JPS6119986A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS6119986A
JPS6119986A JP59139300A JP13930084A JPS6119986A JP S6119986 A JPS6119986 A JP S6119986A JP 59139300 A JP59139300 A JP 59139300A JP 13930084 A JP13930084 A JP 13930084A JP S6119986 A JPS6119986 A JP S6119986A
Authority
JP
Japan
Prior art keywords
panel
dewar
liquid
vessel
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139300A
Other languages
Japanese (ja)
Inventor
Hidetsugu Setoyama
英嗣 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59139300A priority Critical patent/JPS6119986A/en
Publication of JPS6119986A publication Critical patent/JPS6119986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To prevent a flooding phenomenon from occurring as well as to aim at improvements in cooling capacity ever so better, by forming a connecting pipe line between a vessel inside a panel in a vacuum vessel and a dewer into a double pipe structure, while separating a gaseous phase stream and a liquid phase stream of the present pump, which exhausts the inside of the vacuum vessel to a superhigh vacuum, to the full. CONSTITUTION:An updraft flowing from a vessel 7 inside a panel to a dewer 3 is being cooled in time of passing through liquid helium 6 whereby in time of passing through a connecting pipe line 10, its heat exchange with an outer surface of an inner tube 12 is almost nothing, and furthermore such an effect as seeding the inner pipe 12 from ambient radiant heat is secured. In consequence, a portion for evaporation of the liquid helium inside the inner pipe 12 is almost nothing there, whereby a circulating circuit of a liquid helium storage part 16 a liquid phase inflow port 13 the inner pipe 12 the panel inside vessel 7 a vapored position outlet 14 the connecting pipe line 10 a helium space 15 in an interval between the panel inside vessel 7 of a panel heat receiving plate 2 and the dewer 3 by the connecting pipe line 10 and the inner pipe 12, therefore no flooding happens there so that the state is stabilized and a loss of heat is very little whereby replenishment of the liquid helium and exhaust of vapored gas take place so smoothly, thus cooling capacity is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核融合装置等の真空容器に係り、特に核融合装
置用真空容器内を超高真空に排気するために用いるクラ
イオポンプの気液相流の分離構造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vacuum container for a nuclear fusion device, etc., and in particular to a gas-liquid phase cryopump used to evacuate the inside of a vacuum container for a nuclear fusion device to an ultra-high vacuum. It concerns the flow separation structure.

〔発明の背景〕[Background of the invention]

核融合装置等の真空容器を超高真空に排気するために、
毎秒数十〜数百刃リットル相当の超大容量排気速度を持
つクライオポンプが使われる。クライオポンプは、真空
容器内に極低温用液化ガス(通常は液体ヘリウム)を充
填した圧力容器を収納し、同容器を液体ヘリウム温度(
−269tll’)まで冷却して、この容器表面に真空
容器内気体分子を吸着凝固させ排気するものである。
To evacuate vacuum containers such as nuclear fusion devices to ultra-high vacuum,
A cryopump is used that has an ultra-high capacity pumping speed equivalent to tens to hundreds of liters per second. A cryopump consists of a pressure vessel filled with a cryogenic liquefied gas (usually liquid helium) inside a vacuum vessel, and the pressure vessel is heated to a temperature of liquid helium (usually liquid helium).
-269 tll'), gas molecules in the vacuum container are adsorbed and solidified on the surface of the container, and then evacuated.

ここで用いる液体ヘリウムの気化混熱は、zo、9J/
gUと極めて小さいため、わずかな熱で気化してしまう
。これに対処する従来の方法を第2図と第3図を参照し
て説明する。
The mixed heat of vaporization of liquid helium used here is zo, 9J/
Because it is extremely small (gU), it vaporizes with a small amount of heat. A conventional method for dealing with this will be explained with reference to FIGS. 2 and 3.

第2図Aは、真空容器内に配置され液体へりつムを充填
されるクライオポンプの主要部分の模式図である。図に
おいて、2は液体ヘリウムを充填し真空容器内を冷却す
るためのパネル受熱板、4は液体ヘリウム供給配管、6
は液体ヘリウムの流入口、7はパネル受熱板2内で液体
ヘリウムを充填されるパネル内容器、11は気化したガ
スの排気口である。
FIG. 2A is a schematic diagram of the main parts of a cryopump placed in a vacuum vessel and filled with liquid helium. In the figure, 2 is a panel heat receiving plate for filling liquid helium and cooling the inside of the vacuum container, 4 is a liquid helium supply pipe, and 6
1 is an inlet for liquid helium, 7 is an inner panel container filled with liquid helium within the panel heat receiving plate 2, and 11 is an exhaust port for vaporized gas.

わずかな熱で気化したガスは排気口11から猛烈な速度
で出て行くので、それに見合う分の液体ヘリウムの補充
が必要となる。第2図人のように供給配管4から直接補
充する方法もあるが、負荷の変動に細かく対応できない
ために、第2図Bのように、貯蔵槽としてのデユワ−3
を設けるのが一般的である。デユワ−3内には気化して
生じたヘリウムガス15と液体ヘリウム部分16とがあ
り、パネル内容器7内の液体ヘリウムが不足しそうにな
ると、接続配管1oを通して液体ヘリウム16がパネル
内容器7内に液相流となり流入し補うよう罠なっている
Since the gas vaporized by a small amount of heat exits from the exhaust port 11 at a tremendous speed, it is necessary to replenish liquid helium in an amount corresponding to that amount. There is also a method of refilling directly from the supply pipe 4 as shown in Figure 2B, but since it is not possible to respond precisely to load fluctuations, as shown in Figure 2B, the dewar 3 is used as a storage tank.
It is common to provide Inside the dewar 3, there are vaporized helium gas 15 and a liquid helium portion 16. When the liquid helium in the panel inner container 7 is about to run out, liquid helium 16 is poured into the panel inner container 7 through the connecting pipe 1o. It becomes a liquid phase flow and flows into the trap to compensate.

しかし、接続配管1oがらパネル内容器7に下降する液
体ヘリクム液相流が、容器7内で生成した気化ガスの上
昇気相流により阻止される場合がある。これがいわゆる
フラッディング現象である。
However, the liquid helicum liquid phase flow descending from the connecting pipe 1o to the panel inner container 7 may be blocked by the upward gas phase flow of vaporized gas generated within the container 7. This is the so-called flooding phenomenon.

フラッディング現象が生じると、液相流が下降しにくく
なり、負荷が増大し、気化ガスが更に増加するのT1 
よシネ安定な状態に進行してしまう。
When a flooding phenomenon occurs, the liquid phase flow becomes difficult to descend, the load increases, and vaporized gas further increases.T1
It progresses to a stable state.

冷媒としての液化ガスの供給と補充方法の例を3種類第
3図に示す。第3図人は、第2図Bに示した例で、液化
ガスは容器7下端の流入口6から供給され、補充分の液
化ガスは、接続配管10を上昇する気相流に逆って容器
7内に下降しなければならない。第3図Bは、弁5Aを
開いて液化ガスを供給する一方、弁5Bを開いて不足分
の液化ガスを補充しようとする例であるが、接続配管1
0を気相流と液相流が互いに逆向きに流れることは、第
3図人の例と変わらず、フラッディング現象を防止でき
ない。更に、第3図Cは、液化ガスの供給をデユワ−3
を介して行ない、接続配管10を2本にして、気相流と
液相流とを分離しようとする例でおる。しかし、2本の
接続配管1゜の上端および下端はともに同じ高さ、で形
状も同じであるから、そのときの気相流と液相流の比率
や圧力によってどちらが液相流に使われるかが変わり、
また気液混合流になる可能性も依然゛として残ってお抄
、フラッディング現象の根本的防止にはなっていない。
Three examples of methods for supplying and replenishing liquefied gas as a refrigerant are shown in FIG. In the example shown in FIG. 2B, the liquefied gas is supplied from the inlet 6 at the lower end of the container 7, and the replenishment amount of liquefied gas flows against the gas phase flow rising through the connecting pipe 10. It must descend into the container 7. FIG. 3B shows an example in which valve 5A is opened to supply liquefied gas, while valve 5B is opened to replenish the shortage of liquefied gas.
The fact that the gas phase flow and the liquid phase flow flow in opposite directions is the same as in the example of Figure 3, and the flooding phenomenon cannot be prevented. Furthermore, FIG. 3C shows that the supply of liquefied gas is
This is an example in which the connecting pipe 10 is divided into two to separate the gas phase flow and the liquid phase flow. However, since the upper and lower ends of the two 1° connecting pipes are both at the same height and the same shape, which one is used for the liquid phase flow depends on the ratio and pressure of the gas phase flow and liquid phase flow at that time. changes,
Furthermore, the possibility of a gas-liquid mixed flow still remains, and the fundamental prevention of shaving and flooding phenomena has not been achieved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、核融合装置等の真空容器内を超高真空
に排気するクライオポンプの気相流と液相流とを完全に
分離し、フラッディング現象を防止する接続配管を提供
し、クライオポンプの冷却能力を高めることである。
An object of the present invention is to provide a connection piping that completely separates the gas phase flow and liquid phase flow of a cryopump that evacuates the inside of a vacuum vessel such as a nuclear fusion device to an ultra-high vacuum, and prevents flooding phenomenon. The goal is to increase the cooling capacity of the pump.

〔発明の概要〕[Summary of the invention]

本発明は、真空容器中のパネル内容器とデユワ−との接
続配管を2重管構造とし、内管は液体冷媒供給管、内管
と外管との間のスペースは気化ガス排気路に分離すると
ともK、気相流の流路をデユワ−内のヘリウムガス領域
まで延ばす一方、液相流用内管をパネル内容器内に長く
して更に気相流の突入を避けるため上方に湾曲させた構
造を提案するものである。
In the present invention, the connecting piping between the panel inner container and the dewar in the vacuum container has a double pipe structure, the inner pipe is a liquid refrigerant supply pipe, and the space between the inner pipe and the outer pipe is separated into a vaporized gas exhaust path. At the same time, the flow path for the gas phase flow was extended to the helium gas area inside the dewar, while the inner pipe for the liquid phase flow was lengthened into the container inside the panel and further curved upward to avoid the intrusion of the gas phase flow. It proposes a structure.

〔発明の実施例〕[Embodiments of the invention]

次に、第1図を参照して、本発明の一実施例を更に詳細
に説明する。図において、1はクライオポンプによシ内
部を超高真空にされるべき真空容器、2はクライオポン
プの主要部分であるパネル受熱板、3はパネル受熱板2
で消費され気化したガスを気液分離するとともに消費分
を受熱板2に補充するための貯液槽を兼ねたデユワ−1
4は液化ヘリウムガスを真空容器外から供給する供給配
管、5はその流量調節弁、6はパネル受熱板2の下部の
流入口、7は液化ガスが充填されるパネル内容器、8は
受熱板2を熱シールドするために設けたシールド板、9
は排気すべき粒子をトラップするシェブロン型バッフル
、10はデユワ−3とパネル内容器7との接続配管、1
Fは気化したヘリウムガスの排気管、15は気化したヘ
リウムガス、16は貯蔵液体ヘリウム、17は液体ヘリ
ウム流動方向、18は気化ヘリウム流動方向であろうこ
こまでの構造で、液化ヘリウムを真空容器1外から供給
配管4および流量調整弁5を経由して注入すると、液体
ヘリウムはノくネル受熱板2の流入口6からパネル内容
器7に流入する。ノ(ネル受熱板2は、真空容器1の壁
面、受熱板2を熱シールドするシールド板8.あるいは
シェブロン型)(ツフル9などから熱輻射を受ける。流
量調節弁5を通して供給される液体ヘリウムの気化潜熱
が受熱板2の受熱量よりも少ないと、流入口6から・く
ネル内容器7に入った液体ヘリウムは全て気化し、接続
配管10を通ってデユワ−3に入り、排気管11を経て
排気される。一方、流入する液体ヘリウムの供給冷媒量
の方が多いと、)くネル内容器7、接続配管10、デユ
ワ−3が液体ヘリウムで徐々に満たされていく。
Next, one embodiment of the present invention will be described in more detail with reference to FIG. In the figure, 1 is a vacuum container whose inside is to be made into an ultra-high vacuum by the cryopump, 2 is a panel heat receiving plate which is the main part of the cryopump, and 3 is a panel heat receiving plate 2.
A dewar 1 serves as a liquid storage tank for separating the gas consumed and vaporized into gas and liquid and replenishing the consumed amount to the heat receiving plate 2.
4 is a supply pipe for supplying liquefied helium gas from outside the vacuum container, 5 is a flow rate control valve thereof, 6 is an inlet at the bottom of the panel heat receiving plate 2, 7 is a container inside the panel filled with liquefied gas, 8 is a heat receiving plate A shield plate provided for heat shielding 2, 9
10 is a chevron-type baffle that traps particles to be exhausted; 10 is a connecting pipe between the dewar 3 and the panel inner container 7; 1
F is the exhaust pipe for the vaporized helium gas, 15 is the vaporized helium gas, 16 is the storage liquid helium, 17 is the liquid helium flow direction, and 18 is the vaporized helium flow direction.With the structure so far, the liquefied helium is transferred to the vacuum container. When liquid helium is injected from the outside via the supply pipe 4 and the flow rate regulating valve 5, the liquid helium flows from the inlet 6 of the funnel heat receiving plate 2 into the panel inner container 7. (The flannel heat receiving plate 2 receives thermal radiation from the wall surface of the vacuum vessel 1, a shield plate 8 that heat-shields the heat receiving plate 2, or a chevron type) (Tuffle 9, etc.). When the latent heat of vaporization is less than the amount of heat received by the heat receiving plate 2, all the liquid helium that enters the tunnel inner container 7 from the inlet 6 is vaporized, enters the dewar 3 through the connecting pipe 10, and exits the exhaust pipe 11. On the other hand, if the amount of refrigerant supplied by the inflowing liquid helium is larger, the inner vessel 7, the connecting pipe 10, and the dewar 3 are gradually filled with liquid helium.

この状態で負荷運転を行ない、クライオノくネル受熱板
2への熱負荷が増えると、ノζネル内容器7内の液体ヘ
リウムは気化し、接続配管10からデユワ−3に移動す
る。このとき負荷が大きく、接続配管10内を上昇する
気相流の速度がある範囲を超えれば、フラッディング現
象が発生し、デユワ−3からパネル内容器7への液相流
の下降が阻害され、パネル内容器7に貯えられた液体ヘ
リウムが急速に気化してしまう。
When load operation is performed in this state and the thermal load on the cryonnel heat receiving plate 2 increases, the liquid helium in the cryonnel inner container 7 is vaporized and moved from the connecting pipe 10 to the dewar 3. At this time, if the load is large and the speed of the gas phase flow rising inside the connecting pipe 10 exceeds a certain range, a flooding phenomenon will occur, and the descent of the liquid phase flow from the dewar 3 to the panel inner container 7 will be inhibited. The liquid helium stored in the panel inner container 7 quickly vaporizes.

本発明は、このフラッディング現象の発生を防止するた
めに、接続配管10の中に同軸的に内管12を設け、デ
ユワ−3からパネル内容器7への液体ヘリウム補給が確
実になされるように、液相流の流入口をデユワ−3下部
の13の位置にするとともに、パネル内容器7への出口
はわずか中に突き出させ、しかも気相流突入防止として
、吐出口が下面に向かない形状にしである。
In order to prevent the occurrence of this flooding phenomenon, the present invention provides an inner pipe 12 coaxially within the connecting pipe 10 to ensure that liquid helium is replenished from the dewar 3 to the panel inner container 7. The inlet of the liquid phase flow is located at the position 13 at the bottom of the dewar 3, and the outlet to the container 7 inside the panel is slightly protruded inward, and the outlet is shaped so that it does not face downward in order to prevent the gas phase flow from entering. It's Nishide.

一方、パネル受熱板2で気化したヘリウムガスが液相光
流入口13付近の液体ヘリウムの流れを乱さないように
、気化ヘリウムの吐出口をデユワ−3上部のヘリウムガ
ス空間15まで延長しである。
On the other hand, in order to prevent the helium gas vaporized by the panel heat receiving plate 2 from disturbing the flow of liquid helium near the liquid phase light inlet 13, the outlet for vaporized helium is extended to the helium gas space 15 above the dewar 3. .

このような構造にすると、パネル受熱板2への受熱によ
り気化したヘリウムガスは、パネル内容器7の液体ヘリ
ウム内を通り、容器上部に設けられた出口14からデユ
ワ−3に排気される。このとき、吐出ガスは流入口13
付近の液体ヘリウムの流れを乱さない。また、デユワ−
3からパネル内容器7への下降液相流は、内管12を通
り、しかも内管12の吐出口が気相流の突入を受けない
ように上方に湾曲している。ので、液体ヘリウムの補充
が確実になされ、気相流と液相流とは完全に分離される
から、フラッディング現象が生じない。
With this structure, the helium gas vaporized by heat received by the panel heat receiving plate 2 passes through the liquid helium of the panel inner container 7 and is exhausted to the dewar 3 from the outlet 14 provided at the top of the container. At this time, the discharged gas flows through the inlet 13
Do not disturb the flow of nearby liquid helium. Also, dewar
The descending liquid phase flow from 3 to the panel inner container 7 passes through the inner tube 12, and the discharge port of the inner tube 12 is curved upward so as not to receive the intrusion of the gas phase flow. Therefore, replenishment of liquid helium is ensured, and the gas phase flow and the liquid phase flow are completely separated, so that no flooding phenomenon occurs.

なお、気相流と液相流を完全に分離するだけであれば、
管12を接続配管10内に通さずに、2本を分離して設
置し、両吐出口の位置と形状を本発明の要点に従い形成
すると、一応その目的を達する。
In addition, if you just want to completely separate the gas phase flow and liquid phase flow,
If the pipe 12 is not passed through the connecting pipe 10, but the two pipes are installed separately, and the positions and shapes of both discharge ports are formed according to the main points of the present invention, the purpose can be achieved.

しかし2重管構造の上記実施例では、パネル内容器7か
らデユワ−3への上昇気相流は、液体ヘリウム中食通過
する際に冷却されているため、はとんどが液化温度の4
2°K よりわずかに高い程度の温度になっている。従
って、接続配管10内を通過するときは、内管12の管
外表面との熱交換は無視できるほどであり、しかも内管
12を周囲の輻射熱から熱シールドする効果が得られる
っその結果、内管12内での液体ヘリウムの気化分がほ
とんどなく、真空容器1内に収納されたクライオポンプ
のパネル受熱板2のパネル内容器7とデユワ−3との間
には、接続配管10および内管12により、液体ヘリウ
ム貯蔵部16→液相流人ロ13→内管12→パネル内容
器7→気化分出ロ14→接続配管10→ガスヘリウム空
間15の循環回路が形成され、フラッディングがなくな
るから、状態が安定化し熱損失が少なく、液体ヘリウム
の補充と気化ガスの排気が円滑になされる。
However, in the double tube structure described above, the ascending gas phase flow from the panel inner vessel 7 to the dewar 3 is cooled when passing through the liquid helium, so it is mostly at the liquefaction temperature of 4.
The temperature is slightly higher than 2°K. Therefore, when passing through the connecting pipe 10, the heat exchange with the outer surface of the inner pipe 12 is negligible, and the effect of thermally shielding the inner pipe 12 from surrounding radiant heat is obtained. There is almost no vaporization of liquid helium in the inner tube 12, and there is no connection pipe 10 and inner tube between the panel inner container 7 of the panel heat receiving plate 2 of the cryopump housed in the vacuum container 1 and the dewar 3. The pipe 12 forms a circulation circuit of liquid helium storage section 16 -> liquid phase flow chamber 13 -> inner pipe 12 -> panel inner container 7 -> vaporization drawer 14 -> connection pipe 10 -> gas helium space 15, and flooding is eliminated. As a result, conditions are stabilized, heat loss is small, and liquid helium can be replenished and vaporized gas can be exhausted smoothly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、核融合装置等の真空容器内を超高真空
に排気するクライオポンプの気相流と液相流とが完全に
分離され、フラッディング現象がなくなり、クライオポ
ンプの冷却効果が高まる。
According to the present invention, the gas phase flow and liquid phase flow of a cryopump that evacuates the inside of a vacuum container such as a nuclear fusion device to an ultra-high vacuum are completely separated, the flooding phenomenon is eliminated, and the cooling effect of the cryopump is enhanced. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるクライオポンプの一実施例を示す
系統図、第2図は従来のり2イオポンプの主要部分の模
式図、第3図は従来のクライオポンプの液化ガス供給と
補充方法を示す模式図である。 1・・・真空容器、2・・・パネル受熱板、3・・・デ
ユワ−14・・・供給配管、5・・・流量調整弁、6・
・・液化ガス流入口、730.バール内容器、8・・・
シールド板、9・・・シェブロン型バッフル、10・・
・接M、配L  11・・・排気管、12・・・内管、
13・・・液相泥流入口、14・・・気化分出口、15
・・・ガスヘリウム空間、16・・・液化ヘリウム貯蔵
部、17・・・液体ヘリウム流動方向、18・・・気化
ヘリウム流動方向。
Fig. 1 is a system diagram showing an embodiment of the cryopump according to the present invention, Fig. 2 is a schematic diagram of the main parts of the conventional Nori-2 Iopump, and Fig. 3 shows the liquefied gas supply and replenishment method of the conventional cryopump. It is a schematic diagram. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Panel heat receiving plate, 3... Dewar-14... Supply piping, 5... Flow rate adjustment valve, 6...
...Liquefied gas inlet, 730. Burl inner container, 8...
Shield plate, 9...Chevron type baffle, 10...
・Connection M, wiring L 11...exhaust pipe, 12...inner pipe,
13...Liquid phase mud inlet, 14...Vaporization outlet, 15
... Gas helium space, 16... Liquefied helium storage section, 17... Liquid helium flow direction, 18... Vaporized helium flow direction.

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器内を超高真空に排気するために、この真空
容器内に収納されるパネル受熱板と、パネル受熱板内に
形成されたパネル内容器に極低温用液体冷媒を供給する
供給配管と、パネル内容器で消費され気化した冷媒ガス
を分離するとともに気化により不足した液体冷媒を補充
すべく液体冷媒を貯蔵するデユワーと、パネル内容器と
デユワーとを接続する接続配管と、気化ガスをデユワー
から真空容器外に排気する排気管とからなるクライオポ
ンプにおいて、接続配管に液相流用内管を設け、その液
体冷媒流入口をデユワー底部に形成し液体冷媒出口をパ
ネル容器内に延ばしかつ上方に湾曲させる一方、前記接
続配管を気化ガスの気相流用としデユワー内でその吐出
口をガス貯留部まで延長し、パネル内容器と接続配管と
デユワーと内管とで循環回路を形成したことを特徴とす
るクライオポンプ。
1. In order to evacuate the inside of the vacuum container to an ultra-high vacuum, a panel heat receiving plate housed within the vacuum container and supply piping that supplies cryogenic liquid refrigerant to the panel inner container formed within the panel heat receiving plate. A dewar that separates the refrigerant gas that has been consumed and vaporized in the panel inner container and stores the liquid refrigerant to replenish the liquid refrigerant that is insufficient due to vaporization, a connecting pipe that connects the panel inner container and the dewar, and In a cryopump that consists of a dewar and an exhaust pipe that exhausts the air outside the vacuum container, the connecting pipe is provided with an internal pipe for liquid phase flow, the liquid refrigerant inlet is formed at the bottom of the dewar, and the liquid refrigerant outlet is extended into the panel container and upwards. At the same time, the connection pipe is used for vapor phase flow of vaporized gas, and its discharge port is extended to the gas storage part within the dewar, and a circulation circuit is formed by the panel inner container, the connection pipe, the dewar, and the inner pipe. Characteristic cryopump.
JP59139300A 1984-07-05 1984-07-05 Cryopump Pending JPS6119986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139300A JPS6119986A (en) 1984-07-05 1984-07-05 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139300A JPS6119986A (en) 1984-07-05 1984-07-05 Cryopump

Publications (1)

Publication Number Publication Date
JPS6119986A true JPS6119986A (en) 1986-01-28

Family

ID=15242069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139300A Pending JPS6119986A (en) 1984-07-05 1984-07-05 Cryopump

Country Status (1)

Country Link
JP (1) JPS6119986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295176A (en) * 2022-08-09 2022-11-04 中国科学院合肥物质科学研究院 Tokamak divertor particle removing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295176A (en) * 2022-08-09 2022-11-04 中国科学院合肥物质科学研究院 Tokamak divertor particle removing equipment
CN115295176B (en) * 2022-08-09 2023-06-02 中国科学院合肥物质科学研究院 Tokamak divertor particle removal equipment

Similar Documents

Publication Publication Date Title
US2944405A (en) Conservation arrangement
US3620033A (en) Cryostat device
US3677336A (en) Heat link, a heat transfer device with isolated fluid flow paths
US3741289A (en) Heat transfer apparatus with immiscible fluids
US3788096A (en) Cryogenic gas traps
JPH08320099A (en) Equipment and method of adjusting temperature of cryogenic fluid
KR20100090990A (en) The passive residual heat remover for the integral reactor
US4590770A (en) Cryogenic liquid heat exchanger
JPS6119986A (en) Cryopump
US3070968A (en) Liquid to gas conversion system
US20010000160A1 (en) Method for treatment of semiconductor substrates
JP3233457B2 (en) Evaporative gas control device
US4297856A (en) 3 He-4 He Dilution refrigerator
US3151467A (en) Process and apparatus for the filling, transportation and dispensing of hazardous fluids
JP3638177B2 (en) Low pressure liquefied gas storage tank pressure suppression device
US3691784A (en) Cryogenic refrigerating apparatus
US4625520A (en) Superconducting device
KR930007614B1 (en) Vopor cleaning method
US6367267B1 (en) Integrated phase separator for ultra high vacuum system
JP3263652B2 (en) Method and apparatus for stabilizing radiation light source and radiation light source
JPH09196528A (en) Heat exchanger for high-efficiency cooling
JPH08327171A (en) Apparatus for re-liquefying liquefied gas for cooling scientific equipment
US4497178A (en) Method of preventing atmosphere from entering heat-insulating container
Middleman Some problems related to the performance of an evaporator as a vapor delivery system
JP2023160335A (en) liquefied gas transport container