JPS61198097A - Nuclear reactor stop device - Google Patents

Nuclear reactor stop device

Info

Publication number
JPS61198097A
JPS61198097A JP60037426A JP3742685A JPS61198097A JP S61198097 A JPS61198097 A JP S61198097A JP 60037426 A JP60037426 A JP 60037426A JP 3742685 A JP3742685 A JP 3742685A JP S61198097 A JPS61198097 A JP S61198097A
Authority
JP
Japan
Prior art keywords
reactor
core
reactor shutdown
electromagnet
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60037426A
Other languages
Japanese (ja)
Inventor
寛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60037426A priority Critical patent/JPS61198097A/en
Publication of JPS61198097A publication Critical patent/JPS61198097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉停止装置、%C二高速増殖炉停止装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor shutdown device, a %C dual fast breeder reactor shutdown device.

[発明の技術的背景とその問題点〕 一般に原子炉(ユおいては原子炉炉心またげ炉心以外の
機器等に異常が発生した場合あるいは計画的な炉停止の
場合、炉停止信号によって駆動体と制御棒要素とは切り
離され、炉心燃料部の領域C二制御棒要素が落下するこ
とにより原子炉は核的(ユ停止するようC′−構成され
ている。ところが、万一、原子炉の異常Cユよって原子
炉停止信号が発生したC:も拘らず制御棒要素が落下せ
ず炉停止(ユ失敗すると、この炉停止信号ζ−よって主
循環ポンプが停止し炉心流量が減衰するが炉出力に制御
棒が挿入されないため定格出力値に保持された状態とな
る。
[Technical background of the invention and its problems] In general, in a nuclear reactor, when an abnormality occurs in equipment other than the core of the reactor, or in the case of a planned reactor shutdown, the reactor shutdown signal activates the drive unit. The reactor is separated from the control rod elements, and the reactor is configured to come to a nuclear shutdown when the control rod elements in the area C2 of the core fuel section fall. However, in the event that the reactor Reactor shutdown signal was generated due to abnormality C: Despite this, the control rod elements did not fall and the reactor was shut down. Since no control rod is inserted into the output, the rated output value is maintained.

このため、出カー炉心流箪の不整合が生じ、冷却材温度
が上昇し遂(ユに燃料被覆管が溶融し燃料ペレットが破
損するという炉心崩壊事故(ユ移行する可能性がある。
As a result, an inconsistency occurs in the outgoing core flow, the coolant temperature rises, and there is a possibility of a core collapse accident in which the fuel cladding tube melts and the fuel pellets are damaged.

このことを図面を参照して説明する。This will be explained with reference to the drawings.

第10図は従来の高速増殖炉の概略縦断面図である。同
図に示すよう(ユ、原子炉容器40内には炉心41とこ
の炉心41を冷却する冷却材42が収納されている。炉
心41ハその中心部(:炉心燃料部43を配置し、この
炉心燃料部43の周囲をブランケットにで囲んでいる。
FIG. 10 is a schematic longitudinal sectional view of a conventional fast breeder reactor. As shown in the figure, a reactor core 41 and a coolant 42 for cooling the reactor core 41 are housed in the reactor vessel 40. The core fuel section 43 is surrounded by a blanket.

すなわち、炉心燃料部43の上下C二はそれぞれ上部軸
ブランケット部45と下部軸ブランケット部46とが配
設され、その周囲C:ハ径ブランケット部必が配設され
ている。ま九、炉心燃料部43は燃料集合体から構成さ
れ、燃料集合体間(ユは制御棒集合体が配設されている
。制御棒集合体の内部の制御棒ラッパー管47内C二は
中性子吸収体ペレットが封入された制御棒要素48が装
荷され、原子炉の定常運転時には運転時の炉心燃料の燃
焼状態に応じ念位置C二駆動4149(ユよって引き上
げられている。
That is, an upper shaft blanket section 45 and a lower shaft blanket section 46 are disposed at the upper and lower C2 of the core fuel section 43, respectively, and an outer diameter blanket section C is disposed around the upper and lower shaft blanket sections. Nine, the reactor core fuel section 43 is composed of fuel assemblies, and between the fuel assemblies (Y), control rod assemblies are arranged. A control rod element 48 in which absorber pellets are enclosed is loaded, and during steady operation of the nuclear reactor, it is raised to a predetermined position C2 drive 4149 (Y) depending on the combustion state of the core fuel during operation.

そして、炉停止は炉停止信号Cユよって駆動棒49と制
御棒要素48す切り離し、制御棒要素48が炉心燃料部
43の領域に落下することCユより原子炉は核的Cユ停
止する。しかしながら、原子炉の異常I:よって炉停止
信号が発生したにも拘らず、制御棒要素48が落下しな
いと、炉停止信号によって主循環ポンプは停止し炉心流
量が減衰するが炉出力は定格出力値(ユ保持されている
ので炉出力と炉心流量間に不整合が生じ、これにより冷
却材温度が上昇し、燃料被覆管が溶融し遂には燃料ペレ
ットが破損するというような炉心崩壊事故(ユ移行する
可能性がある。
When the reactor is shut down, the drive rod 49 and the control rod element 48 are separated in response to the reactor shutdown signal C, and the control rod element 48 falls into the area of the core fuel section 43, causing the reactor to undergo a nuclear shutdown. However, reactor abnormality I: Therefore, if the control rod element 48 does not fall even though the reactor shutdown signal is generated, the main circulation pump will stop due to the reactor shutdown signal and the core flow rate will attenuate, but the reactor output will remain at the rated output. This causes a mismatch between the reactor power and the core flow rate, which increases the coolant temperature, melts the fuel cladding, and ultimately damages the fuel pellets, leading to a core collapse accident. There is a possibility of migration.

また、原子炉運転時(:地震が発生すると、制御棒が炉
上部プラグ501ユ固定されているため、地震時の炉心
の上下振動と制御棒の上下振動との間に位相差が生じ、
正反応度が挿入され炉出力が異常C;増加するため地震
の規模が大きい場合1:ilt炉心損傷事故が発生する
可能性がある。
In addition, during reactor operation (when an earthquake occurs, the control rods are fixed to the reactor upper plug 501, so a phase difference occurs between the vertical vibration of the reactor core and the vertical vibration of the control rods during an earthquake.
If the magnitude of the earthquake is large because the positive reactivity is inserted and the reactor output increases abnormally, a 1:ilt core damage accident may occur.

さらに、原子炉に異常が発生し九にも拘わらず炉心ある
いは他の異常検出系の故障ζユより、炉停止信号が発生
しない場合Cユも炉出力と炉心流量間Cユ不整合あるい
は過大な反応度の挿入によって炉心が溶融崩壊する可能
性がある。
Furthermore, if an abnormality occurs in the reactor and a reactor shutdown signal is not generated due to a failure of the reactor core or other abnormality detection system, the The core may melt and collapse due to reactivity insertion.

そこで、炉停止失敗事故の発生確率が極めて小さく、し
かも万一炉停止失敗事故が発生しても、確実(ユみ子炉
を停止することができ、かつ地震時C:は過大な正反応
度が挿入されず、炉心損傷を未然C:防止することので
きる原子炉停止装置の出現が要望されていた。
Therefore, the probability of a failure to shut down the reactor is extremely small, and even if a failure to shut down the reactor does occur, it is certain (the Yumiko reactor can be shut down, and the There has been a demand for a nuclear reactor shutdown system that can prevent core damage from occurring due to C: not being inserted.

[発明の目的コ 本発明は、上記事情に鑑みてなされたもので、その目的
は、故障の発生頻度が著しく低くかつ地震時Ctri中
性子吸収体と炉心との相対変位量が小さく、さら(:炉
停止失敗事故時においても炉心損傷事故の発生を未然(
=防止することができる原子炉停止装置を提供するにあ
る。
[Purpose of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to reduce the frequency of occurrence of failures, reduce the amount of relative displacement between the Ctri neutron absorber and the reactor core during an earthquake, and furthermore (: Even in the event of a reactor shutdown failure accident, we can prevent a core damage accident from occurring (
To provide a reactor shutdown device that can prevent nuclear reactor shutdown.

[発明の概要] 本発明に、上記目的を達成するためCユ、原子炉炉心の
燃料集合体とこの燃料集合体と平行しその内部(:冷却
材が上昇するラッパー管と、このラッパー管内部に設置
されたカプセルと、このカプセル内C二収納された電磁
流体と、この電磁流体内を上下(ユ昇降自在な中性子吸
収体を封入した中空管体と、この中空管体の昇降を制御
する電磁石電流制御系とを備えた原子炉停止装置C二関
するものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides a fuel assembly for a nuclear reactor core, a wrapper tube parallel to the fuel assembly and its interior (a wrapper tube through which coolant rises, and an interior of the wrapper tube). A capsule installed in the capsule, a electromagnetic fluid stored inside this capsule, a hollow tube enclosing a neutron absorber that can move up and down (up and down) inside this electromagnetic fluid, and a This relates to a nuclear reactor shutdown device C2 equipped with an electromagnet current control system.

[発明の実施例コ 本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の概略縦断面図である。同図
(ユ示すよう(ユ、ラッパー管1の内部(;は冷却材流
路2が形成されており、この流路2内にカプセル3がカ
プセル固定棒4(:よって支持固定されている。冷却材
はラッパー管オリフィス16から流入し流路2を通って
炉心燃料部を冷却する。
FIG. 1 is a schematic vertical sectional view of an embodiment of the present invention. As shown in the same figure, a coolant flow path 2 is formed inside the wrapper tube 1, and a capsule 3 is supported and fixed within this flow path 2 by a capsule fixing rod 4. Coolant flows from the wrapper tube orifice 16 and passes through the flow path 2 to cool the core fuel section.

しかしてこのカプセル3の中C:ニ磁性流体5が充填さ
れ、電磁石6が配設されている。電磁石6の極面l′i
第3図の横断面図に示すよう(ユカブセル3の周方向(
ユ3領域1ユ分割されており、ま几この極面は、第1図
Cユ示す如くカプセル軸方向すなわち炉心側さ方向(:
に少くとも炉心燃料部(ユ相当する領域aをカバーする
よう(;設置し、電磁石6の炉心高さ方向の磁場分布に
炉心燃料部Cユおいて最大値を有するよう1ユ構成され
ている。
The inside of the capsule 3 is filled with a dimagnetic fluid 5 and an electromagnet 6 is provided. Polar face l'i of electromagnet 6
As shown in the cross-sectional view of Fig. 3 (circumferential direction of Yukabu Cell 3)
It is divided into 3 areas and 1 unit, and this polar surface is oriented in the capsule axis direction, that is, in the core side direction (:
The magnets are installed so as to cover at least a region a corresponding to the core fuel section C, and are configured so that the magnetic field distribution of the electromagnets 6 in the core height direction has a maximum value in the core fuel section C. .

電磁石6の電源ケーブルにカプセル内のケーブル7から
カプセル外のケーブル8を経て原子炉外部の炉停止信号
制御回路(図示せず)に接続されており、炉停止信号発
生時、あるいは電源喪失時Cユは電磁石6の電源がしゃ
断されるよう(:構成されている。また、カプセル内の
ケーブル7とカプセル外のケーブル8は燃料交換時(:
おいてカプセル3から切り離されるようC1着脱自在の
コネクタ9を介して接続されている。
The power cable of the electromagnet 6 is connected to a reactor stop signal control circuit (not shown) outside the reactor via a cable 7 inside the capsule and a cable 8 outside the capsule. The cable 7 inside the capsule and the cable 8 outside the capsule are configured so that the power to the electromagnet 6 is cut off (:).
The C1 is connected via a removable connector 9 so that it can be separated from the capsule 3 at any time.

ところで、カプセル3の内部(ユは磁性流体5が設けら
れ、この磁性流体中に中空管体11が配設されている。
Incidentally, a magnetic fluid 5 is provided inside the capsule 3, and a hollow tube body 11 is disposed in this magnetic fluid.

この中空管体11は磁場I:感応しない非磁性物質ζ二
よって構成されており、この中空管体1Jは気密状態(
ユ保たれて、その中C′″−は例えばボロン化合物の如
き中性子吸収体12が1.ガス空間13と例えばステン
レススティールの如き磁場I:g、応しない非磁性物質
より成る重り14と共に封入されている。このガス空間
131−を中性子吸収体から放出されるガスを保持する
と共C二中空管体11の作成時の密度を調節するため1
:設置されている。ま念、この中空管体11は案内棒1
0によってカプセル3内の径方向の運動は拘束されてい
るが、カプセル3内での軸方向の運動は機械的C′−ぽ
拘束されていない。  □ところで、この中空管体1]
の平均密度ρABハ中性子吸収体12の装荷量とガス空
間13の体積と重り   14との間の適切な配分によ
り下記(11式の範囲(ユなるようCユ設定されている
This hollow tubular body 11 is made of a non-magnetic material ζ2 that is insensitive to the magnetic field I, and this hollow tubular body 1J is in an airtight state (
1. A neutron absorber 12, such as a boron compound, is enclosed in the space C''' along with a gas space 13 and a weight 14 made of a non-magnetic material that does not respond to the magnetic field I:g, such as stainless steel. This gas space 131- is used to hold the gas emitted from the neutron absorber and to adjust the density when the hollow tube body 11 is made.
:is set up. Just in case, this hollow tube body 11 is the guide rod 1.
Although radial movement within the capsule 3 is constrained by C'-0, axial movement within the capsule 3 is not mechanically constrained. □By the way, this hollow tube body 1]
The average density ρAB is set to be within the range of Equation 11 (Y) below by appropriate distribution between the loading amount of the neutron absorber 12, the volume of the gas space 13, and the weight 14.

ρM(Oン ≦= ρAB く ρM<1)−−−−−
−−−−−(1)ここで、ρM(0) U電磁石6の励
磁停止時、即ち電流が05−おける磁性流体の電磁石極
面近傍での平均密度であり、ρM(I)は電磁石の最大
を流通電時の磁性流体密度である。
ρM (ON ≦= ρAB ρM<1)------
--------(1) Here, ρM(0) is the average density of the magnetic fluid near the electromagnet pole face when the U electromagnet 6 stops excitation, that is, when the current is 05-, and ρM(I) is the electromagnet's average density. The maximum is the magnetic fluid density when current is flowing.

そして、上記構成のカプセル3を配設したラッパー管I
Fi原子炉炉心の核特性の要求条件から決定される適切
な本数だけ後記する第8図の炉心領域に装荷されている
Then, a wrapper tube I in which the capsule 3 having the above configuration is arranged.
An appropriate number determined from the nuclear property requirements of the Fi reactor core is loaded in the core region of FIG. 8, which will be described later.

次に、本実施例の原子炉停止装置の機能について説明す
る。
Next, the functions of the nuclear reactor shutdown device of this embodiment will be explained.

先ず、原子炉が運転状M4(;あるときは本原子炉停止
装置は第1図1−示すような状態C二ある。すなわち、
電磁石6は内部ケーブル7からコネクタ9を介して外部
ケーブル8を経て電源(ユ接続守れているので、励磁状
態にある。このため、電磁流体5中の微粒磁性体は電磁
石6の極面近傍、即ち炉心燃料部a(ユ集中する。この
領域の磁性流体密度はpH(I)となるため中性子吸収
体が封入されている中空管体11の平均密度ρAnより
大きくなる。この結果、上部中空管体11は磁性流体と
の密度差(ユより電磁石極面より上部即ち炉心燃料部よ
り上部(ユ位置することC二なる。このときの状態をさ
らに第4図について説明する。同図は炉心高さ方向の磁
性流体密度分布17及び中性子吸収体を封入した中空管
体の密度とその位置の関係を示したもので、中空管体の
密度が磁性流体密度の磁極面近傍での密度より小さいた
め中性子吸収体は炉心燃料部より上8C−位置している
First, when the reactor is in operating state M4 (; the reactor shutdown system is in state C2 as shown in FIG. 1).
The electromagnet 6 is in an excited state because it is connected to the power supply (Y) from the internal cable 7 via the connector 9 and the external cable 8. Therefore, the fine magnetic particles in the electromagnetic fluid 5 are in the vicinity of the pole face of the electromagnet 6. In other words, the core fuel is concentrated in the core fuel part a. Since the magnetic fluid density in this region becomes pH (I), it becomes higher than the average density ρAn of the hollow tube body 11 in which the neutron absorber is enclosed. The empty tube body 11 has a density difference with the magnetic fluid (it is located above the electromagnet pole face, that is, above the core fuel part).The state at this time will be further explained with reference to FIG. 4. This figure shows the relationship between the magnetic fluid density distribution 17 in the core height direction and the density of the hollow tube enclosing the neutron absorber and its position. Since it is smaller than the density, the neutron absorber is located 8C- above the core fuel part.

次に、炉停止信号が発生した場合あるいは電源喪失時に
は本原子炉停止装置は第2図ζ二示すような状態C:あ
る。すなわち、このとき電磁石6の励磁が停止するため
磁性流体の平均密度は低下し、その値はρM(0)とな
る。中性子吸収体12が封入されている中空管体11の
平均密度ρABは上記(1)式):よりρM(0)より
大きく設定されているため、電磁石6の励磁停止C二伴
なって落下する。この落下した中空管体11ハ案内棒1
0C:沿って移動し、ストッパ15jユよってその運動
が拘束されるので、中空管体11の内部(ユ装架された
中性子吸収体12が炉心燃料部をカバーする個所まで降
下することCユなり、この結果、原子炉は核的(:停止
する。このとき・の状態をさら一;第5図について説明
する。同図は、励磁停止時C:おける炉心高さ方向の磁
性流体密度分布I8及び中空管体の密度とその位置の関
係を示したもので、励磁停止(こより中空管体11の平
均密度が磁性流体の磁極面近傍での密度より犬きくなる
ため中性子吸収体12け炉心燃料部C二位置している。
Next, when a reactor shutdown signal is generated or the power is lost, the reactor shutdown system is in a state C as shown in FIG. 2 ζ2. That is, since the excitation of the electromagnet 6 is stopped at this time, the average density of the magnetic fluid decreases, and its value becomes ρM(0). Since the average density ρAB of the hollow tube 11 in which the neutron absorber 12 is enclosed is set to be larger than ρM(0) from the above equation (1), the excitation of the electromagnet 6 stops C2 and falls. do. This fallen hollow tube body 11ha guide rod 1
0C: The movement is restrained by the stopper 15j, so that the neutron absorber 12 mounted on the hollow tube body 11 descends to the point where the mounted neutron absorber 12 covers the core fuel section. As a result, the reactor nuclear (:) is stopped.The state at this time will be further explained with reference to Figure 5.The figure shows the magnetic fluid density distribution in the core height direction at C: when excitation is stopped. This figure shows the relationship between the density of I8 and the hollow tube body and its position. It is located in the core fuel section C2.

しかして、電磁石の電流の大きさと磁性流体密度の関係
は第6図の線19のようC二磁性流体の密度は電流の大
きさくユ比例し、電流の増加(ユ伴なってはソ線型でか
つ連続的(=増大することができるので、電磁石の電流
量を制御して磁性流体の密度を変化させること1:より
中性子吸収体の停止位置を昇降させることができる。し
たがって、原子炉を停止から定格出力Cユ到る全出力範
囲C二わたって任意の炉出力状態を得ることが可能とな
る。すなわち、電磁流体の磁極面部の密度を中空管体の
平均密度と一致させることにより中性子吸収体が炉心燃
料部12部分的(ユ挿入しかつ停止している状態を作る
ことができる。このときの磁性流体密度分布は第7図に
示すような曲線20で表わされる。このことは電磁石の
電流量の制御(ユより中性子吸収体の炉心燃料部への全
挿入、全引き抜き9部分挿入等の原子炉運転時に要求さ
れるすべての中性子吸収体の停止またに保持位置を得る
ことができることを意味している。
Therefore, the relationship between the magnitude of the electromagnet's current and the density of the magnetic fluid is as shown by line 19 in Figure 6. The density of the C2 magnetic fluid is proportional to the magnitude of the current, and the increase in current (as 1: The stopping position of the neutron absorber can be raised or lowered. Therefore, the nuclear reactor can be stopped. It is possible to obtain any reactor output state over the entire power range C2 from rated output C2 to rated output C2.In other words, by matching the density of the magnetic pole surface of the magnetic fluid with the average density of the hollow tube body, neutron It is possible to create a state in which the absorber is partially inserted into the core fuel section 12 and stopped.The magnetic fluid density distribution at this time is represented by a curve 20 as shown in FIG. control of the amount of current (to be able to obtain all the stopping and holding positions of the neutron absorber required during reactor operation, such as full insertion of the neutron absorber into the reactor core fuel section, full withdrawal and 9 partial insertion, etc.) It means.

さらに、本発明の原子炉停止装置の適用例について説明
する。
Furthermore, an application example of the nuclear reactor shutdown device of the present invention will be explained.

第8図は本発明の原子炉停止装置と従来の原子炉停止装
置とを併用し、流量計、温度計等を異常検知系として用
いた場合の系統図を示したもので、どちらか一方が後備
の原子炉停止系を構成している。同図にシいて原子炉容
器30内には従来の炉停正装#26と本発明の炉停止装
ft27を装架した炉心燃料部25が収容されている。
Figure 8 shows a system diagram when the reactor shutdown device of the present invention and the conventional reactor shutdown device are used together, and a flow meter, a thermometer, etc. are used as an abnormality detection system. It constitutes a backup reactor shutdown system. As shown in the figure, a reactor vessel 30 houses a core fuel section 25 equipped with a conventional reactor shutdown equipment #26 and a reactor shutdown equipment ft27 of the present invention.

今制御棒駆動信号21が出されると、この信号21げ制
御棒駆動系及び電磁石電流制御系23+二人力され、こ
の系23の出力信号により従来の炉停止装置26では制
御棒が駆動され、本発明の炉停止装置27では磁性流体
密度が制   御される。ま之、通常の炉停止信号22
が出されると、この信号22ハ制御棒駆動系統及び電磁
石電流制御系統23に人力され、この系23の出力信号
C二より従来の炉停止装置26では制御棒が落下し、本
発明の炉停止装置では電磁石電流制御系を介して電磁石
電流しゃ断器24 C二よって電磁石の助出が停止する
When the control rod drive signal 21 is now issued, the control rod drive system and the electromagnet current control system 23 + the signal 21 are powered by the control rod drive system 23, and the control rods are driven in the conventional reactor shutdown device 26 by the output signal of this system 23. In the reactor shutdown device 27 of the invention, the magnetic fluid density is controlled. Man, normal furnace stop signal 22
When this signal 22C is outputted, this signal 22C is manually inputted to the control rod drive system and the electromagnet current control system 23, and from the output signal C2 of this system 23, the control rod falls in the conventional reactor shutdown device 26, and the reactor shutdown of the present invention occurs. In the device, the supply of the electromagnet is stopped by the electromagnet current breaker 24C2 via the electromagnet current control system.

さらCユ゛、万一、原子炉に異常が発生したC:も拘ら
ず、炉停止信号が発生しないあるいけ炉停止信号に発生
したが従来型の制御棒が挿入不能となった場合は炉心流
量の異常を流量計あで検知するか、あるいは集合体出口
温度の異常を温度計29で検知する。そしてこれらの異
常検出信号は、電磁石電流しゃ断器24に人力され、電
流がしゃ断される結果゛、本発明の炉停止装置27の動
作により、数子炉は核的ζユ停止することC−なるので
、上記したような炉停止失敗事故時C:おいても原子炉
に安全シー炉停止される。
In addition, in the event that an abnormality occurs in the reactor, C: Nevertheless, if the reactor shutdown signal does not occur, or if the reactor shutdown signal occurs but conventional control rods cannot be inserted, the reactor core An abnormality in the flow rate is detected by a flow meter, or an abnormality in the outlet temperature of the assembly is detected by a thermometer 29. These abnormality detection signals are manually input to the electromagnetic current breaker 24, and as a result of the current being cut off, the nuclear reactor is brought to a nuclear shutdown due to the operation of the reactor shutdown device 27 of the present invention. , Even in the event of a reactor shutdown failure accident as described above, the reactor is safely shut down.

第9図に、すべての炉停止系に本発明の炉停止装置を用
い、流量計、温度計等を異常検知系として用いた場合の
系統図を示したもので、どちらか′一方が後備の原子炉
停止系を構成している。なお、第8図と同一構成個所に
は同一符号を附して説明する。同図において、今、制御
棒駆動信号21が出されると、電磁石電流制御系311
:入力され、この系31の出力信号により本発明の炉停
止装置27の磁性流体密度が制御される。また、通常の
炉停止信号22が出されると、この信号22は電磁石電
流制御系31に入力され、この系31の出力信号により
本発明の炉停止装置では電磁石電流制御系31を介して
電磁石電流しゃ断器24によって電磁石の励磁が停止す
る。また、原子炉に異常が発生したにも拘らず、万一炉
停止゛信号が発生しないような場合には炉心流量の異常
を流量計あで検知するとかあるいは集合体出口温度の異
常を温度計29で検知する。
Figure 9 shows a system diagram when the reactor shutdown device of the present invention is used in all reactor shutdown systems, and flowmeters, thermometers, etc. are used as abnormality detection systems, and one of them is a backup system. It constitutes the reactor shutdown system. Note that the same components as those in FIG. 8 will be described with the same reference numerals. In the figure, when the control rod drive signal 21 is now issued, the electromagnet current control system 311
: is input, and the output signal of this system 31 controls the magnetic fluid density of the reactor shutdown device 27 of the present invention. Furthermore, when the normal furnace shutdown signal 22 is issued, this signal 22 is input to the electromagnet current control system 31, and the output signal of this system 31 causes the electromagnet current to flow through the electromagnet current control system 31 in the furnace shutdown device of the present invention. The breaker 24 stops the excitation of the electromagnet. In addition, in the event that a reactor shutdown signal is not generated even though an abnormality has occurred in the reactor, the abnormality in the core flow rate can be detected with a flowmeter, or the abnormality in the assembly exit temperature can be detected with a thermometer. Detected at 29.

そうするとこれらの異常信号σm磁石電流しゃ断器24
に入力され電流をしゃ断する結果、原子炉は核的に停止
することができる。
Then, these abnormal signals σm magnet current breaker 24
As a result of cutting off the current input to the reactor, the reactor can be nuclearly shut down.

上記したよう1ユ、本発明の炉停止装fjtニ、主炉停
止系、゛後備炉停止系のいずれか一方あるいに両方(ユ
用いることができる。また、ラッパー管出口または燃料
果合休出ロ等Cユ設置された温度計あるいは流量計信号
と組み合せることにより原子炉の炉停止系信号とげ独立
C1紙磁石の励磁しゃ断を行い、炉停止失敗事故が発生
した場合でも、炉心損傷Cユ移行する以前に安全に核的
炉停止を行うことができる。
As described above, one or both of the reactor shutdown system fjt of the present invention, the main reactor shutdown system, and the backup reactor shutdown system can be used. By combining the signal from the thermometer or flowmeter installed in the reactor C unit, the reactor shutdown system signal is used to cut off the excitation of the barb independent C1 paper magnet, and even in the event of a reactor shutdown failure accident, core damage C It is possible to safely shut down a nuclear reactor before transitioning to a nuclear reactor.

[発明の効果] 以上説明したようC:、本発明の原子炉停止装置(ユよ
れば中性子吸収体を封入した中空管体以外はすべて静的
要素のみで構成されているので、故障の発生頻度が従来
の炉停止装置に比べ著しく低減し、また地震時C−おい
ては炉停止装置が炉心部と一体化し、炉心外の構造物と
切り離されているので、中性子吸収体と炉心燃料部の相
対変位が低減する。したがって、通常時の炉停止装置の
信頼性が向上し、また、地震時における炉心への正の反
応度挿入量が減少し、原子炉の安全性が甚しく向上する
[Effects of the Invention] As explained above, the nuclear reactor shutdown device of the present invention (according to Yu) is composed of only static elements except for the hollow tube in which the neutron absorber is enclosed, so that failures do not occur. The frequency is significantly reduced compared to conventional reactor shutdown equipment, and in the event of an earthquake, the reactor shutdown equipment is integrated with the reactor core and separated from structures outside the core, so the neutron absorber and core fuel Therefore, the reliability of the reactor shutdown equipment during normal operation is improved, and the amount of positive reactivity inserted into the reactor core during earthquakes is reduced, significantly improving the safety of the reactor. .

さらに1本発明の炉停止装置と従来の炉停止装置とを併
用した場合、炉停止信号が発生し念にも拘らず制御棒駆
動装置の故障Cユよって制御棒が挿入されない事故が生
じても、中性子吸収体の駆動原理の異なる本発明の炉停
止装置が作動するので、炉心損傷事故を未然!−防止す
ることができ、原子炉の安全性が向上する。
Furthermore, when the reactor shutdown device of the present invention and the conventional reactor shutdown device are used together, even if an accident occurs in which a reactor shutdown signal is generated and the control rods are not inserted due to a failure of the control rod drive device. Since the reactor shutdown device of the present invention operates with a different driving principle for the neutron absorber, it can prevent accidents that cause core damage! - can be prevented, improving the safety of nuclear reactors.

さらにまた炉心の燃料集合体出口(ユ設置された少くと
も流量計または温度計による異常検知信号と本発明の炉
停止装置の電磁石電流しゃ断回路とを組合せることによ
り、通常の炉停止信号が発生しないような事故時1ユお
いても、、−原子炉を安全(ユ停止することができるの
で炉心損傷事故の発生を未然に防止することができる等
の効果を奏する。
Furthermore, a normal reactor shutdown signal is generated by combining an abnormality detection signal from at least a flowmeter or a thermometer installed at the fuel assembly exit of the reactor core with the electromagnetic current cutoff circuit of the reactor shutdown device of the present invention. Even in the event of an accident, the nuclear reactor can be shut down safely, so it is possible to prevent a core damage accident from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の一実施例の原子
炉運転時および原子炉停止時の概略縦断面図、第3図は
第1図の[1l−Ill線に沿う概略横断面図、第4図
および第5図はそれぞれ第1図および第2図の原子炉運
転時および原子炉停止時の磁性流体密度分布図、第6図
は本発明Cユか\る磁性流体密度と電磁石電流の関係を
説明するための図。 第7図は本発明の中性子吸収体が炉心燃料部(1半挿入
となっている状態の磁性流体密度分布図、第8図は本発
明と従来の両炉停止装置を併用しかつ流量計、温度計等
を異常検知系として用いた場合の系禮図、第9図は本発
明の炉停止装置のみを用いかつ流量計、温度計を異常検
知系として用いた場合の系統図、第1O図は従来の高速
増殖炉の概略縦断面図である。 1・・・ラッパー管   2・・・冷却材流路3・・・
カプセル    4・・・カプセル固定棒5・・・磁性
流体    6・・・電磁石7.8・・・ケーブル  
9・・・コネクタ10・・・案内棒     11・・
・中空管体12・・・中性子吸収体  13・・・ガス
空間14・・・z+)     −15・・・ストッパ
代理人 弁理士 猪 股 祥 晃(ほか1名)第  1
  図 第2図 @3図 第  5  図 pJL動4:ILノ 第 6I51! づ獣−11しG【七5,5→−ノ11.Gロ↓λ1ム1
ン第  7  図 第  8  図 第  9  図
1 and 2 are schematic vertical cross-sectional views of one embodiment of the present invention during nuclear reactor operation and nuclear reactor shutdown, respectively, and FIG. 3 is a schematic cross-sectional view along the line [1l-Ill of FIG. 1. , Fig. 4 and Fig. 5 are magnetic fluid density distribution diagrams during reactor operation and reactor shutdown as shown in Fig. 1 and Fig. 2, respectively, and Fig. 6 shows the magnetic fluid density and electromagnet according to the present invention. A diagram for explaining the relationship between currents. FIG. 7 is a magnetic fluid density distribution diagram when the neutron absorber of the present invention is inserted into the core fuel section (1 and a half), and FIG. 8 is a flow meter, Figure 9 is a system diagram when a thermometer etc. is used as an abnormality detection system, and Figure 1O is a system diagram when only the reactor shutdown device of the present invention is used and a flow meter and a thermometer are used as an abnormality detection system. is a schematic vertical cross-sectional view of a conventional fast breeder reactor. 1... Wrapper tube 2... Coolant channel 3...
Capsule 4...Capsule fixing rod 5...Magnetic fluid 6...Electromagnet 7.8...Cable
9... Connector 10... Guide rod 11...
・Hollow tube body 12...Neutron absorber 13...Gas space 14...z+) -15...Stopper representative Patent attorney Yoshiaki Inomata (and 1 other person) 1st
Figure 2 @ Figure 3 Figure 5 pJL movement 4: IL No. 6I51! zu beast-11shiG [75,5→-ノ11. G ro↓λ1mu1
Figure 7 Figure 8 Figure 9

Claims (6)

【特許請求の範囲】[Claims] (1)原子炉炉心の燃料集合体と、該燃料集合体と平行
しその内部に冷却材が上昇するラツパー管と、該ラツパ
ー管内部に設置されたカプセルと、該カプセル内に収納
された電磁流体と、該電磁流体内を上下に昇降自在な中
性子吸収体を封入した中空管体と、該中空管体の昇降を
制御する電磁石電流制御系とを備えたことを特徴とする
原子炉停止装置。
(1) A fuel assembly in the reactor core, a Lapper tube parallel to the fuel assembly into which coolant rises, a capsule installed inside the Lapper tube, and an electromagnetic device housed in the capsule. A nuclear reactor comprising a fluid, a hollow tube enclosing a neutron absorber that can move up and down in the electromagnetic fluid, and an electromagnetic current control system that controls the elevation and descent of the hollow tube. Stop device.
(2)中空管体はガス空間と中性子吸収体と重りを備え
た特許請求の範囲第1項記載の原子炉停止装置。
(2) The reactor shutdown device according to claim 1, wherein the hollow tube body includes a gas space, a neutron absorber, and a weight.
(3)燃料集合体出口近傍に温度計及び/又は流量計を
配置し、前記温度計及び/又は流量計からの異常検知信
号を用いた独立の炉停止装置を備えた特許請求の範囲第
1項記載の原子炉停止装置。
(3) A thermometer and/or a flow meter are arranged near the fuel assembly outlet, and an independent reactor shutdown device is provided using an abnormality detection signal from the thermometer and/or flow meter. Nuclear reactor shutdown device as described in section.
(4)電磁石電流制御系と制御棒駆動系とを併用した特
許請求の範囲第1項記載の原子炉停止装置。
(4) A nuclear reactor shutdown device according to claim 1, which uses both an electromagnet current control system and a control rod drive system.
(5)電磁石電流制御系は電磁石と、カプセル内とカプ
セル外とを着脱自在なコネクタを介して接続された電源
ケーブルとを備えた特許請求の範囲第1項記載の原子炉
停止装置。
(5) The nuclear reactor shutdown device according to claim 1, wherein the electromagnet current control system includes an electromagnet and a power cable connected to the inside of the capsule and the outside of the capsule via a detachable connector.
(6)電磁石の炉心高さ方向の磁場分布は少なくとも炉
心燃料部近傍で最大値を有している特許請求の範囲第5
項記載の原子炉停止装置。
(6) The magnetic field distribution of the electromagnet in the core height direction has a maximum value at least in the vicinity of the core fuel part.
Nuclear reactor shutdown device as described in section.
JP60037426A 1985-02-28 1985-02-28 Nuclear reactor stop device Pending JPS61198097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60037426A JPS61198097A (en) 1985-02-28 1985-02-28 Nuclear reactor stop device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037426A JPS61198097A (en) 1985-02-28 1985-02-28 Nuclear reactor stop device

Publications (1)

Publication Number Publication Date
JPS61198097A true JPS61198097A (en) 1986-09-02

Family

ID=12497187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037426A Pending JPS61198097A (en) 1985-02-28 1985-02-28 Nuclear reactor stop device

Country Status (1)

Country Link
JP (1) JPS61198097A (en)

Similar Documents

Publication Publication Date Title
US4076584A (en) Rodded shutdown system for a nuclear reactor
JPH0122915B2 (en)
JPS61198097A (en) Nuclear reactor stop device
JP6615605B2 (en) Fast reactor core and fast reactor
US4470947A (en) Double-clad nuclear fuel safety rod
JP3221989B2 (en) Fast reactor core
US4170516A (en) Method of operating a nuclear reactor
JPH05188171A (en) Reactor core of fast breeder
JPH02243995A (en) Self-operation type reactor shut-down mechanism
KR101776361B1 (en) Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US20030194043A1 (en) Nuclear reactor system and method for automatically scramming the same
JPS6247586A (en) Fuel aggregate with advanced type reactor stop mechanism
JPS6249290A (en) Emergency nuclear reactor automatic stop device
JP3405781B2 (en) Fast reactor core
JPH03216591A (en) Shut down device of nuclear reactor
JP2021135248A (en) Fast reactor core, and operation method of fast reactor
JP2869106B2 (en) Reactor shutdown device for fast breeder reactor
JP2656337B2 (en) Reactor shutdown device
JPS58165088A (en) Reactor shutdown device
JPS6212893A (en) Controller for nuclear reactor
Hulin et al. Preliminary Results of the SNAP 2 Experimental Reactor
JPS63289487A (en) Nuclear reactor stopping apparatus
Beusman Preliminary Safety Analysis of the Sodium-deuterium Reactor (SDR)
JPS6247584A (en) Fuel aggregate with emergency stop mechanism of nuclear reactor
Gryaznov et al. A concept of radiation safety for nuclear power units in space and its implementation in the “Kosmos-1900” satellite