulic pump and preventing aeration can be achieved by omitting the oil sump tank that is essential in conventional hydraulic circuits, making it possible to build submersibles. This makes it easy to introduce a hydraulic drive device and has a remarkable practical effect that contributes to making the device more compact.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図はこの発
明を通用した潜水船の概略構成図、第2図は深度補償圧
機構の断面図、第3図は切換弁、および調圧弁の制御説
明図、第4図は他の実施例を示す油圧回路に対する深度
圧補償機構の配装連結例の変形を示す要部回路図である
。 ■・・・船体、2・・・推進器、3・・・推進型駆動ユ
ニット、4・・・プロペラ軸、5・・・軸封装置、6・
・・減速機、7・・・油圧モータ、8・・・推進器駆動
ユニットケーシング、9・・・パワーユニット、lO・
・・油圧ポンプ、11・・・駆動電動機、12・・・パ
ワーユニットケーシング、13・・・油圧回路、14・
・・電磁切換弁、15・・・高圧管路、16・・・低圧
管路、17・・・調圧弁、18・・・深度圧補償機構、
19・・・シリンダ、20・・・ピストン、21・・・
ばね、22・・・ピストン内側室、23・・・ピストン
外側室、24・・・ベローズ、25・・・逆止弁。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of a submersible using this invention, FIG. 2 is a sectional view of a depth compensation pressure mechanism, and FIG. 3 is a switching valve and a pressure regulating valve. Fig. 4 is a circuit diagram of a main part showing a modification of an example of arrangement and connection of a depth pressure compensation mechanism to a hydraulic circuit showing another embodiment. ■... Hull, 2... Propulsion unit, 3... Propulsion type drive unit, 4... Propeller shaft, 5... Shaft sealing device, 6...
...Reducer, 7. Hydraulic motor, 8. Propulsion drive unit casing, 9. Power unit, lO.
... Hydraulic pump, 11... Drive motor, 12... Power unit casing, 13... Hydraulic circuit, 14...
... Solenoid switching valve, 15... High pressure pipe line, 16... Low pressure pipe line, 17... Pressure regulating valve, 18... Depth pressure compensation mechanism,
19...Cylinder, 20...Piston, 21...
Spring, 22... Piston inner chamber, 23... Piston outer chamber, 24... Bellows, 25... Check valve.

Claims (1)

【特許請求の範囲】[Claims] 推進器などの油圧駆動装置を構成する油圧回路の低圧管
路を共通にし、該低圧管路に深度圧を作用させる深度圧
補償機構を配装連結したことを特徴とする潜水船の油圧
駆動装置。
A hydraulic drive system for a submersible, characterized in that low pressure pipes of hydraulic circuits constituting a hydraulic drive system such as a propulsion device are shared, and a depth pressure compensation mechanism for applying depth pressure to the low pressure pipes is arranged and connected. .
JP4155985A 1985-03-02 1985-03-02 Hydraulic driving device for diving boat Pending JPS61200096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155985A JPS61200096A (en) 1985-03-02 1985-03-02 Hydraulic driving device for diving boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155985A JPS61200096A (en) 1985-03-02 1985-03-02 Hydraulic driving device for diving boat

Publications (1)

Publication Number Publication Date
JPS61200096A true JPS61200096A (en) 1986-09-04

Family

ID=12611787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155985A Pending JPS61200096A (en) 1985-03-02 1985-03-02 Hydraulic driving device for diving boat

Country Status (1)

Country Link
JP (1) JPS61200096A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103085952A (en) * 2013-01-31 2013-05-08 中国舰船研究设计中心 Manless underwater vehicle
CN106927005A (en) * 2015-12-30 2017-07-07 中国科学院沈阳自动化研究所 A kind of underwater robot propulsion plant
CN107010189A (en) * 2017-04-14 2017-08-04 辛光红 A kind of underwater hiding-machine buoyancy regulating device
JP2020131933A (en) * 2019-02-20 2020-08-31 株式会社Ihi Flotation adjusting device and underwater traveling body
KR20230096366A (en) * 2021-12-23 2023-06-30 임진택 Balance system for underwater vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103085952A (en) * 2013-01-31 2013-05-08 中国舰船研究设计中心 Manless underwater vehicle
CN106927005A (en) * 2015-12-30 2017-07-07 中国科学院沈阳自动化研究所 A kind of underwater robot propulsion plant
CN107010189A (en) * 2017-04-14 2017-08-04 辛光红 A kind of underwater hiding-machine buoyancy regulating device
JP2020131933A (en) * 2019-02-20 2020-08-31 株式会社Ihi Flotation adjusting device and underwater traveling body
KR20230096366A (en) * 2021-12-23 2023-06-30 임진택 Balance system for underwater vehicle

Similar Documents

Publication Publication Date Title
US8397658B1 (en) Buoyancy control systems and methods for submersible objects
CA2361287C (en) Turning of a propulsion unit
CN109281926B (en) Vibration reduction thrust bearing with hydrostatic thrust self-balancing function
US3154043A (en) Hydrodynamic travelling wave propulsion apparatus
US3122121A (en) System for propelling and steering vessels
US6296535B1 (en) Tilt-trim subsystem for boats using a stern drive system
US3504648A (en) Deepwater hydraulic power unit
US3913517A (en) Hydraulic steering mechanism for marine drive
US3125975A (en) Submergible hull propulsion and control system
EP0251995B1 (en) Naval propulsion plant with hydraulic transmission
CN105109649A (en) Underwater vector propeller for realizing flexible steering by utilizing coanda effect
JPS61200096A (en) Hydraulic driving device for diving boat
JPH0378315B2 (en)
CN109131817B (en) Ship propulsion system
CN211259172U (en) Controllable power device for underwater transmission mechanism
JP2007230547A (en) Electric ship propulsion system with three shaft lines
CN110406652B (en) Two-degree-of-freedom joint for deep-sea multi-joint submersible vehicle
US3838654A (en) Submarine craft
RU2713494C1 (en) Autonomous unmanned underwater amphibian apparatus
US3665884A (en) Submersible vehicle buoyancy control
US3234902A (en) Marine turbine drive system
EP1867566B1 (en) Shift apparatus for inboard-outboard drive
US4449469A (en) Mechanical clutch/decoupler for hydraulic pumps
US4609362A (en) Non-soniferous power drive for underwater vehicles
CN112793748B (en) Full-sea-depth energy-saving seawater hydraulic buoyancy self-adaptive system and submersible