JPS61198825A - Diversity reception method by s/n selection of broadcast data signal - Google Patents

Diversity reception method by s/n selection of broadcast data signal

Info

Publication number
JPS61198825A
JPS61198825A JP60030488A JP3048885A JPS61198825A JP S61198825 A JPS61198825 A JP S61198825A JP 60030488 A JP60030488 A JP 60030488A JP 3048885 A JP3048885 A JP 3048885A JP S61198825 A JPS61198825 A JP S61198825A
Authority
JP
Japan
Prior art keywords
station
reception
output
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60030488A
Other languages
Japanese (ja)
Other versions
JPH0644731B2 (en
Inventor
Kazu Moriyama
森山 和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP60030488A priority Critical patent/JPH0644731B2/en
Publication of JPS61198825A publication Critical patent/JPS61198825A/en
Publication of JPH0644731B2 publication Critical patent/JPH0644731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To ensure continuously a communication line with high quality with a minimum equipment at the reception (mobile body) side by comparing the S/N of signal outputs demodulated at each reception system in the unit of bits of the signal so as to output only a demodulated output of the reception system having the best S/N at all times to a reception terminal equipment. CONSTITUTION:For example, frequencies for two waves each per station are assigned in advance to a fixed station, assigned frequencies of f1, f2 from a station A1, f3, f4 from a station A2 and f5, f6 from a station A3 are used to send the same data in the simultaneous broadcast mode. In this case, the stations A1-A3 are parted remotely and each mobile station selects the optimum frequency for reception depending on the reception point of the own station, season and reception time. A central station C and each transmission station are connected respectively by a private line (e.g., a microwave line or a cable) and the data sent from the central station C is irradiated at the same time by using a frequency depending on each transmission station. As a transmission terminal equipment 1, a computer, a typewriter, or paper tape reader to generate the transmission data is used.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は固定局の複数送信所または複数固定局から常時
放送形式で放射されるデータ信号を固定局より地理的に
遠い距離に散在する不特定多数の移動局が受信し良品質
のデータを確保するための受信方法に関するものである
Detailed Description of the Invention (Technical field to which the invention pertains) The present invention transmits data signals constantly radiated in broadcast format from multiple transmitting stations of fixed stations or from multiple fixed stations to stations scattered geographically far away from the fixed stations. The present invention relates to a reception method for ensuring that a specific number of mobile stations receive data of good quality.

(従来の技術) 主としてIP (短波)帯の電波を用いて地上固定局よ
り不特定多数の移動局に対するデータ伝送を行うに当た
って従来は送信側では使用できる伝送帯域内を周波数分
割して複数チャネルを割当て、その各チャネルに同一伝
送符号を入力させて1つの送信所設備から空間に送出し
、移動局では複数チャネルを同時受信復調して合成する
周波数ダイバーシチ方法、同じように1つの送信所から
電波の偏波面を水平と垂直の偏波の組み合わせとして送
信し、移動局では偏波面毎に受信し復調後合成する偏波
面ダイバーシチ方法、または伝送符号を一定時間間隔で
、多数回繰返して送信し、受信側では多数回復調符号の
多数決または誤り検定を行うタイムダイバーシチ方法の
いずれかが用いられている。しかしいずれの方法も伝搬
路上の障害をほぼ完全に除去することは難しく、特に放
送形式による不特定多数の移動体への通信では送受信点
間距離によりHF帯では最適運用周波数の変化があって
データすなわちディジタル符号の良品質の伝送は′困難
であったが他方アンテナに関連する手法では実施困難な
ものが多かった。
(Prior art) When transmitting data from a terrestrial fixed station to an unspecified number of mobile stations using radio waves mainly in the IP (shortwave) band, conventionally the transmitting side divides the available transmission band into multiple channels. A frequency diversity method in which the same transmission code is input to each channel and sent out into the air from one transmitting station equipment, and the mobile station simultaneously receives, demodulates and combines multiple channels, and similarly transmits radio waves from one transmitting station. The polarization plane is transmitted as a combination of horizontal and vertical polarization, and the mobile station receives each polarization plane, demodulates it, and then combines it. Alternatively, the transmission code is transmitted by repeating it many times at regular time intervals. On the receiving side, either a majority vote of multiple recovery modulation codes or a time diversity method that performs error checking is used. However, with either method, it is difficult to almost completely remove obstacles on the propagation path, and especially in broadcasting communications to an unspecified number of moving objects, the optimum operating frequency changes in the HF band due to the distance between transmitting and receiving points, and data In other words, it has been difficult to transmit high-quality digital codes, and on the other hand, many techniques related to antennas have been difficult to implement.

(発明の具体的な目的) 広範囲を移動する不特定多数の移動体が連続して良品質
の受信が行われることを目的とし、特に広い地域にあり
、移動速度の大きい航空機、自動車、船舶などへの伝送
が良好でかつ移動局設備を経済的にすることが特徴であ
る。
(Specific object of the invention) The purpose is to continuously receive high-quality reception for an unspecified number of moving objects that move over a wide area, especially aircraft, automobiles, ships, etc. that are located in a wide area and move at a high speed. It is characterized by good transmission to and economical mobile station equipment.

(発明の構成と動作) 第1図は本発明を実施しようとする通信系統の一例図を
示すもので、図中のAI+ Az+ A31’−−−−
−−一は固定局、B+、Hg、−−−−−−−B−は移
動局である。固定局にはたとえば1周当たり2波ずつの
周波数を予め割当てておきA、局よりはf+、 b、A
2よりはf3゜f4、A、よりは1%、 f、の各割当
周波数を用いて同一データを同時放送モードで送信する
。この場合A+。
(Structure and operation of the invention) FIG. 1 shows an example of a communication system in which the present invention is implemented.
--1 is a fixed station, B+, Hg, -----B- is a mobile station. For example, two frequencies per round are assigned to the fixed station in advance, A, and f+, b, A from the station.
The same data is transmitted in the simultaneous broadcast mode using the allocated frequencies of f3° f4 for A, and 1% f for A. In this case A+.

A2. A3の各局は互いに遠く離れていて各移動局は
自局の受信地点、季節、受信時刻によって最適の周波数
を選択して受信する。
A2. The A3 stations are far apart from each other, and each mobile station selects and receives the optimal frequency depending on its own reception location, season, and reception time.

第2図は本発明の主流となる通信系の一例図で、Cは中
央(固定)局、AI+ II!+^、は相互に遠隔地点
に配設された送信設備または送信所で以下送信所という
。中央局Cと各送信所はそれぞれ専用回線(たとえばマ
イクロ回線や有線線路)によって接続され中央局Cから
送出したデータは各送信所より異なる周波数を用いて同
時に放射される。
FIG. 2 is an example of the communication system that is the mainstream of the present invention, where C is the central (fixed) station and AI+II! +^, refers to transmitting equipment or transmitting stations located at mutually remote locations, hereinafter referred to as transmitting stations. The central station C and each transmitting station are connected by dedicated lines (for example, micro lines or wired lines), and data sent from the central station C is simultaneously radiated from each transmitting station using different frequencies.

第3図は第2図の中央局と各送信所間の通信系の構成例
ブロック図であるが第1図の各固定局の送信系ブロック
図にも適用できる。第3図において1〜4は中央局設備
、5〜10とTXI〜TX3は送信所側設備で、送信端
末1には送信データを発生するためのコンピュータ、タ
イプライタ、紙テープリーグ等が用いられる。2〜4は
送信端末からのデータを遠方の送信所A、−A、にそれ
ぞれ伝送する各専用回線の変調器でPSK (位相偏移
キーイング)またはFSK (周波数偏移キーイング)
等の変調方式にて1200bps〜2400bps程度
の速度で複数(本例では3)箇所の送信所のそれぞれに
同時に伝送される。5〜7は各送信所側に設けた専用回
線入力端の復調器で伝送された変調信号をディジタル信
号に変換する。
Although FIG. 3 is a block diagram of an example of the configuration of a communication system between the central station and each transmitting station in FIG. 2, it can also be applied to the block diagram of a transmitting system at each fixed station in FIG. 1. In FIG. 3, 1 to 4 are central office equipment, 5 to 10 and TXI to TX3 are transmitting station equipment, and the transmitting terminal 1 includes a computer, typewriter, paper tape league, etc. for generating transmission data. 2 to 4 are modulators for each dedicated line that transmit data from the transmitting terminal to distant transmitting stations A and -A, respectively, and perform PSK (phase shift keying) or FSK (frequency shift keying).
The signal is simultaneously transmitted to each of a plurality of (three in this example) transmitting stations at a speed of about 1200 bps to 2400 bps using a modulation method such as . 5 to 7 convert the modulated signal transmitted by the demodulator at the dedicated line input end provided at each transmitting station into a digital signal.

第4図は中央局と各送信所間の専用回線にて伝送される
変調波のスペクトラムの一例を示すもので、伝送帯域(
たとえば3 kHz)内に1チヤネルのサブチャネルf
0を用い時分割多重方式でデータを伝送する場合である
Figure 4 shows an example of the spectrum of the modulated wave transmitted on the dedicated line between the central station and each transmitting station, and shows the transmission band (
For example, one channel of subchannel f within 3 kHz)
This is a case where data is transmitted using time division multiplexing using 0.

第3図に戻って8〜10はHF (短波)用変調器で5
〜7の復調器よりの時分割多重ディジタル信号を第5図
に示すように伝送帯域Δf(たとえば3kHz)内に配
列された複数サブチャネルf、。、fll+−−−−−
−−” r n −+ l f 1.1に割当てて同時
変調するといういわゆるFDM (周波数分割多重)の
PSKまたはFSK変調を行う、これはHF回線のよう
に電離層伝搬によるフェージングやマルチパスを伴う無
線回線ではサブチャネル当たりの伝送速度は150bp
s程度が限度であるから採用するもので通常のHF回線
ではΔf −3kHz程度の場合1サブチヤネル当たり
の伝送速度は75〜150bps、サブチャネル数を1
6とすれば全体の伝送速度は1200bps〜2400
bpsとなる。TXI〜TX3はそれぞれf1〜f6中
の1波にセットされた送信機、ANT 1〜ANT 3
は送信アンテナである。送信アンテナにはコニカル、イ
ンバーテンドコーン、回転ログペリアンテナなどが使用
される。なお移動受信局B、〜B1としては航空機、船
舶1列車、陸上車輌などが対象になる。
Returning to Figure 3, 8 to 10 are HF (short wave) modulators.
The time-division multiplexed digital signals from the demodulators .about.7 are transmitted through a plurality of subchannels f arranged within a transmission band Δf (for example, 3 kHz) as shown in FIG. , flll+------
--" r n - + l f 1.1 and simultaneously modulates it, which is called FDM (frequency division multiplexing) PSK or FSK modulation. Like HF lines, this involves fading and multipath due to ionospheric propagation. In wireless lines, the transmission speed per subchannel is 150bp.
This is adopted because the limit is about 3kHz.In a normal HF line, when Δf is about -3kHz, the transmission speed per subchannel is 75 to 150bps, and the number of subchannels is 1.
6, the overall transmission speed is 1200 bps to 2400
bps. TXI to TX3 are transmitters set to one wave among f1 to f6, respectively, and ANT 1 to ANT 3.
is the transmitting antenna. Conical, inverted cone, and rotating log periphery antennas are used for transmitting antennas. Note that the mobile receiving stations B and B1 can be aircraft, ships, trains, land vehicles, etc.

第6図及び第7図は各移動局の受信装置の構成例ブロッ
ク図(構成の詳細は後に説明する)であるが、第6図は
移動局がスペースダイバーシチ方式にて2台の受信装置
を用い1つの送信所を選択してそのl送信波のデータを
受信する場合であり、第7図は移動局が3つの送信所か
らのデータを3組の受信装置にてそれぞれスペースダイ
バーシチ方式にて受信し、各送信所からの受信データを
ビット単位に自動選択して出力するという、スペースダ
イバーシチと周波数ダイバーシチの両方式を組合わせた
受信方式である。このような周波数ダイバーシチ受信で
はその効果を発生させるためたとえばり、fl fsの
組合わせで行う場合にはこれら3周波が互いに接近した
周波数となるように運用周波数(放射する搬送波)を選
択する。実際に第6′図と第7図のどちらの方式を選ぶ
かはコストや装備の都合などによって決められるであろ
う。
6 and 7 are block diagrams of configuration examples of the receiving device of each mobile station (details of the configuration will be explained later). In FIG. 6, the mobile station uses two receiving devices in a space diversity method. Figure 7 shows a case in which a mobile station selects one transmitting station and receives the data of its one transmitted wave, and in Fig. 7, the mobile station receives data from three transmitting stations using three sets of receivers, each using a space diversity method. This is a reception method that combines both space diversity and frequency diversity methods, in which received data from each transmitting station is automatically selected bit by bit and output. In order to produce this effect in such frequency diversity reception, for example, in the case of a combination of fl and fs, the operating frequencies (carrier waves to be emitted) are selected so that these three frequencies are close to each other. The choice between the method shown in FIG. 6' and FIG. 7 will be determined depending on cost and equipment availability.

第6図においてRXI、RX2は受信機で、通常はこの
ように2組の受信機を用い、そのそれぞれに入力を供給
する一対のアンテナはある間隔離して設け、アンテナへ
の入力電波の伝搬経路と入射偏波面の相違を利用したス
ペースと偏波面入射角による2系統ダイバ一シチ受信方
式を用いている。
In Fig. 6, RXI and RX2 are receivers, and normally two sets of receivers are used in this way, and a pair of antennas that supply input to each are separated for a while, and the propagation path of the input radio waves to the antennas is A two-system diver single reception system is used based on the space and the angle of incidence of the polarization plane, which takes advantage of the difference in the incident polarization plane.

11と12は復調器で受信機よりの低周波信号出力を2
進ディジタル信号に変換出力する。本発明ではPSKま
たはFSKの復調器が使用されるがここではPSK復調
の場合を説明する。このような2系統の各受信入力に対
する復調器の出力は常時系統毎にS/N (信号対雑音
比)が常時測定されていてピント単位にS/Hの良い方
の出力が選択される。
11 and 12 are demodulators that convert the low frequency signal output from the receiver into 2
Convert and output to a hexadecimal digital signal. Although a PSK or FSK demodulator is used in the present invention, the case of PSK demodulation will be described here. The S/N (signal-to-noise ratio) of the demodulator outputs for each of the two receiving input systems is constantly measured for each system, and the output with the better S/H is selected for each focus.

すなわち13はS/N比較器でビット単位に11と12
の出力を比較しS/Nの良い方の系のデータ出力のみを
切替器14を制御して受信端末15(たとえばパンチャ
、タイプライタ、コンピュータ)へ送り出す。
In other words, 13 is an S/N comparator that converts 11 and 12 bit by bit.
The outputs of the two systems are compared, and only the data output of the system with the better S/N is sent to the receiving terminal 15 (eg, puncher, typewriter, computer) by controlling the switch 14.

次に第7図においてa、 b、 cはそれぞれ第1図の
固定局または送信所り、 Ax、 Asよりの電波をス
ペースダイバーシチ方式にて受信する装置の構成例ブロ
ック図でそれぞれ第6図の受信端末15を除く部分とほ
ぼ同一である。16は切替回路でa、b、c各装置から
のスペースダイバーシチ受信方式で選択されたデータが
入力し、同時にその時のS/N情報もビット単位に入力
するから3つの情報のうちS/Nの最良のデータのみを
選択して受信端末15に出力する。
Next, in FIG. 7, a, b, and c are respectively the fixed stations or transmitting stations shown in FIG. The parts are almost the same except for the receiving terminal 15. 16 is a switching circuit which inputs the data selected by the space diversity reception method from each device a, b, and c, and at the same time inputs the current S/N information in bit units, so it is possible to Only the best data is selected and output to the receiving terminal 15.

次に変調波の構成と受信側の復調の方法を説明する。Next, the configuration of the modulated wave and the demodulation method on the receiving side will be explained.

(1)PSK変調の場合(第8図〜第13図参照)第8
図はサブチャネル中の1チヤネルの2相PSK変調信号
波作成のタイムチャートで左端の番号(1)は搬送波、
(2)は送信時に送信端末1より出力されるディジタル
符号でこの例は010110−−としである、この変調
ではたとえば11またはOOのように同じ符号が続くと
(3)に示すように符号の変わり目で搬送波の位相は変
化しない、しかし01や10のように前ビットと符号が
異なったときには位相がπラジアン進んだり遅れたりす
る。
(1) In the case of PSK modulation (see Figures 8 to 13) Section 8
The figure is a time chart for creating a two-phase PSK modulated signal wave for one channel among the subchannels. The leftmost number (1) is the carrier wave,
(2) is a digital code output from the transmitting terminal 1 during transmission, and in this example it is 010110--.In this modulation, if the same code continues, such as 11 or OO, the code will change as shown in (3). The phase of the carrier wave does not change at the change point, but when the sign differs from the previous bit, such as 01 or 10, the phase advances or lags by π radians.

(3)の波形ではA、B、C,Hの各点でπラジアン変
化し、D点では位相変化はない。
In the waveform (3), there is a π radian change at each point A, B, C, and H, and there is no phase change at point D.

第9図は受信側復調器の位相変化θと出力電圧Vとの関
係図で、このような特性から1,0のディジタル信号(
2)を検出することができる。
Figure 9 is a diagram showing the relationship between the phase change θ of the receiving side demodulator and the output voltage V. Based on these characteristics, the digital signal of 1, 0 (
2) can be detected.

第10図の(1)は4相PSK変調回路の構成側図で、
2相PSKの場合は変調入力符号の変化に対する位相変
化は0とπであるが4相PSKでばπ/2刻みで位相が
変化する。図中の17は搬送波の発振器、18は信号分
配器、19はレベル調整用減衰器でその出力り、は第1
0図(2)のベクトルL1になるものとする。
Figure 10 (1) is a side view of the configuration of a 4-phase PSK modulation circuit.
In the case of two-phase PSK, the phase changes in response to changes in the modulation input code are 0 and π, but in the case of four-phase PSK, the phase changes in steps of π/2. In the figure, 17 is a carrier wave oscillator, 18 is a signal distributor, 19 is a level adjustment attenuator, and its output is the first
It is assumed that the vector L1 in Figure 0 (2) is obtained.

21はπ/2位相器でその出力し2は(2)のベクトル
L2となりし、と位相がπ/2異なっている。20と2
2は位相変調器で端末装置からのディジタル信号(図示
の)AとBに応じて第8図で示したOまたはπの位相変
化を行う。この20と22よりの2相PSK波を混合器
23において合成すると4相PSK波が得られることは
以下に説明するが、4相PSKはこのように1つのサブ
チャネルにA、 B各1チャネルずつのディジタル信号
による変調を行うことができるので、2相PSKの2倍
の伝送容量を持つことができる。このためFDM(周波
数分割多重)方式の4相PSKではlチャネル当たりの
シンボルレートが75bpsでサブチャネル数を16と
すれば伝送速度は75x 2 X16=24QObps
となる。
21 is a π/2 phase shifter whose output is 2, which is the vector L2 in (2), and has a phase difference of π/2. 20 and 2
2 is a phase modulator which changes the phase by O or π as shown in FIG. 8 in response to digital signals A and B (as shown) from the terminal device. It will be explained below that when the two-phase PSK waves from 20 and 22 are combined in the mixer 23, a four-phase PSK wave is obtained. Since modulation can be performed using each digital signal, the transmission capacity can be twice that of two-phase PSK. Therefore, in 4-phase PSK of FDM (frequency division multiplexing) system, if the symbol rate per channel is 75 bps and the number of subchannels is 16, the transmission speed is 75 x 2 x 16 = 24 Q Obps.
becomes.

ここで4相PSK変調信号が混合器23で発生されるご
とを第10図(3)〜(6)によって説明する。例とし
て変調器20と22への変調入力信号をAチャネル  
0101−−−−−−−−−−・−・Bチャネル  0
011・−一−−−−−−−−−−・とするとA、Bが
共に“O″のときにはAチャネルの変調波ベクトルをO
P、、  Bチャネルの変調波ベクトルをOR2として
これらを合成すると第1O図(3)の0PoIとなる。
Here, each time a four-phase PSK modulated signal is generated by the mixer 23 will be explained with reference to FIGS. 10 (3) to (6). As an example, the modulated input signals to modulators 20 and 22 are input to the A channel.
0101------------B channel 0
011.--1---------. When both A and B are "O", the modulated wave vector of the A channel is O.
When the modulated wave vectors of the P, , and B channels are combined by OR2, 0PoI as shown in FIG. 1O (3) is obtained.

次にAが1.Bが0の場合にはAチャネルだけ0−1の
変化があったのでPlのみ位相がπ進み合成ベクトルは
第10図(4)のように、0P02となる。次にAが0
.8が1の場合ではPIは(3)と同じでR2のみ位相
がπ進むから合成ベクトルは第10図(5)のように0
P03となる。さらにA、Bが共に1の場合は同様に考
えれば第1O図(6)のように合成ベクトルは0P04
となることは明らかである。
Next, A is 1. When B is 0, only the A channel changes by 0-1, so the phase of Pl advances by π, and the composite vector becomes 0P02, as shown in FIG. 10 (4). Then A is 0
.. When 8 is 1, PI is the same as (3) and only R2 has a phase advance of π, so the composite vector is 0 as shown in Figure 10 (5).
It becomes P03. Furthermore, if both A and B are 1, if we think in the same way, the resultant vector will be 0P04 as shown in Figure 1O (6)
It is clear that

このようにサブチャネル1チヤネル当たり第10図(1
)のような回路を用いて4相PSK波を作り、これをサ
ブチャネルの数だけ設備すればHF回線用高速変調器が
得られる。
In this way, each subchannel (1
) A high-speed modulator for an HF line can be obtained by creating a four-phase PSK wave using a circuit such as the one shown in FIG.

次に4相PSK波に対する受信回路について説明する。Next, a receiving circuit for four-phase PSK waves will be explained.

第11図はFDM4相PSK波を2受信系ダイバ一シチ
方式にて受信して端末装置へデータを出力させるまでの
受信回路の構成例図で、特に受信データ選択方式の第6
図及び第7図のうち第6図の方式に従ったものである。
FIG. 11 is an example of the configuration of a receiving circuit that receives an FDM 4-phase PSK wave in a two-receive system diversity system and outputs data to a terminal device.
6 of FIG. 6 and FIG. 7.

第11図中のRx。Rx in FIG.

Rx2は各受信系の受信機、61.62は分配器で各受
信系について受信機の出力をサブチャネル別に分配する
ための帯域が波器群を含み、サブチャネルは図示のよう
に各受信系毎にCHI〜CHn 、 Cl21〜CH2
nの復調回路に分かれて入力する。以下にはこのサブチ
ャネルの1つCHIの回路について説明する。なおC)
IIにおいて65〜69および610を含む部分は入力
データの遅延検波回路を形成する回路である。
Rx2 is a receiver for each receiving system, and 61 and 62 are distributors, and the band for distributing the output of the receiver to each subchannel for each receiving system includes a wave device group. CHI~CHn, Cl21~CH2
It is divided into n demodulation circuits and input. The circuit of one of these subchannels, CHI, will be explained below. Furthermore, C)
A portion including 65 to 69 and 610 in II is a circuit forming a delay detection circuit for input data.

いま4相PSK波のサブチャネルの1チヤネル(以下C
Hと略記する)のPSK波を E = Acos(ωt+φk) −−−−−−−−−
−−−= (1−1)とする。4相の場合には φ五=(π/2) fli+φ。 −一−−−・−・−
・・−(1−2)ただしniは2系統A、 B両チャネ
ルの変調用PCM符号のi番目の符号2つの組合わせに
よって決まる4値符号すなわちnz=o、 1.2.3
である。
Now, one channel (hereinafter referred to as C) of the subchannels of the 4-phase PSK wave
The PSK wave of
---= (1-1). In the case of 4 phases, φ5=(π/2) fli+φ. −1−−−・−・−
...-(1-2) However, ni is a four-level code determined by the combination of the two i-th codes of the modulation PCM codes for both channels A and B, that is, nz = o, 1.2.3
It is.

従って(1−2)式におけるφ!1は φi−+ =  n=−+ +φO・−−−−−−−−
−−−−−−(1−3)そこでPSK波Eおよび1符号
(ビット)分遅延されたPSK波(Ea とする)は E = ACO5(6J t + −ni  +φo)
  ’−−−−−−’il  4)Ea ”A4 co
s(ωt +  ni−+  +φo)−−−−−(1
5:のようになる。(1−5)のE4は第11図の遅延
回路67の出力に当たり遅延量τ=T(Tは1ビツトの
時間)となり1ビツト分である。さらにEを2分し一方
の位相をπ/2遅らせるとその出力Epは次式で表され
(’、’ cos (θ−2)=sinθ)Ep =A
sin(ωt +−ni +φ、> −i−(t−6)
第11図のπ/2位相器65の出力の波形がこの式で表
される。またEdの波形をπ/4位相器68でπ/4遅
らせるとその出力E’ aは次式で表される。
Therefore, φ! in equation (1-2)! 1 is φi−+ = n=−+ +φO・−−−−−−−
--------(1-3) Therefore, the PSK wave E and the PSK wave delayed by 1 code (bit) (denoted as Ea) are E = ACO5 (6J t + -ni +φo)
'-------'il 4) Ea "A4 co
s(ωt + ni−+ +φo)−−−−−(1
5: It will look like this. E4 in (1-5) corresponds to the output of the delay circuit 67 in FIG. 11, and the delay amount τ=T (T is the time of one bit), which is one bit. Further, if E is divided into two and one phase is delayed by π/2, the output Ep is expressed by the following formula (',' cos (θ-2)=sinθ)Ep = A
sin(ωt +−ni +φ, > −i−(t−6)
The waveform of the output of the π/2 phase shifter 65 in FIG. 11 is expressed by this equation. Further, when the waveform of Ed is delayed by π/4 by the π/4 phase shifter 68, the output E' a is expressed by the following equation.

−・−・・−(1−7) 次にE’aを2分しそのそれぞれとEおよびEpとを6
9と610の乗積回路に入力させてそれぞれ直流分を取
り出すが、69と610の出力R1とR2は次のように
なる。
-・-・・-(1-7) Next, divide E'a into two and divide each of them into 6
The outputs R1 and R2 of 69 and 610 are inputted to the product circuits 9 and 610, respectively, and the DC components are extracted as follows.

・−−−−−−−(1−8) ここでnl−1およびnユは4進数(0,1,2,3)
であるからni  nl−1は−3,−2,−1,0,
1,2゜3の値をとる。66はレベル調整用の減衰器で
π/2位相器65と同一の減衰量を持っている。これら
による位相ni * nl−1の各値に対するR1. 
Rzを計算すると次の表のようになる。
・---------(1-8) Here, nl-1 and nyu are quaternary numbers (0, 1, 2, 3)
Therefore, ni nl-1 is -3, -2, -1, 0,
It takes a value of 1,2°3. 66 is an attenuator for level adjustment and has the same attenuation amount as the π/2 phase shifter 65. R1. for each value of the phase ni*nl-1 based on these.
Calculating Rz results in the following table.

ただしA−Aa /2=I丁とする。However, it is assumed that A-Aa/2=1.

表  1 (1−8)、 (1−9)は遅延検波の場合の位相と検
波出力を表すものである。さて、n1ni−1は4進数
で前記のような値をとるから、−3,−2,−1はそれ
ぞれ括弧内に示した1、 2.3のように読み替えるこ
とができる。またR、、 R2が−1のときは1゜1の
ときはOと読み替えればR+、 Rzはni、 ni−
1を0.1の2進符号で表した形となり、69.610
の出力として遅延検波後の出力が得られる。
Tables 1 (1-8) and (1-9) show the phase and detection output in the case of delayed detection. Now, since n1ni-1 is a quaternary number and takes the value described above, -3, -2, and -1 can be read as 1 and 2.3 shown in parentheses, respectively. Also, when R,, R2 is -1, it is 1°, and when it is 1, it is read as O, then R+, Rz is ni, ni-
1 is expressed as a binary code of 0.1, which is 69.610
The output after delayed detection is obtained as the output.

69、610以後の回路は遅延検波出力を符号処理する
部分であって611.614は直流増幅器、612゜6
15は積分器、613.616はサンプリング回路、6
17は前記R+、 Rz2系統によるサンプリング回路
出力を切替えて1つの連続信号として出力するための切
替回路■である。
The circuits after 69 and 610 are parts that perform code processing on the delayed detection output, and 611 and 614 are DC amplifiers, and 612°6
15 is an integrator, 613.616 is a sampling circuit, 6
Reference numeral 17 denotes a switching circuit (2) for switching the sampling circuit outputs of the two R+ and Rz systems and outputting them as one continuous signal.

第12図は611〜617の回路の各部波形図で、図中
の(1)と(2)は2つの受信系のl?X、とRX、で
同時に受信したサブチャネルの1つの69に相当する乗
積回路の出力波形を示し、1ビア)長をTとすればサブ
チャネル当たりのシンボルレートが75bpsの場合T
 =1/75−13.3+asとなる。(3)はRX、
 (7)積分器612の出力波形、(4)は618のS
/N回路で69よりのR9と610よりのR2のたとえ
ばS+Nを比較しレベルの高いS/N信号を取出して積
分回路619で積分後の波形である。また(71. (
8)はRX2系の同じ積分器612.619の出力波形
である。この積分時間および(3)の積分結果よりデー
タの1.0をサンプルトリガするクロックについてはR
X、とRXzの受信系毎にビット単位に同期がとれてい
ることが本発明の重要事項である。すなわち(5)はク
ロック(CMと略記する)1のクエンチパルスで1ビツ
ト当たりの積分時間を決定し、(6)はCK2のサンプ
ルパルスで1ビツト毎に1.0またはS/Nを判定する
。なおl?XZ系ではCKI、CK2はそれぞれCK2
1. CK22になる。
FIG. 12 is a waveform diagram of each part of the circuits 611 to 617, and (1) and (2) in the figure are l? of the two receiving systems. It shows the output waveform of the multiplication circuit corresponding to 69 of one of the subchannels received simultaneously on
=1/75-13.3+as. (3) is RX,
(7) Output waveform of integrator 612, (4) is S of 618
A /N circuit compares R9 from 69 and R2 from 610, for example, S+N, extracts a high level S/N signal, and integrates it in an integrating circuit 619. This is the waveform. Also (71. (
8) is the output waveform of the same integrators 612 and 619 of the RX2 system. Based on this integration time and the integration result in (3), the clock that triggers the sample of 1.0 of the data is R.
An important aspect of the present invention is that the receiving systems of X and RXz are synchronized bit by bit. In other words, (5) determines the integration time per bit using the quench pulse of clock (abbreviated as CM) 1, and (6) determines 1.0 or S/N for each bit using the sample pulse of CK2. . Furthermore, l? In the XZ series, CKI and CK2 are each CK2.
1. It becomes CK22.

受信系のS/N判定はサブチャネルが1つの場合にはS
/N判定に用いたチャネルと信号チャネルとは一致する
が、サブチャネルが複数の場合にはその1チヤネルをS
/N判定に選んで全体のS/Nを判定し、ダイバーシチ
の信号選択切替を行う。第11図の例ではCHIとCH
21すなわち受信系毎に1サブチヤネルを用いてS/N
判定を行っている。 (9)は617の切替回路lから
取出されたR1系すなわち611−612−613系の
サンプル信号波形で切替回路617はR,系とR2系の
サンプル信号を交互に切替出力することになる。(9)
の波形を微分回路621に。
When there is one subchannel, the S/N judgment of the receiving system is
The channel used for /N determination matches the signal channel, but if there are multiple subchannels, one channel is
/N determination to determine the overall S/N, and perform diversity signal selection switching. In the example of Figure 11, CHI and CH
21, that is, S/N using one subchannel for each receiving system.
Judgment is being made. (9) is the sample signal waveform of the R1 system, that is, the 611-612-613 system taken out from the switching circuit 1 of 617, and the switching circuit 617 alternately switches and outputs the R, system and R2 system sample signals. (9)
waveform to the differentiating circuit 621.

入力するとその出力はα〔に示すような変換点パルス1
となる。この変換点パルス1によって水晶発振器626
.  分周器627.  タイミング発生回路628を
動作させ、クロックCK1. CK2. CK21. 
Cに22のタイミングを作り出す。すなわち受信した検
波出力ディジタル信号よりピントの変換点を抽出し第1
2図(51,(6)のクエンチパルスCKIとサンプリ
ングパルスCK2の位相補正を常時RX、、 Rに2の
受信系毎に実施するもので第11図のCK 1 、 C
K 2 、 CK21゜CK22がこれに相当する。R
XIとRXzのどちらのビットを採用するかは両受他系
のS/N比較回路630で判定しその結果の切替選択信
号にてと7)毎に切替回路631を動作させどちらかの
受信系の信号を出力させる。これらをさらに詳しく次に
説明する。
When input, the output is the conversion point pulse 1 as shown in α
becomes. This conversion point pulse 1 causes the crystal oscillator 626 to
.. Frequency divider 627. The timing generation circuit 628 is operated and the clock CK1. CK2. CK21.
Create 22 timing on C. In other words, the focus conversion point is extracted from the received detection output digital signal and the first
The phase correction of the quench pulse CKI and sampling pulse CK2 in Figure 2 (51, (6)) is always performed for each receiving system of RX, R, and CK1, C in Figure 11.
K 2 , CK21°CK22 correspond to this. R
Which bit, XI or RXz, is to be adopted is determined by the S/N comparison circuit 630 of both receiving and receiving systems, and the switching circuit 631 is activated every 7) based on the resulting switching selection signal. output the signal. These will be explained in more detail below.

第12図の(4)と(8)で示した各受信系のS/N積
分出力よりサンプリングクロックのタイミングでそのレ
ベルをサンプリング回路(第11図620に出力させか
つS/N比較回路630で比較判定し良好な受信系の方
の出力を切替器631の出力とするための切替信号を切
替器631に送る。また微分回路621よりの変換点パ
ルスによるクロック系の位相修正もビット毎にS/Nの
良好な方の系によってビット同期が行われるように切替
器629においてS/N良好な系の信号(630の出力
)によっておこなわれる。
The level of the S/N integral output of each receiving system shown in (4) and (8) in FIG. A switching signal is sent to the switching device 631 to make the output of the better receiving system after comparison judgment.The phase of the clock system is also corrected by the conversion point pulse from the differentiating circuit 621 on a bit-by-bit basis. The switch 629 uses the signal (output of 630) of the system with the better S/N so that bit synchronization is performed by the system with the better S/N.

通常4相PSK波のS/N判定を行う場合は第10図の
(3)〜(6)に示したように符号によって信号のベク
トルがOP o r 、 OP o z、 OP o 
s、 OP o aのように異なるのでS/Nが良好な
ら少なくとも第13図に示す各opベクトルを中心とす
る破線域内が信号成分のベクトルと考え、破線域外は混
信または外来雑音による雑音成分である。すなわちR,
、Rg系それぞれの遅延検波出力を第9図のような位相
角対電圧特性を用いてS/N回路618において信号成
分と雑音成分の差をS/N成分として取出し、これを積
分器619で1ビツトずつ積分し第12図の+4)、 
+8)のようなS/N信号積分出力が得られる。
Normally, when performing S/N determination of a 4-phase PSK wave, the signal vector is determined by the sign as shown in (3) to (6) in Fig. 10.
s, OP o a, so if the S/N is good, at least the area within the broken line area centered on each op vector shown in Figure 13 is considered to be the signal component vector, and the area outside the broken line area is the noise component due to interference or external noise. be. That is, R,
, Rg system, the difference between the signal component and the noise component is extracted as an S/N component in the S/N circuit 618 using the phase angle versus voltage characteristics as shown in FIG. Integrate bit by bit and +4 in Figure 12),
+8) is obtained.

63と64は受信機RX、、 RX、それぞれが受信し
た各サブチャネル信号を1ビツトずつ並列に入力し文字
同期、誤り訂正処理などを行う符号処理回路であってこ
の出力は切替器631に入力し比較回路630よりのS
/N判定信号によって常にビット単位のダイバーシチ処
理によるディジタル信号を出力させることができる。
63 and 64 are code processing circuits that input each subchannel signal received by the receivers RX, RX in parallel, one bit at a time, and perform character synchronization, error correction processing, etc., and this output is input to a switch 631. S from the comparator circuit 630
The /N determination signal makes it possible to always output a digital signal that is subjected to bit-by-bit diversity processing.

以上は第6図の受信データ選択方式で予め複数送信所の
うちの1つを任意に選んでその送信周波数にRX、、 
RX!の受信周波数チャネルをプリセットし、ビット単
位のS/N判定によるスペース、偏波面ダイバーシチを
行う受信方式である。
The above is based on the reception data selection method shown in Fig. 6, in which one of the multiple transmitting stations is arbitrarily selected in advance, and the RX is transmitted at that transmission frequency.
RX! This is a reception method that presets the reception frequency channel of 2 and performs space and polarization diversity by bit-by-bit S/N determination.

他方第7図の受信データ選択方式は基本的には第11図
の受信回路を送信所の数(たとえば送信所が3つなら3
回路分)だけ保有し、各受信系を相手送信所の発射周波
数にプリセントしておき各基をスペース、偏波ダイバー
シチ方式で受信し、さらにこの3系統の受信出力のうち
ビット単位に最もS/Nの良いものを選んでデータを自
動的に出力する方法である。具体的には第11図の63
0の出力より各受信系のS/N判定を出力し3つのS/
Nのうち最も良いS/Nのデータをさらに1ピントずつ
選択して符号処理するという方法であって、スペースと
偏波ダイバーシチに加えて周波数ダイバーシチを採用し
ている。この場合HF回線で各送信所の発射周波数に大
きな差(たとえば6 Mn2と9 Mn2のように)が
あると周波数によるS/N切替の効果はあまりないが、
たとえば6.2MHzと6.3MHzのように小差の場
合には周波数グイバーシチによるビット単位のS/Nに
よる切替の効果が顕著に現れ受信データの品質改善に大
きく貢献する。
On the other hand, the reception data selection method shown in FIG. 7 basically uses the receiving circuit shown in FIG.
circuits), each receiving system is pre-centered to the emission frequency of the other transmitting station, and each receiving system is received using the space and polarization diversity method. This is a method of selecting a good value of N and automatically outputting the data. Specifically, 63 in Figure 11
The S/N judgment of each receiving system is output from the output of 0, and the three S/N judgments are output.
This is a method in which data with the best S/N is further selected one pin at a time from N and subjected to code processing, and employs frequency diversity in addition to space and polarization diversity. In this case, if there is a large difference in the emission frequency of each transmitting station in the HF line (for example, 6 Mn2 and 9 Mn2), the effect of S/N switching based on frequency will not be much.
For example, when the difference is small, such as between 6.2 MHz and 6.3 MHz, the effect of switching based on bit-by-bit S/N due to frequency diversity becomes noticeable and contributes greatly to improving the quality of received data.

(2)FSK変調の場合(第14図、第15図参照)第
14図はFSK変調波のIC11当たりの信号スペクト
ラムで、縦軸はレベルの高さを表し、f68.はマーク
周波数、fol、はスペース周波数である。入力される
2進ディジタル信号によって変調器はマークとスペース
の各周波数に切替えて変調信号を作り出す。foIはf
olTllとf。1.の中央周波数である。
(2) In the case of FSK modulation (see Figs. 14 and 15) Fig. 14 shows the signal spectrum per IC 11 of the FSK modulated wave, and the vertical axis represents the level height, f68. is the mark frequency and fol is the space frequency. Depending on the input binary digital signal, the modulator switches between mark and space frequencies to produce modulated signals. foI is f
olTll and f. 1. is the center frequency of

受信波のS/Nが悪化すればf@1m+とf09.共通
の雑音領域にあるf61成分が増加しスペクトラムは第
14図の(1)から(2)のように変化する。従って受
信側ではS/Nの判定にf08.とflllsの成分(
S)とf01成分(N)の差をS/Nとして用いる。
If the S/N of the received wave deteriorates, f@1m+ and f09. The f61 component in the common noise region increases and the spectrum changes from (1) to (2) in FIG. 14. Therefore, on the receiving side, f08. and fulls components (
The difference between S) and f01 component (N) is used as S/N.

第15図はFSK変調波の受信側装置の構成例図でPS
Kの場合の第11図に対応するものである。
Figure 15 is an example configuration diagram of a receiving side device for FSK modulated waves.
This corresponds to FIG. 11 for K.

図中のRX+、 RXzおよびそれぞれのアンテナは第
11図と同様の2つの受信系を構成している。71.7
2は各受信系にて受信復調されたサブチャネル信号をチ
ャネル別に分配する分配器でチャネル別帯域フィルタで
構成される。この出力はRX、受信系ではCHIからC
Hnまでのサブチャネルに、RX2受信系ではCl21
からC)12nまでのサブチャネルにそれぞれ分けられ
るがまずそのうちのチャネルCHIについて説明する。
RX+, RXz and their respective antennas in the figure constitute two receiving systems similar to those in FIG. 11. 71.7
Reference numeral 2 denotes a distributor that distributes the subchannel signals received and demodulated in each receiving system to each channel, and is composed of bandpass filters for each channel. This output is RX, and in the receiving system from CHI to C
Cl21 in the RX2 receiving system for subchannels up to Hn.
It is divided into subchannels from C) to C)12n, of which channel CHI will be explained first.

75は共通増幅器、76、77、78はそれぞれマーク
周波数、中心周波数、スペース周波数を取り出す帯域フ
ィルタである。通常3 kHz帯域の中に16CH程度
のFSKサブチャネルを配列する場合には1例として中
心周波数をfoとしてfoを中心に±45.5Hzのシ
フト幅で約110Hz間隔にて第5図のようなサブチャ
ネル配列を行うのでこれらの帯域フィルタの帯域幅Δf
は約±l0H7程度にとる。79.80.81は増幅器
、82.83.84はダイオ−ド検波器で、入力はここ
で直流成分に変換されそれぞれマーク信号、中心周波数
成分、スペース信号の検波出力が得られる。85は差動
増幅器でマーク、スペース信号成分を取り出すと増幅器
88を経て積分器89に送られ、ここで信号成分を1ビ
ツトずつ積分する。
75 is a common amplifier, and 76, 77, and 78 are bandpass filters that extract the mark frequency, center frequency, and space frequency, respectively. Normally, when arranging about 16 CH FSK subchannels in a 3 kHz band, for example, the center frequency is set to fo, and the shift width is ±45.5 Hz around fo at approximately 110 Hz intervals as shown in Figure 5. Since the subchannel arrangement is performed, the bandwidth Δf of these bandpass filters is
is approximately ±10H7. Reference numerals 79, 80, and 81 are amplifiers, and 82, 83, and 84 are diode detectors, where the input is converted into a DC component to obtain detection outputs of a mark signal, a center frequency component, and a space signal, respectively. A differential amplifier 85 extracts mark and space signal components and sends them through an amplifier 88 to an integrator 89, where the signal components are integrated bit by bit.

90はサンプリング回路1で積分器89から信号を取り
出す役目をもっている。また86はマーク、スペース両
信号の加算器で、この加算器出力(信号成分)と中心周
波数の検波出力(雑音成分)との差を加算器87でとり
、これをS/N信号成分として増幅器91にて増幅後積
分器92にて1ビツトずつのS/N信号を積分し、93
のサンプリング回路2によってS/N成分を取り出す。
Reference numeral 90 denotes a sampling circuit 1 which has the role of extracting a signal from the integrator 89. Further, 86 is an adder for both mark and space signals, and the adder 87 takes the difference between the adder output (signal component) and the detection output (noise component) of the center frequency, and uses this as an S/N signal component for the amplifier. After amplification in step 91, the S/N signal is integrated one bit at a time in an integrator 92.
A sampling circuit 2 extracts the S/N component.

95は比較回路で93よりのRX、受信系の(CH1の
> S/N成分とRX、受信系の(たとえばCl21の
) S/N成分を比較し良い方の受信系を選択する。そ
の結果によって97の切替器2がS/Nの良い方の受信
系の信号を出力信号として出力させることは第11図の
場合と同様である。
Reference numeral 95 is a comparison circuit that compares the RX from 93, the S/N component of the receiving system (> S/N component of CH1), the RX, and the S/N component of the receiving system (for example, Cl21), and selects the better receiving system. Accordingly, the switch 2 of 97 outputs the receiving system signal with a better S/N as the output signal, as in the case of FIG. 11.

このようにFSX変調の場合もダイオード検波後の符号
処理はPSK変調の場合と同様で第12図のタイムチャ
ートと全く同じタイミングとなる。
In this way, in the case of FSX modulation, the code processing after diode detection is the same as in the case of PSK modulation, and the timing is exactly the same as in the time chart of FIG. 12.

すなわちクロックCK 1 、 CN21のクエンチパ
ルス。
That is, the quench pulse of clock CK1 and CN21.

CN3. CN22のサンプリング回路用の位相タイミ
ングは第12図のタイムチャートの(5)、 (6)と
同じである。サンプリング回路93の出力を微分回路9
4に入力させその出力である変換点パルス1は切替回路
101に送られる。98は水晶発振器、99は分周器、
100はタイミング発生回路でこれらの動作は第11図
の場合と全く同じである。切替回路101はビット単位
にS/Nの良好な受信系のタイミングに切替えるために
あることも同様である。また73と74はそれぞれRX
+、 RXzの受信系の各サブチャネルのサンプリング
出力を並列に入力させこれを並直列変換や誤り訂正など
の符号処理を行うための符号処理回路で、各サブチャネ
ルの符号は1ビツトずつが切替回路97に送られここで
選択されれば受信端末装置へ送出される。以上のように
PSK変調方式の場合と同様に第6図と第7図のいずれ
のデータ受信方式にても採用可能な回路方式である。
CN3. The phase timing for the sampling circuit of CN22 is the same as (5) and (6) in the time chart of FIG. Differentiating circuit 9 outputs the sampling circuit 93
4 and its output, the conversion point pulse 1, is sent to the switching circuit 101. 98 is a crystal oscillator, 99 is a frequency divider,
100 is a timing generation circuit whose operation is exactly the same as in the case of FIG. Similarly, the switching circuit 101 is provided to switch to a receiving system timing with a good S/N ratio on a bit-by-bit basis. Also, 73 and 74 are RX
+, A code processing circuit that inputs the sampling output of each subchannel of the RXz receiving system in parallel and performs code processing such as parallel-to-serial conversion and error correction.The code of each subchannel is switched one bit at a time. It is sent to a circuit 97, and if selected there, is sent to the receiving terminal device. As described above, this circuit system can be adopted in both the data reception systems shown in FIG. 6 and FIG. 7, as in the case of the PSK modulation system.

第16図は本発明を実施した場合のデータ送受信のタイ
ムチャートで、図中の(1)〜(4)は送信側、(5)
〜(8)は受信側である。(1)は第2図の中央局Cか
ら各送信所への送信指令の信号で時点Aから各送信所の
送信機が放送を開始する。(21,(3)、 (4)は
A1−八、の各送信所からそれぞれ送出される無線デー
タ信号で、中央局Cからの同一データが各送信所から異
周波数にて同時に放送される。信号のうち5YNCは同
期信号でデータの送信に先立って送られる。受信側では
この5YNCによりビット同期、フレーム同期(文字同
期)が設定される。5YNCに続いてデータが送られる
が図中のB−Cには送出するデータを具体的に2進コー
ドで例示しである。すなわちB時点より送られるデータ
は0110100110−・−・−・−のようになる。
Figure 16 is a time chart of data transmission and reception when the present invention is implemented, in which (1) to (4) are on the sending side, (5)
~(8) is the receiving side. (1) is a transmission command signal from the central station C in FIG. 2 to each transmitting station, and the transmitters at each transmitting station start broadcasting from time A. (21, (3), (4) are wireless data signals sent from each transmitting station A1-8, respectively, and the same data from the central station C is simultaneously broadcast from each transmitting station on different frequencies. Among the signals, 5YNC is a synchronization signal and is sent before data transmission. On the receiving side, bit synchronization and frame synchronization (character synchronization) are set by this 5YNC. Data is sent following 5YNC, but B in the figure -C specifically illustrates the data to be sent as a binary code. That is, the data sent from time B is as follows: 0110100110--.

なお送信発射周波数はA、 (送信所)がf、((2)
のデータ〕。
The transmitting frequency is A, (transmitting station) is f, ((2)
Data of〕.

A2がf3((31のデータ〕、A3がfs((4)の
データ〕のようになる。
A2 becomes f3 ((data of 31)), A3 becomes fs (data of (4)).

次に(5)〜(8)は不特定多数の移動体のうち1つの
移動体、たとえばB、が受信した場合のデータで、(5
)はA、送信所からのデータをf、で、(6)はA2送
信所からのデータをf、で、(7)はA3送信所からの
データをfsにそれぞれの受信機の受信周波数をプリセ
ットして前記第6図のデータ受信方式で受信した場合で
ある。この場合には移動体側(移動局)が最も良品質の
受信チャネルの周波数に手動にてブリセントしスペース
・偏波面ダイバーシチ方式にて受信する。(8)は第7
図のように各送信所からのデータを3波同時に受信し、
さらに周波数ダイバーシチ方式にて受信したデータであ
るとする。いずれにしても)IP回線のようにフェージ
ング、マルチパス等を伴う遠距離の無線回線では受信デ
ータの誤りを全く無とすることは困難であるから本発明
のように複数送信所から発射放送される同一データをダ
イバーシチ受信方式にて受信し常時最良品質の通信回線
を構成できるようにすることが必要である。
Next, (5) to (8) are data received by one mobile unit, for example B, among an unspecified number of mobile units, and (5)
) is the data from the A transmitting station as f, (6) is the data from the A2 transmitting station as f, and (7) is the data from the A3 transmitting station as fs, which is the receiving frequency of each receiver. This is a case where data is preset and received using the data reception method shown in FIG. In this case, the mobile side (mobile station) manually briscents to the frequency of the reception channel with the best quality and receives using the space/polarization diversity method. (8) is the seventh
As shown in the figure, three waves of data from each transmitting station are received simultaneously,
Furthermore, it is assumed that the data is received using the frequency diversity method. In any case, it is difficult to completely eliminate errors in received data in long-distance wireless lines that are subject to fading, multipath, etc., such as IP lines. It is necessary to receive the same data using a diversity reception method so that a communication line with the best quality can be constructed at all times.

(発明の効果) 本発明の実施によって地理的に遠距離に散在する不特定
多数の移動体に対して最小の運用周波数を用い放送形式
のデータ伝送を行う場合に時々刻々通信状況が変化する
ことが多い無線HF回線に対し、受信(移動体)側では
最小の設備で連続して良品質通信回線を確保することが
できる。従って送受設備の縮小と伝送効率の改善に大き
な貢献が期待できる。
(Effects of the Invention) By implementing the present invention, when performing broadcast-style data transmission using the minimum operating frequency to an unspecified number of moving bodies scattered over a geographically large distance, the communication situation changes from moment to moment. In contrast to wireless HF lines, which have a large number of connections, it is possible to secure continuous high-quality communication lines on the receiving (mobile) side with minimal equipment. Therefore, it can be expected to make a significant contribution to downsizing transmission and reception equipment and improving transmission efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施しようとする通信系統の一例図、
第2図は本発明の主な対象となる通信系統の一例図、第
3図は第2図の中央局と各送信所間の通信系構成別図、
第4図は中央局と各送信所間に伝送される変調波のスペ
クトラムの一例図、第5図は伝送帯域内に配列した複数
サブチャネルのスペクトラム配列の一例図、第6図およ
び第7図は各移動局の受信装置の構成例図、第8図〜第
13図はPSK (位相偏移)変調関連図で第8図はサ
ブチャネル中の1チヤネルの2相PSK変調波作成のタ
イムチャート、第9図は復調器の位相変化対出力電圧特
性例図、第10図は4相PSK変調回路構成例図(1)
と4相PSK波生成の説明ベクトル図(2)〜(6)、
第11図は4相PSK波受信回路の構成例図、第12図
は受信信号処理のタイムチャート、第13図は4相PS
K波の信号成分と雑音成分の比較図、第14図はFSX
 (周波数偏移)変調波の1チャネルスペクトル例図、
第15図はFSK波受信回路の構成例図、第16図は本
発明を実施した場合のデータ送受信のタイムチャートで
ある。
FIG. 1 is an example diagram of a communication system in which the present invention is implemented;
FIG. 2 is a diagram of an example of the communication system that is the main object of the present invention, and FIG. 3 is a separate diagram of the configuration of the communication system between the central station and each transmitting station in FIG. 2.
Figure 4 is an example of the spectrum of the modulated wave transmitted between the central station and each transmitting station, Figure 5 is an example of the spectrum arrangement of multiple subchannels arranged within the transmission band, and Figures 6 and 7. Figure 8 shows an example of the configuration of a receiver for each mobile station, Figures 8 to 13 are diagrams related to PSK (phase shift) modulation, and Figure 8 is a time chart for creating two-phase PSK modulated waves for one channel among subchannels. , Fig. 9 is an example diagram of demodulator phase change vs. output voltage characteristics, and Fig. 10 is an example diagram of a 4-phase PSK modulation circuit configuration (1)
and explanatory vector diagrams (2) to (6) for four-phase PSK wave generation,
Figure 11 is a configuration example diagram of a 4-phase PSK wave receiving circuit, Figure 12 is a time chart of received signal processing, and Figure 13 is a 4-phase PSK wave receiving circuit.
Comparison diagram of K wave signal component and noise component, Figure 14 is FSX
(Frequency shift) Example diagram of one channel spectrum of modulated wave,
FIG. 15 is a configuration example diagram of an FSK wave receiving circuit, and FIG. 16 is a time chart of data transmission and reception when the present invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 地理的に分散した不特定多数の移動体に放送形式で連続
してデータを送信するため陸上中央固定局より相互に遠
距離に分散配置した複数の送信所に専用回線を介して同
時に同一データを送出し各送信所は一般に相互に近接し
た搬送周波数を用いその専有帯域幅内に任意数のサブチ
ャネルを割当て、それらのサブチャネルに位相偏移また
は周波数偏移による変調を行って放射する場合に、移動
体側ではスペース・偏波面ダイバーシチによる2系統以
上前記送信所の数までの周波数ダイバーシチをも加えた
多系統のアンテナと受信回路よりなる複数受信系を設け
、その各受信系は常時最適周波数の送信所を選択して受
信するように予め調整しておき各受信系の復調された信
号出力の信号対雑音比(S/N)を信号のビット単位に
て比較して常に信号対雑音比の最良の受信系の復調出力
のみを受信端末装置に出力することを特徴とする放送デ
ータ信号のS/N選別によるダイバーシチ受信方法。
In order to continuously transmit data in broadcast format to an unspecified number of geographically dispersed mobile units, the same data is simultaneously sent from a land-based central fixed station to multiple transmitting stations distributed over long distances via dedicated lines. Generally speaking, each transmitting station uses carrier frequencies close to each other, allocates an arbitrary number of subchannels within its exclusive bandwidth, and modulates these subchannels with a phase shift or frequency shift when radiating. On the mobile side, multiple receiving systems are installed, each consisting of multiple antennas and receiving circuits, with space and polarization diversity of two or more systems plus frequency diversity up to the number of transmitting stations, and each receiving system is always tuned to the optimum frequency. Adjustments are made in advance to select a transmitting station for reception, and the signal-to-noise ratio (S/N) of the demodulated signal output of each receiving system is compared on a bit-by-bit basis to constantly check the signal-to-noise ratio. A diversity reception method using S/N selection of broadcast data signals, characterized in that only the demodulated output of the best reception system is output to a reception terminal device.
JP60030488A 1985-02-20 1985-02-20 Diversity transmission / reception method in broadcasting format data communication Expired - Lifetime JPH0644731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030488A JPH0644731B2 (en) 1985-02-20 1985-02-20 Diversity transmission / reception method in broadcasting format data communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030488A JPH0644731B2 (en) 1985-02-20 1985-02-20 Diversity transmission / reception method in broadcasting format data communication

Publications (2)

Publication Number Publication Date
JPS61198825A true JPS61198825A (en) 1986-09-03
JPH0644731B2 JPH0644731B2 (en) 1994-06-08

Family

ID=12305216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030488A Expired - Lifetime JPH0644731B2 (en) 1985-02-20 1985-02-20 Diversity transmission / reception method in broadcasting format data communication

Country Status (1)

Country Link
JP (1) JPH0644731B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683700A (en) * 1991-12-30 1994-03-25 Gold Star Co Ltd Apparatus and method for controlling memory access of multiprocessor system
US5983086A (en) * 1996-05-15 1999-11-09 Nec Corporation Portable information terminal device with radio selective-calling receiver
WO2000018048A1 (en) * 1998-09-21 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Multicarrier communication device and multicarrier communication method
KR20030010446A (en) * 2001-10-23 2003-02-05 (주)이지커뮤니케이션 Method and system for broadcasting service using mobile telecommunication network
JP2009044583A (en) * 2007-08-10 2009-02-26 Asyst Technologies Japan Inc Communication apparatus and communication method in the communication apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491120A (en) * 1977-12-28 1979-07-19 Nec Corp Psk demodulation system for diversity receiving

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491120A (en) * 1977-12-28 1979-07-19 Nec Corp Psk demodulation system for diversity receiving

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683700A (en) * 1991-12-30 1994-03-25 Gold Star Co Ltd Apparatus and method for controlling memory access of multiprocessor system
US5983086A (en) * 1996-05-15 1999-11-09 Nec Corporation Portable information terminal device with radio selective-calling receiver
WO2000018048A1 (en) * 1998-09-21 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Multicarrier communication device and multicarrier communication method
KR20030010446A (en) * 2001-10-23 2003-02-05 (주)이지커뮤니케이션 Method and system for broadcasting service using mobile telecommunication network
JP2009044583A (en) * 2007-08-10 2009-02-26 Asyst Technologies Japan Inc Communication apparatus and communication method in the communication apparatus

Also Published As

Publication number Publication date
JPH0644731B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
FI77758C (en) OVER ANCHORING FOR OVEREADING MEDIA AND DIGITAL RADIO SYSTEMS.
US7586972B2 (en) Code division multiple access enhanced capacity system
US4470141A (en) Multi-direction time division multiplex communication system
JPH0698046A (en) System for delivery of radiotelephony signal via cable television network
GB550193A (en) Improvements in and relating to multiplex frequency-modulation systems
JPS61227439A (en) Synchronization of receiver for digital multiplex transmission system and circuit apparatus for implementationthereof
EP0839432A1 (en) Wideband base station architecture for digital cellular communications system
CA1154181A (en) Digital radio transmission system for transmitting a plurality of information signals by a network of transmitters having substantially the same carrier frequencies
US5291518A (en) Link system for radio paging service
JPS61198825A (en) Diversity reception method by s/n selection of broadcast data signal
US6522637B1 (en) System and method for allocating a carrier wave frequency of one channel between two carrier wave frequencies of another channel
US2278779A (en) Method of reducing multipath effects
JPS61101134A (en) Diversity reception method
JPH08298498A (en) Multi-carrier transmitter and receiver
US8605773B2 (en) Apparatus and method for data communication using radio frequency
JPH044621A (en) Communication system for data at short wave band
JPS61117936A (en) Method for receiving data signal
KR100381781B1 (en) Electronic toll collection system
JPS6112144A (en) Data transmission method by frequency sub-channel control
US2516885A (en) Relay system
JPS5827701B2 (en) Wide area diversity transmission and reception method
JPH0142175B2 (en)
WO2002003641A1 (en) Cofdm transmitter with diversity and time delay
JPS6160027A (en) Receiver
GB644061A (en) Vehicle communication and location indicating system