JPS6119921A - Boiling medium cooling device in engine - Google Patents

Boiling medium cooling device in engine

Info

Publication number
JPS6119921A
JPS6119921A JP14005984A JP14005984A JPS6119921A JP S6119921 A JPS6119921 A JP S6119921A JP 14005984 A JP14005984 A JP 14005984A JP 14005984 A JP14005984 A JP 14005984A JP S6119921 A JPS6119921 A JP S6119921A
Authority
JP
Japan
Prior art keywords
refrigerant
engine
passage
pressure
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14005984A
Other languages
Japanese (ja)
Other versions
JPH0335485B2 (en
Inventor
Yoshimasa Hayashi
義正 林
Yutaka Minezaki
峯崎 裕
Yoji Ito
洋司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14005984A priority Critical patent/JPS6119921A/en
Priority to US06/747,248 priority patent/US4700664A/en
Publication of JPS6119921A publication Critical patent/JPS6119921A/en
Publication of JPH0335485B2 publication Critical patent/JPH0335485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2285Closed cycles with condenser and feed pump

Abstract

PURPOSE:To prevent a closed-loop cooling system from being subjected to vacuum, by opening a shut-off valve when the system becomes under vacuum, so that coolant is introduced from an auxiliary tank. CONSTITUTION:There is provided an auxiliary tank 19 connected to a water jacket 2 through auxiliary passages 15, 16 and solenoid valves 17, 18. Upon stopping of an engine, the auxiliary passage 15 is opened to introduced coolant reserved in the auxiliary tank 19 upto the detection level of a liquid level sensor 20 by use of the pressure differential between the system pressure which has lowered and the atmospheric pressure. With this arrangement, the system may be prevented from being subjected to vacuum.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷却液の気化潜熱を利用したエンジンの沸
騰冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a boiling cooling device for an engine that utilizes the latent heat of vaporization of a coolant.

(従来の技術) 冷却液をウォータジャケット内にて沸騰蒸発させ、その
気化潜熱によりエンジンの冷却を効率良く行なうように
した沸騰冷却装置が本出願人より提案されている(特願
昭58−145467号等)これを第3図に基づいて説
明すると、1はエンジン本体、2はシリンダブロック3
およびシリンダヘッド4にかけて形成されたウォータジ
t・ケラ1〜.5はウォータジャケット2の上部に所定
の空間部を残して充填された冷却液〈冷媒)である。
(Prior Art) The present applicant has proposed a boiling cooling device that boils and evaporates the coolant in a water jacket and uses the latent heat of vaporization to efficiently cool the engine (Japanese Patent Application No. 145,467/1989). This will be explained based on Fig. 3. 1 is the engine body, 2 is the cylinder block 3.
and water marks 1 to 1 formed over the cylinder head 4. 5 is a cooling liquid (refrigerant) filled in the upper part of the water jacket 2 leaving a predetermined space.

この冷却液5は、エンジンの熱を吸収して所定の温度に
達すると沸騰し始め、気化潜熱を奪いながら蒸発する。
When the coolant 5 absorbs heat from the engine and reaches a predetermined temperature, it begins to boil and evaporates while taking away latent heat of vaporization.

そして、この蒸発冷却液(蒸気)はウォータジャケット
2の上部に接続する蒸気通路6を介して熱交換用のコン
デンサ7に導かれる。
Then, this evaporative cooling liquid (steam) is led to a condenser 7 for heat exchange via a steam passage 6 connected to the upper part of the water jacket 2.

コンデンサ7には冷却風を送るファン(電動ファン)8
が取付けられ、その風量に応じて蒸発冷却液は外部に放
熱し冷却され、もとの液体に凝縮された後、0ワタンク
9に貯溜される。
A fan (electric fan) 8 that sends cooling air to the condenser 7
is installed, and the evaporative cooling liquid is cooled by radiating heat to the outside according to the air volume, and after being condensed to the original liquid, it is stored in the zero-wattage tank 9.

ウ4−タジャケット2には液面センサ10が設置され、
冷却液5の蒸発に伴い液面がある程度下がると、制御回
路11によりウオータジVケット2の戻り通路(冷媒通
路)12に介装した供給ポンプ13が駆動される。この
ポンプ13により、ロワタンク9内の冷却液5を電磁弁
25を介してつを一タジャケット2へと循環するように
して閉回路の冷却系を構成づる。
A liquid level sensor 10 is installed in the water jacket 2,
When the liquid level drops to a certain extent as the coolant 5 evaporates, the control circuit 11 drives the supply pump 13 interposed in the return passage (refrigerant passage) 12 of the water Vette 2 . The pump 13 circulates the coolant 5 in the lower tank 9 to the jacket 2 via the solenoid valve 25, thereby forming a closed circuit cooling system.

また、制御回路11は、冷却液温を検出づる湿度センサ
14と、エンジン回転、アクセル開度、燃料供給m等を
検出する図示しない各センサからの信号に基づいて、前
記冷却ファン8を駆動制御し、エンジンの冷却温度を運
転条件に応じて最適1nに設定づる。つまり、冷却系内
は閉回路となっているため、系内の圧力を変化させるこ
とにより、冷却液の沸点を上下させることができる。
Further, the control circuit 11 drives and controls the cooling fan 8 based on signals from a humidity sensor 14 that detects the coolant temperature and various sensors (not shown) that detect engine rotation, accelerator opening, fuel supply m, etc. Then, the engine cooling temperature is set to the optimum temperature according to the operating conditions. In other words, since the inside of the cooling system is a closed circuit, the boiling point of the cooling liquid can be raised or lowered by changing the pressure inside the system.

例えば、エンジンの発熱量が比較的少ない低負荷時には
、冷却ファン8のffl邑を減らしてコンデンサ7での
放熱、凝縮をある程度抑制し、冷却系内の圧力を大気圧
以上に高めることにより、冷却液5の沸点を高める。こ
れにより、エンジンの冷却液温度を高めに維持して(例
えば120℃)、冷却損失の軒減を図る。
For example, at low loads when the engine generates relatively little heat, the cooling fan 8's ffl is reduced to suppress heat dissipation and condensation in the condenser 7 to some extent, and the pressure within the cooling system is increased to above atmospheric pressure. Increase the boiling point of liquid 5. This maintains the engine coolant temperature at a high level (for example, 120° C.) to reduce cooling loss.

これに対して、エンジンの発熱量が多い高負荷時には、
冷却ファン8の風儀を増やしてコンデンサ7での放熱、
凝縮を促進し、すると系内の圧力が大気圧以下となり冷
却液5の沸点が下げられ、エンジンの冷却液温度を低め
に保ら(例えば90℃)、良好な冷却状態を・確保する
On the other hand, at high loads when the engine generates a lot of heat,
Increase the air flow of the cooling fan 8 to dissipate heat from the condenser 7,
Condensation is promoted, and the pressure in the system becomes below atmospheric pressure, lowering the boiling point of the coolant 5, keeping the engine coolant temperature at a low level (for example, 90° C.), and ensuring a good cooling state.

冷却液5の沸騰気化潜熱は極めて大きく、また蒸発冷却
液によるコンデンサ7での放熱作用は充分に高いことか
ら、少量の冷却液5でエンジンを効率良く冷却すること
ができると共に、その冷却温度を運転条件に応じて応答
pく制御することが可能であり、したがって優れた冷7
111機能が得られるのである。
The boiling latent heat of vaporization of the coolant 5 is extremely large, and the heat dissipation effect of the evaporative coolant in the condenser 7 is sufficiently high. Therefore, the engine can be efficiently cooled with a small amount of the coolant 5, and the cooling temperature can be lowered. It is possible to control responsively according to operating conditions, and therefore provides excellent cooling performance.
111 functions can be obtained.

他方、このような装買では、エンジンを停JL して冷
却液の温度が常温近くまで下がった場合、それまで蒸発
していた冷却液が液化して系内の圧力がかなり低下し、
強い負圧を生じかねない。
On the other hand, with this type of equipment, when the engine is stopped and the coolant temperature drops to near room temperature, the coolant that had been evaporating will liquefy and the pressure in the system will drop considerably.
Strong negative pressure may occur.

そのため、補助通路15.16および電磁弁17.18
を介してつA−タジトケット2に接続する補助タンク1
9が設【プられ、エンジン停止時に補助通路15を開き
、低下した系内圧力と大気圧との差圧を利用して補助タ
ンク19に貯えた補填用の冷却液を、液面センFj20
の検出レベルまで導入させる。
Therefore, the auxiliary passage 15.16 and the solenoid valve 17.18
Auxiliary tank 1 connected to A-tajitoket 2 via
9 is installed, the auxiliary passage 15 is opened when the engine is stopped, and the supplementary coolant stored in the auxiliary tank 19 is transferred to the liquid level sensor Fj20 by using the differential pressure between the reduced system pressure and atmospheric pressure.
be introduced to the detection level.

また、系内圧力の低下により外部からつを一タジャケッ
1へ2に空気が入り込んだ場合、これを排除づるように
、前記蒸気通路6の上部に空気通路21ど電磁弁22が
設けられ、例えばエンジン始動初期等に空気通路21、
補助通路16を開くと共に供給ポンプ13を駆動し、補
助タンク19から冷却液を強制的に送り込んで余分の空
気を排出づる。この空気は補助タンク19の上部空気層
に導かれ、フィルタ23を介して外部に排出される。
Further, in order to eliminate air from the outside when it enters into the jacket 1 and 2 due to a drop in the system pressure, a solenoid valve 22 is provided in the upper part of the steam passage 6, such as an air passage 21. Air passage 21 during the initial stage of engine startup, etc.
The auxiliary passage 16 is opened and the supply pump 13 is driven to forcibly feed the cooling liquid from the auxiliary tank 19 and exhaust excess air. This air is led to the upper air layer of the auxiliary tank 19 and discharged to the outside via the filter 23.

そして、この状態において、エンジンの始動により冷却
液の温度が上昇して所定の温度に達すると、冷却液は沸
騰、蒸発を開始するが、このとき液面センサ10,24
の検出レベルに応じて補助通路15を開き、冷却液を人
気L1手で沸駈、蒸発させ、その蒸発圧力によって補填
された分の冷却液を補助タンク19へと押し戻り。
In this state, when the temperature of the coolant increases due to engine startup and reaches a predetermined temperature, the coolant starts to boil and evaporate.
The auxiliary passage 15 is opened according to the detection level, the coolant is boiled and evaporated by hand, and the compensated amount of coolant is pushed back to the auxiliary tank 19 by the evaporation pressure.

この場合、供給ポンプ13は液面センサ10に応じて駆
動され、ジャケラ1へ2内の液面を適正レベルに保つよ
うにロワタンク9から冷却液を送り、ロワタンク9内の
液面が所定レベルになるとf’llされる。
In this case, the supply pump 13 is driven according to the liquid level sensor 10, and sends the cooling liquid from the lower tank 9 to the jacket 1 so as to maintain the liquid level in the jacket 2 at an appropriate level, so that the liquid level in the lower tank 9 reaches a predetermined level. Then I'll be f'lled.

これにより、蒸発圧力を大気圧に保らながら、系内の冷
却液を適正量に復帰ならびに設定するのである。したが
って、系内に空気が入り込むようなことは防止され、コ
ンデンサ7 ’i(の熱交換効捧′がQ好に維持される
This allows the amount of coolant in the system to be restored and set to an appropriate level while maintaining the evaporation pressure at atmospheric pressure. Therefore, air is prevented from entering the system, and the heat exchange efficiency of the capacitor 7'i is maintained at a favorable Q.

このようにして、常に沸騰冷却の的確な冷却作用が得ら
れ、その高い冷flII牲能が維持されると共に、前記
冷却ファン8の用品に応じて冷却液の沸点圧力を大気圧
以下に任意に下げることがでさ、前述したようにエンジ
ンの高負荷時等に冷却温度を100℃以下(水を用いた
場合)に設定づることが可能となっている。
In this way, an accurate cooling effect of boiling cooling is always obtained, and its high cooling performance is maintained, and the boiling point pressure of the cooling liquid can be arbitrarily lowered to below atmospheric pressure depending on the equipment of the cooling fan 8. By lowering the cooling temperature, as mentioned above, it is possible to set the cooling temperature to 100°C or less (when using water) when the engine is under high load.

なお、十記装置では、少量の冷fJI液でエンジンの冷
却を行なえるから、ウォータジャケット2はもちろん、
コンデンサ7、供給ポンプ13等も小さくてづみ、冷却
系の小型化、軽量化を図れる。
In addition, with the Juki device, the engine can be cooled with a small amount of cold fJI fluid, so not only the water jacket 2 but also the
The condenser 7, supply pump 13, etc. are also small and compact, making it possible to reduce the size and weight of the cooling system.

また、エンジンの暖機時間を短縮することが可能になる
と共に、コンデンサ7での放熱効率が良好なこと力目ら
、冷却ファン8の駆動動力を低減でさ、騒音ならびに燃
費の改善が図れるという利点がある。
In addition, it is possible to shorten the warm-up time of the engine, and since the heat dissipation efficiency of the condenser 7 is good, the driving power of the cooling fan 8 can be reduced, thereby improving noise and fuel efficiency. There are advantages.

〈発明が解決しようとする問題点) ところがこの装置では、冷媒の流れを制御するのに、4
つの電磁弁17,18,22.25が必Uであって、シ
ステムの構成が複雑化するという問題点があった。
(Problems to be solved by the invention) However, in this device, four steps are required to control the flow of refrigerant.
There is a problem in that the three solenoid valves 17, 18, 22, and 25 are required, which complicates the system configuration.

また、エンジン暖機後、閉回路内の冷媒量が規定値に戻
ると、補助タンク19と連通が一切遮断されてしまため
、例えば寒冷時など減速運転が連続したようなときに、
過冷却により閉回路内の圧力が負圧化すると、この負圧
により閉回路内に外気が少しづつ吸い込まれることがあ
り、この場合には、その後に高負荷運転へ移行したとき
の成熱効果が以下するという問題点もあった。
Furthermore, when the amount of refrigerant in the closed circuit returns to the specified value after the engine warms up, communication with the auxiliary tank 19 is completely cut off.
When the pressure inside the closed circuit becomes negative due to supercooling, outside air may be sucked into the closed circuit little by little due to this negative pressure. There was also the problem that:

本発明はこのような問題を解決1Jることを1−1的と
する。
The present invention aims to solve such problems 1-1.

(問題点を解決づるための手段) この発明は、大部分の液相冷媒で満たしたTンジンウ4
−タジャケットと内部を気相状に保ったコンデンサとを
、上部の冷媒蒸気を通す蒸気通路どコンデンサからの液
化冷媒を供給ポンプを介して戻す冷媒通路とで連通ずる
一方、コンデンサの下部に冷媒を一時貯溜づるロアタン
クを設置プ、このロワタンクもしくはその近傍から外部
の補助タンクに連通する通路を設け、かつこの連通路の
途中に遮断弁を介装する一方、ウォータジャケラ1〜の
内圧を感知する手段を設け、前記遮断弁を内F[の低下
時に開く制御回路を備えたものである。
(Means for Solving the Problems) The present invention provides a method for solving the problems in which
- The capacitor jacket and the condenser, whose interior is kept in a vapor phase, are connected by a vapor passage in the upper part through which refrigerant vapor passes, and a refrigerant passage in which the liquefied refrigerant from the condenser is returned via a supply pump, while the refrigerant in the lower part of the condenser is A lower tank is installed to temporarily store water, a passage is provided that communicates from this lower tank or its vicinity to an external auxiliary tank, and a shutoff valve is interposed in the middle of this communication passage, while sensing the internal pressure of water jackets 1 to 1. and a control circuit for opening the cutoff valve when the internal F[ is lowered.

(作用) したがって本発明では、予め冷却回路内に冷媒を空気が
残存しないように充満させておき、1ンジン始動後遮断
弁を聞いて、発生蒸気圧により補助タンクへ余剰冷媒を
押し戻し、その後に遮断弁を閉しることにより開回路の
沸騰冷却ザイクルを構成Jることができる。
(Function) Therefore, in the present invention, the cooling circuit is filled with refrigerant in advance so that no air remains, and after starting the first engine, the shutoff valve is activated, and the generated vapor pressure pushes the excess refrigerant back to the auxiliary tank. By closing the isolation valve, an open circuit boiling cooling cycle can be constructed.

閉回路の系内が負圧化したときは遮断弁が開き、補助タ
ンクから冷媒を吸い込む。
When the pressure inside the closed circuit becomes negative, the shutoff valve opens and sucks refrigerant from the auxiliary tank.

したがって、エンジンの運転中あるいは停止時であって
も、系内が負圧化するのを確実に防止できる。
Therefore, negative pressure in the system can be reliably prevented even when the engine is running or stopped.

(実施例) 第1図は本発明の実施例を示す。(Example) FIG. 1 shows an embodiment of the invention.

コンデンサ7のロワタンク9からは連通路30が分岐し
、この連通路30は遮断弁31を介して通気孔36をも
つ補助タンク32と接続する。遮断ブ?31は通電時に
閉じる常開型の電磁弁で、制御回路11からの信号で作
動する。
A communication passage 30 branches off from the lower tank 9 of the condenser 7, and this communication passage 30 is connected to an auxiliary tank 32 having a vent hole 36 via a shutoff valve 31. Shut off? 31 is a normally open electromagnetic valve that closes when energized, and is activated by a signal from the control circuit 11.

開回路の内圧を感知するために、蒸気通路6の圧力を検
出づる圧力スイッチ33が設けられ、この圧力スイッチ
33はダイヤフラム34に連動して蒸気内圧が(外気圧
p + 10mm)−IQ )以下でO[Fになるよう
に設定されており、このため系内圧力が負圧化したよう
なとさは、ただらにO「1−どなって制御回路11に信
号を入力4−る。
In order to sense the internal pressure of the open circuit, a pressure switch 33 is provided to detect the pressure in the steam passage 6, and this pressure switch 33 operates in conjunction with a diaphragm 34 to ensure that the internal steam pressure is below (external pressure p + 10 mm) - IQ). Therefore, when the pressure inside the system becomes negative, the signal is input to the control circuit 11.

制御回路14は圧力スイッチ33がOFIに<Lると、
上記遮断弁31を開弁させ、補助タンク32から冷媒を
系内に吸い込ませる。
When the pressure switch 33 becomes OFI <L, the control circuit 14
The shutoff valve 31 is opened to suck refrigerant into the system from the auxiliary tank 32.

なお、蒸気通路6の上方には、冷媒法入口35が設けら
れ、最初にここから冷媒を系内に充填するようになって
いる。
Note that a refrigerant method inlet 35 is provided above the steam passage 6, from which the refrigerant is first filled into the system.

本発明はこのように構成されており、第3図に比較する
と、通路15,16.21及び電磁弁17.18.22
.25がなく、補助タンク321よ連通路30を介して
のみロアタンクつと接続覆る。
The present invention is constructed in this way, and when compared with FIG.
.. 25, the auxiliary tank 321 is connected to the lower tank only through the communication path 30.

まず、冷媒を注入するにあICす、冷媒注入[」35の
キャップを外して、系内に空気が残らないJ、うに液相
冷媒を充填する。このとさ、連通路30から補助タンク
32に冷媒が流出しなように連通路30を塞ぐか、遮断
弁31に通電して閉じてa3く。
First, when injecting the refrigerant, remove the cap of the refrigerant injection [35] and fill the system with liquid phase refrigerant so that no air remains in the system. At this time, either close the communication passage 30 to prevent the refrigerant from flowing out from the communication passage 30 to the auxiliary tank 32, or close it by energizing the cutoff valve 31 a3.

系内に冷媒が充満したら、冷IJ1.注入口35をキ1
7ツプで封止する。なお、補助タンク32に予備の冷媒
を若干注入する。
Once the system is filled with refrigerant, cool IJ1. Turn the injection port 35 on.
Seal with 7 taps. Note that a small amount of spare refrigerant is injected into the auxiliary tank 32.

この場合、補助タンク32を上方に位置させ、補助タン
ク32の液面が冷媒注入口35と同一もしくはそれ以上
になる程度にすると、振動などにより系内の冷媒が補助
タンク32側へ流れ込むのを防止できる。
In this case, by positioning the auxiliary tank 32 upward so that the liquid level in the auxiliary tank 32 is equal to or higher than that of the refrigerant inlet 35, the refrigerant in the system will be prevented from flowing into the auxiliary tank 32 due to vibrations, etc. It can be prevented.

このようにして冷媒が充填されているのであり、エンジ
ンが始動されて暖機が進むと、ウォータジャケット2の
冷媒が沸騰して蒸気圧が高まり始め、このとぎ制御回路
11は遮断弁31を開弁じておくようになっており、し
たがって冷媒は内圧により連通路30を経由して補助タ
ンク32へと押し出される。
The refrigerant is filled in this way, and when the engine is started and warmed up, the refrigerant in the water jacket 2 boils and its vapor pressure begins to increase, causing the control circuit 11 to open the shutoff valve 31. The valve is kept open, so that the internal pressure forces the refrigerant into the auxiliary tank 32 via the communication passage 30.

ウォータジャケット2の液面H2が蒸発により液面セン
サ10の検出レベルまで低下すると、制御回路11は供
給ポンプ13を駆動してコンデンサ7の冷媒をウォータ
ジャケット2に送り込む。
When the liquid level H2 in the water jacket 2 drops to the level detected by the liquid level sensor 10 due to evaporation, the control circuit 11 drives the supply pump 13 to feed the refrigerant in the condenser 7 into the water jacket 2.

他方、コンデンサ7のロワタンク9の部分からは、連通
路30を経由して冷媒が内圧により押し戻されているた
め、その液面が徐々に低下し、液面センサ24が液面H
7を検出すると、制御回路11は遮断弁31に通電して
閉弁し、閉回路の冷却系を形成する。
On the other hand, since the refrigerant is pushed back from the lower tank 9 of the condenser 7 by internal pressure via the communication path 30, the liquid level gradually decreases, and the liquid level sensor 24 detects the liquid level H.
7 is detected, the control circuit 11 energizes the cutoff valve 31 to close it, forming a closed circuit cooling system.

このよ°うにして、系内からは余剰の冷媒が補助タンク
32へと押し出され、ウォータジャケット2の上部に所
定の蒸発空間を確保プるとともに、コンデンサ7の内部
を気相空間に保つ。
In this way, excess refrigerant is pushed out from within the system to the auxiliary tank 32, securing a predetermined evaporation space above the water jacket 2 and keeping the inside of the condenser 7 in a gas phase space.

なお、この場合、系内の空間部分には、冷媒蒸気が存在
するのみで、空気は皆無の状態となる。
In this case, only refrigerant vapor exists in the space within the system, and there is no air at all.

これ以後は温度センサ14の検出温度と液面センサ10
の検出液面にもとづいて制御回路11はコンデンサ7の
冷却ファー/8の回転と供給ポンプ13の駆動を制御し
、沸騰冷却による適切かつ応答性のよいエンジン冷却を
行なうのである。
From now on, the detected temperature of the temperature sensor 14 and the liquid level sensor 10 will be explained.
Based on the detected liquid level, the control circuit 11 controls the rotation of the cooling fan 8 of the condenser 7 and the drive of the supply pump 13, thereby performing appropriate and responsive engine cooling by boiling cooling.

ところで、エンジンの減速運転時など負荷が小さく、コ
ンデンサ7での熱交換に対して冷媒蒸気の発生が過少と
なるときは、系内の圧力が大気圧以下に減少する。
By the way, when the load is small, such as during deceleration operation of the engine, and the generation of refrigerant vapor is insufficient for heat exchange in the condenser 7, the pressure in the system decreases to below atmospheric pressure.

しかし、このような場合は、圧力スイッチ33がOFF
となり、制御回路11は遮断弁31を開く。
However, in such a case, the pressure switch 33 is turned off.
Therefore, the control circuit 11 opens the cutoff valve 31.

このため、系内圧力の低下に対応して補助タンク32か
ら冷媒が吸い込まれ、液面が例えばH3に上昇する。
Therefore, the refrigerant is sucked in from the auxiliary tank 32 in response to the decrease in system pressure, and the liquid level rises to, for example, H3.

したがって、系内圧力は外気圧以下には低下せず、内圧
低下によって低温沸騰が起こり、エンジンが過冷却にな
るのを防止する一方で、各睡配管の継目などから、外気
が漏入してくるのを防ぐことができ、系内に空気が入り
込むことにより生じるコンデンサ7での熱交換率の低下
を回避づる。
Therefore, the pressure inside the system does not drop below the outside pressure, and while this prevents low-temperature boiling from occurring due to the drop in internal pressure and overcooling of the engine, it also prevents outside air from leaking from the joints of each pipe. This prevents the heat exchange rate from decreasing in the condenser 7 caused by air entering the system.

一方、エンジンが停止すると、制御回路11は遮断弁3
1に対する通電をカットして開弁させる。
On the other hand, when the engine stops, the control circuit 11
Cut off the current to 1 and open the valve.

エンジン停止後は、系内が冷えて蒸気の凝縮が進むど、
空間部の真空度が高まろうどするが、遮断弁31の開弁
により、補助タンク32から液相冷媒が吸い込まれ、や
がて系内は完全に冷媒で満たされ、エンジン始動前の状
態に戻るのである。
After the engine stops, the system cools down and the steam condenses, but
The degree of vacuum in the space tends to increase, but when the shutoff valve 31 opens, liquid phase refrigerant is sucked in from the auxiliary tank 32, and eventually the system is completely filled with refrigerant, returning to the state before the engine was started. .

次に、第2図の実施例を説明すると、これは補助タンク
32として、内圧に応じて容積が可変となる伸縮タンク
42を備えたもので、こうすると伸縮タンク42内の冷
媒が外気と触れることがなく、車両の走行中に気泡が冷
媒に溶It込むのを防いで、空気が系内に混入するのを
確実に回避できるとともに、冷媒の蒸発による目減りを
防止できる。
Next, to explain the embodiment shown in FIG. 2, this is equipped with an expandable tank 42 as an auxiliary tank 32 whose volume is variable depending on the internal pressure.In this way, the refrigerant in the expandable tank 42 comes into contact with the outside air. This prevents air bubbles from being dissolved in the refrigerant while the vehicle is running, reliably prevents air from entering the system, and prevents loss of refrigerant due to evaporation.

(発明の効果) 以上のように本発明によれば、系内と補助タンクとは、
単一の連通路及び電磁弁(遮断弁)を介して接続するの
みでよく、システムの構成や制御の簡略化がはかれるし
、また走行中に系内が負圧化したようなとぎは、補助タ
ンクからの冷媒を吸入することによりエンジンの過冷却
と系内に空気が混入するのを確実に防止できる。
(Effects of the Invention) As described above, according to the present invention, the inside of the system and the auxiliary tank are
It only needs to be connected through a single communication path and solenoid valve (shutoff valve), which simplifies system configuration and control. By sucking refrigerant from the tank, it is possible to reliably prevent overcooling of the engine and air from entering the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面橘成図、第2図は第
2実施例の要部断面図、第3図は従来例の構成図である
。   ″ 1・・・エンジン本体、2・・・ウオータジ(Iケラト
、6・・・蒸気通路、7・・・コンデンサ、8・・・冷
却ファン、9・・・ロワタンク、10.24・・・液面
センサ、11・・・制御回路、12・・・冷媒通路、1
3・・・供給ポンプ、30・・・連通路、31・・・遮
断弁、32・・・補助タンク、35・・・冷媒注入口。 特み出願人   日産自動車株式会社 代理人 弁理士 優 藤 政 喜  □4−’、、+樗 第1図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of a main part of the second embodiment, and FIG. 3 is a configuration diagram of a conventional example. ″ 1...Engine body, 2...Waterage (Ikerato), 6...Steam passage, 7...Condenser, 8...Cooling fan, 9...Lower tank, 10.24...Liquid Surface sensor, 11... Control circuit, 12... Refrigerant passage, 1
3... Supply pump, 30... Communication path, 31... Shutoff valve, 32... Auxiliary tank, 35... Refrigerant inlet. Special Applicant Nissan Motor Co., Ltd. Agent Patent Attorney Masaki Yu Fuji □4-',, + Figure 1

Claims (1)

【特許請求の範囲】[Claims] 大部分を液相冷媒で満たしたエンジンウォータジャケッ
トと内部を気相状に保ったコンデンサとを、上部の冷媒
蒸気を通す蒸気通路とコンデンサからの液化冷媒を供給
ポンプを介して戻す冷媒通路とで連通する一方、コンデ
ンサの下部に冷媒を一時貯溜するロアタンクを設け、こ
のロアタンクもしくはその近傍から外部の補助タンクに
連通する通路を設け、かつこの連通路の途中に遮断弁を
介装する一方、ウォータジャケットの内圧を感知する手
段を設け、前記遮断弁を内圧の低下時に開く制御回路を
備えたことを特徴とするエンジンの沸騰冷却装置。
The engine water jacket, which is mostly filled with liquid-phase refrigerant, and the condenser, which maintains the interior in a gas phase, are connected by a vapor passage in the upper part through which refrigerant vapor passes, and a refrigerant passage, in which the liquefied refrigerant from the condenser is returned via a supply pump. On the other hand, a lower tank for temporarily storing refrigerant is provided at the bottom of the condenser, a passage is provided from this lower tank or its vicinity to an external auxiliary tank, and a cutoff valve is interposed in the middle of this communication passage. 1. A boiling cooling system for an engine, comprising a control circuit that includes means for sensing the internal pressure of the jacket and opens the shutoff valve when the internal pressure decreases.
JP14005984A 1984-07-06 1984-07-06 Boiling medium cooling device in engine Granted JPS6119921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14005984A JPS6119921A (en) 1984-07-06 1984-07-06 Boiling medium cooling device in engine
US06/747,248 US4700664A (en) 1984-07-06 1985-06-21 Cooling system for automotive engine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14005984A JPS6119921A (en) 1984-07-06 1984-07-06 Boiling medium cooling device in engine

Publications (2)

Publication Number Publication Date
JPS6119921A true JPS6119921A (en) 1986-01-28
JPH0335485B2 JPH0335485B2 (en) 1991-05-28

Family

ID=15260028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14005984A Granted JPS6119921A (en) 1984-07-06 1984-07-06 Boiling medium cooling device in engine

Country Status (1)

Country Link
JP (1) JPS6119921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106978A1 (en) * 2010-03-01 2011-09-09 北汽福田汽车股份有限公司 Auxiliary water tank for engine cooling system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175727A (en) * 1984-02-23 1985-09-09 Nissan Motor Co Ltd Evaporative cooling device in engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175727A (en) * 1984-02-23 1985-09-09 Nissan Motor Co Ltd Evaporative cooling device in engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106978A1 (en) * 2010-03-01 2011-09-09 北汽福田汽车股份有限公司 Auxiliary water tank for engine cooling system

Also Published As

Publication number Publication date
JPH0335485B2 (en) 1991-05-28

Similar Documents

Publication Publication Date Title
JPS61275522A (en) Evaporative cooling device for engine
JPS6143213A (en) Evaporative cooling device of internal-combustion engine
JPH0475369B2 (en)
JPS60122223A (en) Evaporative cooler of internal-combustion engine
JPS6119921A (en) Boiling medium cooling device in engine
JPS6125910A (en) Boiling medium cooling device in engine
JPS6047816A (en) Boiling and cooling apparatus for engine
JPS6183410A (en) Coolant-temperature controller in evaporative cooling apparatus of internal-combustion engine
JPH033050B2 (en)
JPH0633760A (en) Boiling and cooling system for engine
JPH0248664Y2 (en)
JPH0324828Y2 (en)
JPH0326252Y2 (en)
JPH082417Y2 (en) Engine cooling system
JPH0248663Y2 (en)
JPH0248660Y2 (en)
JPS60175728A (en) Evaporative cooling device in engine
JPH0324829Y2 (en)
JPH0350259Y2 (en)
JPH0324825Y2 (en)
JPH0346176Y2 (en)
JPS60119316A (en) Evaporative cooling device for engine
JPH0452430Y2 (en)
JPH0141813B2 (en)
JPH0214965B2 (en)