JPS61198545A - Light irradiator - Google Patents

Light irradiator

Info

Publication number
JPS61198545A
JPS61198545A JP3748285A JP3748285A JPS61198545A JP S61198545 A JPS61198545 A JP S61198545A JP 3748285 A JP3748285 A JP 3748285A JP 3748285 A JP3748285 A JP 3748285A JP S61198545 A JPS61198545 A JP S61198545A
Authority
JP
Japan
Prior art keywords
light
temperature
microwaves
arc tube
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3748285A
Other languages
Japanese (ja)
Inventor
Masaaki Yada
矢田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3748285A priority Critical patent/JPS61198545A/en
Publication of JPS61198545A publication Critical patent/JPS61198545A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To provide a light irradiator by which the emission of light from a non-electrode light emission tube can be monitored with a stable sensitivity, by detecting the change in the temperature of an irradiated object which is caused by the absorption of microwaves leaking from the tube. CONSTITUTION:When a non-electrode light emission tube 33 almost completely absorbs microwaves emitted from an electroconductive antenna 34 and properly emits ultraviolet light, the temperature of irradiated sewage 36 in a disposal tank 35 does not change. When the absorption of the microwaves decreases due to the abnormality of the light emission tube 33, the microwaves leak out of the tube and are all absorbed by the sewage 36 so that its temperature rises. If the change in the temperature is out of a prescribed range, a calculator 12 finds out the leak of a large quantity of microwaves, and sends out the result of calculation to a display unit 13 so that the unit shows 'Light emission tube abnormal' or the like.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、マイクロ波により励起され発光する無電極発
光管を用いて物体に光を照射する光照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a light irradiation device that irradiates light onto an object using an electrodeless arc tube that is excited by microwaves and emits light.

〔発明の技術的背景〕[Technical background of the invention]

近年、マイクロ波により励起される無電極発光管が高効
率の発光により注目され、またこれを光源として用いる
装置が開発され、産業界に広く浸透し始めている。
In recent years, electrodeless arc tubes excited by microwaves have attracted attention due to their highly efficient light emission, and devices using them as light sources have been developed and are beginning to spread widely in industry.

例えば、紫外光を発する無電極発光管を利用して水、流
動性食品、下水等に含有若しくは付着している細菌等を
殺菌する光照射装置が多用化されている。
For example, light irradiation devices that use electrodeless arc tubes that emit ultraviolet light to sterilize bacteria contained in or attached to water, liquid foods, sewage, etc. are in widespread use.

ここで、これらの光照射装置内に配された無電極発光管
の時間的劣化状態1発光状態等を正確に把握する場合、
第4図に示す如く紫外線強度計等の光学的測定手段21
を、被処理物36に紫外光を照射し処理する処理空間3
5に配設し、その紫外線強度計21の測定値に応じて無
電極発光管33の発しかしながら、この紫外線強度計2
1は入射する紫外光を光学的に測定するため、紫外線強
度計21の表面に例えば水アカ等の物質が付着または堆
積すると、その測定感度が著しく低下していた。そのた
め、無電極発光管33幌正常に発光をしている場合にお
いても2発光監視手段で感知する光量が減少されている
ので、その発光監視手段は2発光が異常であるものと誤
感知し、光照射装置の作動を停止するような措置等を講
じていたので、その結果処理の低下をもたらしていた。
Here, when accurately grasping the temporal deterioration state 1 light emitting state etc. of the electrodeless arc tube arranged in these light irradiation devices,
As shown in FIG. 4, optical measuring means 21 such as an ultraviolet intensity meter
A processing space 3 in which the object to be processed 36 is irradiated with ultraviolet light and processed.
5, and the electrodeless arc tube 33 emits light according to the measured value of the ultraviolet intensity meter 21.
Since UV light intensity meter 21 optically measures incident ultraviolet light, if a substance such as water scale adheres or accumulates on the surface of ultraviolet intensity meter 21, the measurement sensitivity is significantly reduced. Therefore, even when the electrodeless arc tube 33 is emitting light normally, the amount of light detected by the two-light emission monitoring means is reduced, so the light emission monitoring means erroneously detects that the two light-emissions are abnormal. Measures such as stopping the operation of the light irradiation device were taken, resulting in a decline in processing performance.

また、これを回避するため、紫外線強度計21が被処理
物36と接することのないように、無電極発光管33の
内側に設置する事も考えられるが、この構造とすると、
マイクロ波の伝搬空間内に紫外線強度計21が介在する
こととなり、マイクロ波伝搬の妨げとなり、その結果無
電極発光管33から発光される光量の低減をもたらして
いた。
In addition, to avoid this, it may be possible to install the ultraviolet intensity meter 21 inside the electrodeless arc tube 33 so that it does not come into contact with the object to be treated 36, but with this structure,
The ultraviolet intensity meter 21 is interposed in the microwave propagation space, which obstructs the microwave propagation, resulting in a reduction in the amount of light emitted from the electrodeless arc tube 33.

また、このような事は紫外線を発する無電極発光管の発
光監視装置に特有の問題ではなく1例えば有色光を発す
る無電極発光管の発光監視手段についても、照度計等の
様な光学的測定手段が設けられていたので、前述と同様
の問題が生じていた。
Furthermore, this is not a problem specific to luminescence monitoring devices for electrodeless arc tubes that emit ultraviolet light; for example, for luminescence monitoring means for electrodeless arc tubes that emit colored light, optical measurement methods such as illumination meters, etc. Since the means were provided, problems similar to those described above arose.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記問題に麺み、光学的な測定手段を
排除し、無電極発光管から漏洩したマイクロ波を吸収す
ることにより生ずる被照射物の温度変化を検知すること
により発光効率の低下を促すことなく、安定した感度で
無電極発光管の発光状態を監視することのできる光照射
装置を提供する。
The purpose of the present invention is to solve the above problem, eliminate optical measuring means, and improve luminous efficiency by detecting the temperature change of the irradiated object caused by absorbing microwaves leaked from the electrodeless arc tube. To provide a light irradiation device capable of monitoring the light emission state of an electrodeless arc tube with stable sensitivity without prompting a decrease in sensitivity.

〔発明の概要〕[Summary of the invention]

本発明は、マイクロ波を供給するマイクロ波供給源と、
このマイクロ波を吸収して光を発する無電極発光管と、
この発光管から発せられた光の被照射物への照射を施こ
す照射空間を有する光照射装置において1発光管から漏
洩し、照射空間に至ったマイクロ波を吸収することによ
り生じる被照射物の温度変化を検知することにより2発
光管の発光状態を監視する発光監視手段を備えているの
で、照射空間に照射される光を低減することがなきる光
照射装置を提供する。
The present invention includes a microwave source supplying microwaves;
An electrodeless arc tube that absorbs this microwave and emits light,
In a light irradiation device that has an irradiation space in which the light emitted from the arc tube irradiates the irradiated object, the irradiated object is generated by absorbing microwaves that leak from the arc tube and reach the irradiation space. The present invention provides a light irradiation device that does not reduce the amount of light irradiated into the irradiation space because it includes a light emission monitoring means that monitors the light emission state of the two arc tubes by detecting temperature changes.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は1本発明による下水処理用の水照射装置である
。同図に示す様に矩形導波管31の一端には、マイクロ
波を発するマグネトロン32が取り付けられ、他端には
マイクロ波を吸収する導電性アンテナ34が設けられて
いる。またこの導電性アンテナ34を包囲する様に配設
された無電極発光管33は、前記の供給されるマイクロ
波を受は紫外光を発光するもので導波管31に接して配
置された照射空間である処理槽35の内部に収納されて
いる。
FIG. 1 shows a water irradiation device for sewage treatment according to the present invention. As shown in the figure, a magnetron 32 that emits microwaves is attached to one end of a rectangular waveguide 31, and a conductive antenna 34 that absorbs microwaves is provided at the other end. Further, an electrodeless light emitting tube 33 arranged so as to surround the conductive antenna 34 receives the supplied microwave and emits ultraviolet light. It is housed inside a processing tank 35 which is a space.

このようにマイクロ波供給源30から供給されるマイク
ロ波によって無電極発光管33に封入された図示せぬ発
光物質は励起され、無電極発光管33は紫外光を被照射
物である下水36に処理槽35ニ照射する。
In this way, a luminescent substance (not shown) sealed in the electrodeless arc tube 33 is excited by the microwaves supplied from the microwave supply source 30, and the electrodeless arc tube 33 emits ultraviolet light to the sewage water 36 that is the object to be irradiated. The treatment tank 35 is irradiated.

また発光監視手段10は、下水36の紫外光照射前つま
り、処理槽35に給水される下水36の水温を検知する
第1の温度検知素子11aと、紫外光照射後、つまり処
理端・ら排水される下水36の水温を検知する第2の温
度検知素子11bと、これら各々の温度検知素子11a
、llbから出力される温度信号を入力し、演算する演
算器12とから成る温度変化検知部と、この温度変化検
知部の出力信号に応じて無電極性発光管33の発光状態
を表示する表示器13とにより構成される。
In addition, the light emission monitoring means 10 includes a first temperature detection element 11a that detects the water temperature of the sewage water 36 before being irradiated with ultraviolet light, that is, the temperature of the sewage water 36 supplied to the treatment tank 35, and a first temperature detection element 11a that detects the water temperature of the sewage water 36 that is supplied to the treatment tank 35, and a first temperature detection element 11a that detects the water temperature of the sewage water 36 supplied to the treatment tank 35, that is, the temperature of the sewage water 36 that is detected after irradiation with ultraviolet light, that is, the temperature of the sewage water 36 that is discharged from the treatment end. a second temperature sensing element 11b that detects the water temperature of the sewage 36, and each of these temperature sensing elements 11a.
, a temperature change detection section comprising a calculation unit 12 which inputs and calculates temperature signals output from the temperature change detection section; and a display that displays the light emission state of the non-electrode arc tube 33 in accordance with the output signal of the temperature change detection section. It is composed of a container 13.

第1の温度検知素子11aは熱電対から成り、照射空間
である処理槽35に至るパイプの任意の場所に配設され
、前述の如く紫外光照射を受ける前の下水36の平常水
温Taを測定する。第2の温度検知素子11bも熱電対
から成り、紫外光照射を受けた後の下水36の処理水温
Tbを測定できるように。
The first temperature sensing element 11a consists of a thermocouple, and is installed at any location on the pipe leading to the treatment tank 35, which is the irradiation space, and measures the normal water temperature Ta of the sewage 36 before being irradiated with ultraviolet light as described above. do. The second temperature detection element 11b is also composed of a thermocouple, so that it can measure the treated water temperature Tb of the sewage 36 after being irradiated with ultraviolet light.

処理槽35に接続されたパイプの処理槽35近傍に配設
される。また演算器12は、各々の温度検知素子11a
、llbと電気的接続が成され、前記平常水温−Taと
処理水温Tbとの温度変化ΔTを演算し、その演算結果
に応じて出力信号を変化させるものである。この演算器
12の出力信号を入力する表示器13は、前述の如く外
部に無電極発光管33の発光状態を表示するために設け
る。
It is disposed near the processing tank 35 of a pipe connected to the processing tank 35. In addition, the computing unit 12 is connected to each temperature sensing element 11a.
, llb, and calculates the temperature change ΔT between the normal water temperature -Ta and the treated water temperature Tb, and changes the output signal according to the calculation result. The display 13 to which the output signal of the arithmetic unit 12 is input is provided externally to display the light emitting state of the electrodeless arc tube 33, as described above.

次に2以上のように構成された発光監視手段10の動作
について述べる。
Next, the operation of the light emission monitoring means 10 configured as described above will be described.

導電性アンテナ34から放射されたマイクロ波を無電極
発光管33がほぼ完全に吸収し、正常な紫外光の発光を
遂げている場合においては、処理槽35での下水36の
水温変化はない。したがって先に述べた平常水温Taと
処理水温Tbとの温度差へ′rはほぼ零となり、この演
算器12の演算結果が表示器13に伝達され1表示器1
3は発光状態が正常であることを表示する。
When the electrodeless arc tube 33 almost completely absorbs the microwave radiated from the conductive antenna 34 and emits normal ultraviolet light, there is no change in the water temperature of the sewage 36 in the treatment tank 35. Therefore, the temperature difference 'r between the normal water temperature Ta and the treated water temperature Tb mentioned above becomes almost zero, and the calculation result of this calculator 12 is transmitted to the display 13.
3 indicates that the light emitting state is normal.

季 無電極発光管33に例えば時間的な劣化、破損によって
、無電極発光管33に封入された発行物質が減量した場
合等、無電極発光管に異常が発生した場合無電極発光管
33のマイクロ波吸収が減少し。
If an abnormality occurs in the electrodeless arc tube 33, such as when the emitted substance sealed in the electrodeless arc tube 33 decreases due to deterioration or damage over time, the microelectrode arc tube 33 Wave absorption is reduced.

したがってマイクロ波は無電極発光管33の管外へ漏洩
する。この漏洩したマイクロ波は、処理槽35内で被照
射物である下水36に全て吸収される。つまり、下水3
6は処理槽35でマイクロ波誘電加熱を受けることにな
るので、処理水温Tbは上昇する。
Therefore, the microwave leaks out of the electrodeless arc tube 33. This leaked microwave is completely absorbed by the sewage water 36 that is the object to be irradiated within the treatment tank 35 . In other words, sewage 3
6 is subjected to microwave dielectric heating in the treatment tank 35, so the treatment water temperature Tb increases.

ここで、温度変化ΔTが、予め定めた範囲外にある場合
、演算器12は多量のマイクロ波が漏洩したと察知し、
先に述べた様に演算器12は、この演算結果を表示器1
3に出力する。これを受けて表示器13は2例えば発光
管異常なる表示を行なう。前記表示内容の察知基準であ
る温度変化△Tの予め定めた範囲は、処理槽35の容積
、給水される下水36の流量、導電性アンテナ34から
放射されるマイクロ波の強度など光照射装置の構造等に
よって適宜決定されるが8本実施例においては、流入さ
れる下水の水温は約10℃であり、処理槽35の容積が
301、給水される下水36の流量が10 l/min
 、  ?イクロ波強度は1 kWの処理能力を持つ光
照射装置であり、無電極発光管33に放射されるマイク
ロ波の70%以上が漏洩した時に発光管異常なる表示を
行なわせる様に設定しているので、これに対応する温度
変化へTの範囲を±2℃として予め定め、この範囲内に
ある場合は正常、この範囲を脱した場合は異常としてい
る。
Here, if the temperature change ΔT is outside the predetermined range, the computing unit 12 detects that a large amount of microwave has leaked,
As mentioned earlier, the calculator 12 displays the result of this calculation on the display 1.
Output to 3. In response to this, the display 13 displays 2, for example, an error in the arc tube. The predetermined range of the temperature change ΔT, which is the detection standard for the display contents, depends on the volume of the treatment tank 35, the flow rate of the sewage 36 being supplied, the intensity of the microwave radiated from the conductive antenna 34, etc. of the light irradiation device. In this embodiment, the temperature of the incoming sewage is about 10°C, the volume of the treatment tank 35 is 301, and the flow rate of the sewage 36 to be supplied is 10 l/min, although it is determined as appropriate depending on the structure etc.
, ? The microwave intensity is a light irradiation device with a processing capacity of 1 kW, and it is set so that when 70% or more of the microwaves emitted to the electrodeless arc tube 33 leaks, an error message is displayed on the arc tube. Therefore, the range of T corresponding to this temperature change is predetermined as ±2°C, and if it is within this range, it is considered normal, and if it is out of this range, it is considered abnormal.

また第2図に示す如く、マイクロ波伝搬空間37内に位
置する無電極発光管33の内部に下水36を流入させ、
紫外光を照射する光照射装置を想定した場合について述
べる。この装置に配される発光監視手段にふっては、処
理槽35に至るパイプに第1の温度検知素子11aを、
処理槽35を経たパイプの処理槽35近傍に第2の温度
検知素子11bを配設させる構造とする。またこの場合
2寸イク四波伝搬空間を包囲する壁面38と無電極発光
管33端部との間隙部39で生じる下水360マイクロ
波誘電加熱に直接起因する処理水温Tbの上昇を考慮し
Further, as shown in FIG. 2, sewage 36 is caused to flow into the electrodeless arc tube 33 located within the microwave propagation space 37,
A case will be described assuming a light irradiation device that irradiates ultraviolet light. Regarding the light emission monitoring means arranged in this device, a first temperature sensing element 11a is installed in the pipe leading to the processing tank 35.
The structure is such that the second temperature sensing element 11b is disposed near the processing tank 35 on the pipe passing through the processing tank 35. Further, in this case, consideration is given to the increase in the temperature Tb of the treated water that is directly caused by the microwave dielectric heating of the sewage water 360 that occurs in the gap 39 between the wall surface 38 surrounding the 2-inch four-wave propagation space and the end of the electrodeless arc tube 33.

演算器12の演算を果たすことが好ましい。It is preferable that the arithmetic operation of the arithmetic unit 12 be carried out.

以上の実施例においては、第1の温度検知素子11aと
、第2の温度検知素子11bとを処理槽35と通ずるパ
イプに配設すればよいので、既存の装置の照射空間35
に至って簡単に取り付けることができ、これによって発
光監視を行なうことができる。
In the above embodiment, since the first temperature sensing element 11a and the second temperature sensing element 11b may be disposed in a pipe communicating with the processing tank 35, the irradiation space 35 of the existing device
It can be easily installed and light emission monitoring can be performed.

また、前述の実施例では、第1の温度検知素子11aを
処理槽35に至るパイプに設けているが、これを処理槽
35内の、パイプ近傍に配設することや。
Further, in the above-described embodiment, the first temperature sensing element 11a is provided in the pipe leading to the processing tank 35, but it may be arranged in the processing tank 35 near the pipe.

第2の温度検知素子11bを、処理槽35のパイプ近傍
に配設すること等、温度検知素子は、前述の実施例に限
られることなく配設することができる。
The temperature sensing element can be arranged without being limited to the above-described embodiment, such as by arranging the second temperature sensing element 11b near the pipe of the processing tank 35.

また他の実施例として、第3図に示す様に、温度検知素
子11を下水36の水温を検知できるように処理槽35
に配設し、演算器121と接続してもよい。ここで演算
器121は、温度検知素子11によって出力された温度
信号を所定の時間で微分し、下水36の時間的な水温変
化を演算し、無電極発光管33からマイクロ波が漏洩し
ていることを察知するものである。つまり、無電極発光
管33が、導電性アンテナ34から放射されたマイクロ
波を略完全に吸収し、正常な紫外光発光を遂げている場
合は、演算器121で演算される時間的な水温変化はな
いが、無電極発光管33に異常が生じ、マイクロ波の吸
収が減少すると、先の時間的な水温変化が大きなものと
なり、演算器12+は、多量のマイクロ波が無電極発光
g33から漏洩していることを察知し、この演算結果を
表示器13に送出する。
As another example, as shown in FIG.
The computer 121 may be placed in the computer and connected to the arithmetic unit 121. Here, the computing unit 121 differentiates the temperature signal output by the temperature detection element 11 by a predetermined time, calculates the temporal change in water temperature of the sewage water 36, and calculates the leakage of microwaves from the electrodeless arc tube 33. It is something that senses things. In other words, if the electrodeless arc tube 33 almost completely absorbs the microwave radiated from the conductive antenna 34 and emits normal ultraviolet light, the temporal water temperature change calculated by the calculator 121 However, if an abnormality occurs in the electrodeless light emitting tube 33 and the absorption of microwaves decreases, the temporal water temperature change will become large, and the computing unit 12+ will detect that a large amount of microwaves leak from the electrodeless light emitting tube g33. This calculation result is sent to the display 13.

この実施例によれば、下水36の温度を検知する温度検
知素子を1つ処理槽35に配設すればよいので1発光監
視手段を構成する部品の低減が図れる。
According to this embodiment, since it is sufficient to dispose one temperature detection element for detecting the temperature of the sewage water 36 in the treatment tank 35, the number of components constituting one light emission monitoring means can be reduced.

以上の実施例においては、紫外光を発する無電極発光管
を光源としている光照射装置について説明しているが、
被照射物の大幅な温度上昇を訪発する赤外領域の発光を
除き1例えば可視光を被照射物である流体に照射させ、
被照射物が含有している不純物等を光学的に検査するた
めに利用されている光照射装置においても、前述の様な
構成で。
In the above embodiments, a light irradiation device using an electrodeless arc tube that emits ultraviolet light as a light source has been described.
Except for light emission in the infrared region, which causes a significant temperature rise of the irradiated object, for example, visible light is irradiated onto the irradiated object, a fluid;
A light irradiation device used to optically inspect impurities contained in an object to be irradiated also has the above-mentioned configuration.

その無電極発光管の発光状態を監視することができる。The light emitting state of the electrodeless arc tube can be monitored.

また前記の全ての実施例では、温度検知素子として熱雷
対を用いているが、これに限られず2例えば白金測温抵
抗体、トランジスタ温度センサ等の温度検知素子を利用
することも可能である。また、外界に無電極発光管の発
光状態を明示するため2表示器によってその発光状態を
表示させているが、これは例えばブザー等の認識手段を
用いることも可能であり、また、被照射物である流体の
供給を停止する手段や、マイクロ波の供給を停止する手
段によって発光状態を明示することもできる。
In addition, in all of the above embodiments, a thermal lightning pair is used as the temperature sensing element, but the present invention is not limited to this, and it is also possible to use a temperature sensing element such as a platinum resistance thermometer, a transistor temperature sensor, etc. . In addition, in order to clearly show the light emitting state of the electrodeless arc tube to the outside world, the light emitting state is displayed using two indicators, but this can also be done by using a recognition means such as a buzzer. The light emitting state can also be clearly indicated by means for stopping the supply of a certain fluid or means for stopping the supply of microwaves.

また1以上の実施例においては、下水に対して光を照射
しているが、被照射物としてこれに限られることなく、
上水、超純水、流動性食品、流動性薬品等、マイクロ波
を吸収する流動性のものであれば、前述の実施例と同様
な構造をもって0本発明の効果を得ることができる。
In addition, in one or more embodiments, light is irradiated onto sewage, but the object to be irradiated is not limited to this.
Any fluid that absorbs microwaves, such as tap water, ultrapure water, fluid foods, fluid chemicals, etc., can have the same structure as the above-mentioned embodiments and still achieve the effects of the present invention.

また、上記実施fllではマグネトロン、矩形導波管、
アンテナにより、マイクロ波を供給、伝搬しているが、
こ1れに限られることなく、任意の構成で無電極発光管
を発光させるマイクロ波を供給すればよい。
In addition, in the above implementation full, a magnetron, a rectangular waveguide,
Microwaves are supplied and propagated by antennas,
The configuration is not limited to this one, and microwaves that cause the electrodeless arc tube to emit light may be supplied in any configuration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光学的な測定手段を用いず。 According to the present invention, no optical measuring means is used.

発光管から漏洩したマイクロ波を吸収することにより生
ずる被照射物の温度変化を検知する手段を備えているの
で1発光効率の世上を促すことなく。
Since it is equipped with a means to detect the temperature change of the irradiated object caused by absorbing the microwave leaked from the arc tube, it does not increase the luminous efficiency.

安定した感度で無電極発光管の発光状態を監視すること
ができる。
The light emitting state of an electrodeless arc tube can be monitored with stable sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る光照射装置の一実施例の概略図
、第2図及び第3図は、他の実施例の概略図、第4図は
、従来例の概略図 1()・・・・・・・・・発光監視手段。 11、lla、llb・・・・・・・・・温度検知素子
。 12.12’・・・・・・・・・演算器。 13・・・・・・・・・表示器。 30・・・・・・・・・マイクロ波供給源。 33・・・・・・・・・無電極発光管。 35・・・・・・・・・処理槽(照射空間)。 36・・・・・・・・・被照射物 第3図 第4図
Fig. 1 is a schematic diagram of one embodiment of the light irradiation device according to the present invention, Figs. 2 and 3 are schematic diagrams of other embodiments, and Fig. 4 is a schematic diagram of a conventional example (1). ...... Luminescence monitoring means. 11, lla, llb...Temperature sensing element. 12.12'...... Arithmetic unit. 13... Display unit. 30...Microwave source. 33... Electrodeless arc tube. 35...... Processing tank (irradiation space). 36...Irradiated object Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] マイクロ波を供給するマイクロ波供給源と、前記マイク
ロ波を吸収して光を発する無電極発光管と、前記発光管
から発せられた光の被照射物への照射を施こす照射空間
を有する光照射装置において、前記発光管から漏洩し、
前記照射空間に至ったマイクロ波を吸収することにより
生じる被照射物の温度変化を検知して、前記発光管の発
光状態を監視する発光監視手段を具備して成ることを特
徴とする光照射装置。
A light having a microwave supply source that supplies microwaves, an electrodeless arc tube that absorbs the microwave and emits light, and an irradiation space that irradiates an object with the light emitted from the arc tube. In the irradiation device, leakage from the arc tube;
A light irradiation device characterized by comprising a light emission monitoring means for monitoring the light emission state of the light emitting tube by detecting a temperature change of the irradiated object caused by absorbing the microwaves that have reached the irradiation space. .
JP3748285A 1985-02-28 1985-02-28 Light irradiator Pending JPS61198545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3748285A JPS61198545A (en) 1985-02-28 1985-02-28 Light irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3748285A JPS61198545A (en) 1985-02-28 1985-02-28 Light irradiator

Publications (1)

Publication Number Publication Date
JPS61198545A true JPS61198545A (en) 1986-09-02

Family

ID=12498738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3748285A Pending JPS61198545A (en) 1985-02-28 1985-02-28 Light irradiator

Country Status (1)

Country Link
JP (1) JPS61198545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053524A1 (en) * 1998-04-09 1999-10-21 Jenton International Limited Rf/microwave energised plasma light source
KR20030026806A (en) * 2001-09-28 2003-04-03 주식회사 엘지이아이 Apparatus and method for intercepting leakage of microwave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053524A1 (en) * 1998-04-09 1999-10-21 Jenton International Limited Rf/microwave energised plasma light source
US6348669B1 (en) 1998-04-09 2002-02-19 Jenact Limited RF/microwave energized plasma light source
KR20030026806A (en) * 2001-09-28 2003-04-03 주식회사 엘지이아이 Apparatus and method for intercepting leakage of microwave

Similar Documents

Publication Publication Date Title
US4103167A (en) Ultraviolet liquid purification system
RU2012121180A (en) MICROWAVE FLUID PROCESSING DEVICE
KR840009130A (en) UV intensity tester
US9402927B2 (en) Device for sterilization by ultraviolet radiation
JPH10132941A (en) Radiation detection for radioactive clad scintillating fiber
JP2001127034A (en) Board processor
CA2181676A1 (en) Improved cell and circuit for monitoring photochemical reactions
JPS61198545A (en) Light irradiator
US6023070A (en) System and method to monitor for fouling
GB2106244A (en) Radiation level detector
CN219936112U (en) On-line measuring device for radioactive material concentration
KR20120003364A (en) Light irradiation apparatus
US8709261B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
WO2010013586A1 (en) Apparatus for measurement of silicon concentration
RU2672156C2 (en) Device and method for measuring liquid level in pressurised apparatus, in particular apparatus of urea plant
CN209069521U (en) A kind of fluorescence oil plant leak sensor
CN207785158U (en) A kind of minimally invasive mucosal tissue partial pressure of oxygen detector
JP4970897B2 (en) UV irradiation system
US20200080982A1 (en) Dissolved oxygen measurement
JPS5721100A (en) X-ray generator
CN221057008U (en) Novel server liquid cooling alarm monitoring device
CN219512104U (en) Chemiluminescence method on-line gas analysis device with chopper
CN209095836U (en) Light processor, light emitting device and Silica Surface processing unit
CN108226075A (en) A kind of total nitrogen analysis measuring apparatus
SU777450A1 (en) Level meter